首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
为评估AquaCrop模型在华北平原模拟大葱生长和农田水分的适用性,本研究利用实测的农民施肥方式的一个小区和增施氮肥处理的土壤水分、作物生长和产量数据,结合气象资料,获得了AquaCrop模型模拟大葱生长和土壤水分的模型参数,并利用实测的农民施肥方式的另外一个小区、减施氮肥、优化施氮和秸秆还田处理的土壤贮水量和生物量数据进行了模型验证。结果表明:在无水分胁迫条件下AquaCrop模型对大葱土壤贮水量及生物量的模拟结果是可以接受的。对土壤贮水量实测值与模拟值的RMSE为19.4~24.9 mm之间,相对误差为3.9%~12.4%;大葱生物量实测值与模拟值的RMSE为0.31~0.73 t/hm2,相对误差为5.8%~12.8%。  相似文献   

2.
AquaCrop模型在北疆滴灌春小麦生产中的校准及验证   总被引:1,自引:0,他引:1  
为精确模拟干旱区不同灌溉制度下的小麦耗水量,进一步提高水分利用效率,在北疆春小麦生产中引进FAO推荐的AquaCrop作物水分生产力模型,基于实测资料对模型进行校验。结果表明,校准后的模型能够准确模拟北疆滴灌春小麦蒸散量,以此为基础得到的冠层覆盖度、地上部干生物量及籽粒产量具有良好的模拟精度。因此,在干旱区应用AquaCrop模型模拟滴灌春小麦蒸散量指导精准灌溉是可行的。  相似文献   

3.
为评估AquaCrop模型在黑龙港流域模拟冬小麦-夏玉米水分利用与作物产量的适用性,根据田间试验数据和FAO提供的参数值,对AquaCrop模型进行模型非保守性参数的本地化校准和验证。结果表明,AquaCrop模拟冬小麦冠层覆盖值和实测值的归一化均方根误差(NRMSE)为15.90%,模拟产量与实测产量之间的NRMSE为4.23%;模拟夏玉米冠层覆盖值和产量值与相应实测值之间的NRMSE分别为11.59%和11.69%。本研究校准所得参数对黑龙港流域典型站点有较好的适应性,校验后的AquaCrop可以用于黑龙港流域冬小麦-夏玉米水分管理、产量潜力等相关研究。  相似文献   

4.
AquaCrop作物模型应用研究进展   总被引:3,自引:0,他引:3  
Aqua Crop是FAO于2009年研发的一款新型作物模型,它以输入参数少、界面简单等优点被广泛应用于生产实践中。论文基于Aqua Crop模型原理和特点,深入探讨了Aqua Crop模型国内外应用研究进展。当前,Aqua Crop模型在灌溉策略、气候变化下的情景模拟以及与其他模型联合应用等方面取得了显著进展。但是,该模型在应用过程中还存在若干缺陷。一是模型在保守参数缺少验证的情况下,会使得模拟精度不稳定;二是由于土壤空间变异性的客观存在,模型在由点位向面上扩展时应用效果不佳;三是当前对雨养区作物生长模拟研究还很少,且其非保守参数难以准确确定;四是目前该模型生理、养分和水养互作模块尚不够完善,未考虑作物病虫害和品种遗传差异,当作物生长遭受水分、盐分或温度等严重胁迫时会导致模拟精度下降。今后在模型应用时,可利用多年数据对保守参数进行校正,将区域同一站点多年数据和多站点相关数据相结合调试模型非保守参数;其次,应加强雨养地区模拟研究,从而扩大模型应用范围。开发者应进一步完善Aqua Crop模型子模块,为提高模拟精度和拓宽应用范围提供支撑。  相似文献   

5.
AquaCrop模型对旱区冬小麦抗旱灌溉的模拟研究   总被引:2,自引:1,他引:1  
【目的】根据干旱情况及时采取灌溉措施,对旱区抗旱以及提高水分利用效率具有重要意义。从大田农业的实际情况出发,研究AquaCrop模型在旱区的适用性及干旱年份抗旱灌溉模拟,为实现抗旱保产提供依据。【方法】于2012-2014年,在旱区陕西杨凌及杨凌周边区域进行冬小麦大田试验,采用2013-2014年揉谷试验区的冬小麦观测数据进行模型的参数调试,采用2012-2013年揉谷试验区和2013-2014年武功试验区的冬小麦观测数据进行模型的验证,从而获得AquaCrop模型在陕西杨凌及周边地区的模型参数。模型参数包括影响冠层生长的冠层增长系数、冠层衰老系数和最大冠层覆盖度,影响生物量积累的水分生产力,影响产量形成的参考收获指数等。然后根据调查的干旱年份2012-2013年的灌溉情况制定出4种灌溉情景,并利用参数本地化后的AquaCrop模型模拟2012-2013年4种灌溉情景对冬小麦生物量和产量的影响,通过模拟结果得出最优灌溉策略。最后比较2012-2013年揉谷试验区、2013-2014年揉谷试验区和武功试验区冬小麦的产量水分利用效率。【结果】在冬小麦冠层覆盖度方面,AquaCrop模型模拟的冠层覆盖度和实测值之间的决定系数(R2)与均方根误差(RMSE)分别为0.464和8.0%。在冬小麦生物量模拟方面,AquaCrop模型模拟的生物量和实测值之间的R2和RMSE分别为0.889和1.622 t·hm-2。在冬小麦产量模拟方面,AquaCrop模型模拟的产量与实测产量之间的RMSE为0.377 t·hm-2。2013年为干旱年份,在播种后第77天进行冬灌并且在播种后第172天的拔节期再进行灌溉的两种情景获得最大的生物量;在播种后第77天进行冬灌、播种后第172天拔节期和播种后第200天抽穗期再分别灌溉,小麦产量最高,达到6.451 t·hm-2。2012-2013年揉谷试验区、2013-2014年揉谷试验区和武功试验区冬小麦的产量水分利用效率分别为1.84、1.69和1.82 kg·m-3。【结论】AquaCrop模型能够较好地模拟旱区冬小麦的生物量和产量,并且AquaCrop模型模拟的干旱年份下不同灌溉策略的生物量和产量,基本可以说明不同灌溉时间和灌溉次数对冬小麦最终产量的影响。同时说明2012-2013年增加的2次灌溉使干旱年份冬小麦的产量水分利用效率超过正常年份。以上研究符合当地农业生产实际情况,说明AquaCrop模型可以为旱区抗旱保产提供依据。AquaCrop模型具有很好的应用前景,正逐渐成为一个重要的田间决策工具。  相似文献   

6.
【目的】通过评价AquaCrop模型对覆膜条件下冬小麦的生长发育、土壤水分、产量以及水分利用效率的模拟效果,为AquaCrop模型在覆膜条件下的校准和应用提供科学的方法和理论依据。【方法】试验设臵不覆盖(CK)和白色地膜覆盖(PM)两个处理,于2013年10月至2016年6月年在陕西杨凌进行田间试验,利用2014—2015年度试验数据对AquaCrop模型进行参数校准,利用2013—2014年度和2015—2016年度的冬小麦观测数据对AquaCrop模型进行验证。【结果】AquaCrop模型较好地模拟了冬小麦冠层覆盖度,冠层覆盖度模拟值和实测值之间的决定系数(R2)为0.86—0.99,均方根误差(RMSE)为2.1%—8.1%。AquaCrop模型也较好地模拟了冬小麦生物量和土壤贮水量,其中地上部生物量的模拟值和实测值之间的R2均大于0.95,RMSE为0.814—1.933 t·hm-2;CK土壤贮水量模拟值和实测值间的相关系数均大于0.85,PM土壤贮水量模拟值和实测值间的相关系数均大于0.75,CK和PM土壤贮水量模拟值和实测值的均方根误差表现为9.2 mmRMSE17.6 mm,标准均方根误差(NRMSE)小于5.5%。冬小麦产量实测值和模拟值相对误差(RE)为-4.4%—9.0%,PM产量实测值和模拟值的平均值较CK分别提高40.5%和40.3%,表现出较好的一致性,处理间成显著性差异。水分利用效率实测值和模拟值RE为-10.4%—-1.5%,PM水分利用效率实测值和模拟值的平均值较CK分别提高54.1%和47.5%,同样表现出较好的一致性,处理间成显著性差异。在冠层覆盖度、地上部生物量、产量和水分利用效率方面,模型模拟值和实测值的变化趋势基本一致,且PM模拟值和实测值间均较CK表现出显著性差异。【结论】AquaCrop模型能够较好地模拟覆膜条件下冬小麦生长发育过程,可以用于覆膜条件下作物生产力的模拟和预测,为AquaCrop模型的推广应用提供了可靠的数据支持。  相似文献   

7.
为将AquaCrop模型应用于华北平原夏玉米水分研究中,于2011-2012年在中国科学院栾城农业生态系统试验站进行了夏玉米水分处理试验,在参数率定与模型验证的基础上对华北平原水量平衡及水分利用效率的现状进行了分析。结果表明,AquaCrop模型能够较好地模拟夏玉米的产量、生物量、冠层发育过程以及表层土壤水储量的动态变化。从生物量角度来看,夏玉米的水分利用效率在8月中旬达到最大,可达10 kg/m3左右,其整个生长季水分利用效率为4.9-5.8 kg/m3;从产量角度来看,水分利用效率为2.3-3.0 kg/m3,且在整个生长季土壤水储量呈增加趋势。研究阐明了AquaCrop模型在华北平原地区有较好的适用性,可以应用于夏玉米耗水与水分利用效率方面的研究。  相似文献   

8.
基于AquaCrop模型的北京地区冬小麦水分利用效率   总被引:3,自引:0,他引:3  
【目的】作物水分利用效率(water use efficiency,WUE)是农业水分管理与决策的重要指标。北京是严重缺水的城市,其主要种植作物冬小麦灌溉用水占比高,开展冬小麦产量水分利用效率的分析研究,可为北京地区的冬小麦节水灌溉与增产平衡提供决策信息支持。【方法】利用2011—2012、2012—2013和2013—2014年国家精准农业示范研究基地冬小麦不同生育期不同灌溉处理下的田间实测数据,对AquaCrop作物模型进行参数本地化。统计北京地区2004—2014年冬小麦生育期的日降雨量数据,利用Pearson-Ⅲ型分布划分了3种降雨年型:湿润年(2012—2013年生育期)、平水年(2009—2010年生育期)和干旱年(2005—2006年生育期)。应用AquaCrop研究分析了3种不同降雨年型、14种灌溉情景下冬小麦籽粒产量水平和产量水分利用效率特征变化。【结果】基于AquaCrop模型的产量模拟值和实测值的R 2、RMSE和d分别为0.99、0.3 t·hm~(-2)、0.99。模型模拟的冬小麦产量水分利用效率:2011—2012年正常灌溉条件下为1.72 kg·m~(-3),2012—2013年正常灌溉条件下为1.67 kg·m~(-3),2013—2014年雨养、正常灌溉和过量灌溉条件下分别为1.27、1.74和1.64 kg·m~(-3),正常灌溉条件下产量水分利用效率最高,其次是过量灌溉,雨养条件下产量水分利用效率最低。在此基础上应用AquaCrop模型模拟分析了3种不同降雨年型冬小麦籽粒产量和产量水分利用效率随灌溉量变化的响应特征,其中,湿润年产量水分利用效率和籽粒产量达到最大值时所需的灌溉量分别为35和50 mm;平水年达到最大值所需的灌溉量分别为35和40 mm;干旱年达到最大值所需的灌溉量均为65 mm。【结论】AquaCrop模型可以很好预测北京地区不同年份不同灌溉条件下冬小麦的籽粒产量和产量水分利用效率。冬小麦产量与产量水分利用效率均随着灌溉量的增加逐渐增大,至最大值后开始减小,在干旱的情况下,植物通过自身适应策略会提高水分利用效率,随着水分的增加,水分利用率将降低,因此3种不同年型的产量水分利用效率的大小顺序依次为干旱年、平水年和湿润年。因此,在制定冬小麦灌溉策略时,要做到产量和产量水分利用效率兼顾。以上研究结果表明,利用Aqua Crop模型可以为北京地区冬小麦田间灌溉和决策提供指导。关于降雨年型本研究仅对湿润年、平水年和干旱年3种年型在越冬期、返青期、拔节期、开花期和灌浆期不同灌溉量和籽粒产量和产量水分利用效率之间的关系进行模拟,对于不同时期不同灌溉量对籽粒产量和产量水分利用效率的影响没有考虑,需要进一步研究验证。  相似文献   

9.
通过评价AquaCrop模型对马铃薯的生长发育、土壤水分动态变化、产量及水分利用效率的模拟效果,为AquaCrop模型在宁夏中部干旱带马铃薯种植的应用提供科学方法和理论依据。试验设置5d、7d、10 d、13 d和15 d共5个灌水周期,于2018年在宁夏中部干旱带进行田间试验,对马铃薯冠层覆盖度、地上生物量、土壤储水量、产量及其构成指标进行测定。结果表明,AquaCrop模型可较好地模拟马铃薯冠层覆盖度的变化、地上生物量和土壤储水量,其实测值和模拟值的相对误差(RE)为0.06%~7.51%、0.95%~13.33%和0.15%~4.35%,均方根误差(RMSE)为1.04%~3.36%、0.092~0.335 t/hm~2、1.68~4.1mm;马铃薯产量实测值和模拟值RE为0.10%~2.22%,RMSE为294.45 kg/hm~2,腾发量和水分利用效率等指标的模拟也有类似的结果,表现出较好的一致性,但AquaCrop模型在灌水量较大或者较小时对各指标的模拟效果较差。总体来看,AquaCrop模型对各指标的模拟结果均较好,其结果可作为马铃薯适宜生长区域划分及特定条件下产量的预测。  相似文献   

10.
为了探讨DSSAT软件在模拟玉米生长过程中的适用性,在田间试验的基础上,利用玉米生长模型DSSAT-CERES-Maize模拟了水分胁迫条件下辽宁地区玉米的生长发育和产量形成过程,并确定了参数估计和模型验证的最优方案。试验将玉米整个生育期划分为苗期、拔节、抽雄、灌浆和成熟5个主要生长阶段,选择其中的拔节期(J1、J2、JCK)和抽雄期(T1、T2、TCK)进行水分胁迫控制,分别采用田间持水量的60%~65%(轻度水分胁迫)、45%~50%(中度水分胁迫)和30%~35%(重度水分胁迫)3个水分胁迫水平,共6个处理,每个处理3次重复,在遮雨棚内随机排列。利用DSSAT-GLUE参数估计模块得到不同的参数估计结果,通过对比分析玉米物候期、单粒质量、产量、叶面积指数(LAI)、以及土壤水分的模拟值和实测值之间的差异,以确定该模型模拟辽宁地区玉米生长发育过程的精度。结果表明:遗传参数P2的估计值具有较大的变异性,变异系数为59.03%。在模型应用过程中应选用轻度水分胁迫以及在生育后期受到水分胁迫影响的观测数据进行遗传参数估计,可以提高模型的模拟精度,误差可以减小到6.7%~9.9%。在对作物LAI和水分动态模拟结果的分析中可以看出,同一生育期水分胁迫程度越低模型模拟精度越高;同一水分胁迫条件下抽雄期处理模拟精度高于拔节期处理。从留一交叉验证法的分析结果可以看出,总体模拟误差在12%~15%之间。说明DSSAT-CERES-Maize模型在模拟辽宁地区不同水分胁迫条件下玉米生长发育和产量形成过程方面具有较好的适用性。  相似文献   

11.
基于EFAST方法的AquaCrop作物模型参数全局敏感性分析   总被引:9,自引:0,他引:9  
【目的】敏感性分析是作物模型本地化过程中的重要环节,对作物模型的校正与应用有重要的意义。【方法】本研究以国家精准农业示范研究基地2012—2013、2013—2014和2014—2015年冬小麦试验为研究对象,采用全局敏感性分析方法扩展傅里叶幅度检验法(Extended Fourier Amplitude Sensitivity Test,EFAST)对AquaCrop模型42个作物参数进行敏感性分析,以评估模型在北京地区的敏感参数。【结果】(1)对干生物量敏感作物参数是:水分和温度胁迫参数(生物量生产的最小生长度(stbio),引起冠层早衰的土壤水分消耗上限(psen))、生物量和产量参数(归一化水分生产力(wp))、蒸散参数(作物冠层形成后到衰老之前的作物系数(kcb))、作物冠层和物候发展参数(冠层生长系数(cgc),从播种到出苗时长(eme),最大冠层覆盖度(mcc),冠层衰老系数(cdc),从播种到成熟的时长(mat),产量形成过程中收获指数的建立长度(hilen))。其中stbio,kcb,wp和cgc 4个作物参数敏感性指数最大;(2)对冠层覆盖度最敏感的参数是:作物冠层和物候发展参数(cgc,mcc,每公顷株数(den),出苗率达到90%时的土壤覆盖度(ccs),mat和cdc)、根区发展参数(最大有效根深(rtx))、水分和温度胁迫参数(psen)、蒸散参数(kcb);(3)对产量最敏感的参数是作物冠层和物候发展参数(从播种到开花时长(flo),mat,cdc,hilen和从播种到开始衰老时长(sen))、水分和温度胁迫参数(psen)、生物量和产量参数(参考收获指数(hi)和wp)、蒸散参数(kcb)。【结论】利用EFAST方法对AquaCrop模型中的作物参数进行一阶和全局敏感分析,最大干物量的敏感性分析结果以及干生物量随时间变化的敏感性分析结果显示,敏感性参数的选择上差异不大,但排序上存在较大的差异,最大干生物量的敏感性分析不能分析作物参数对干生物量在整个生育期的影响,结果不全面;冠层覆盖度随时间变化的一阶和全局敏感性分析结果显示,在敏感参数的选择和排序上均有较好的一致性,全局敏感性分析中作物参数的敏感性指数更高,对冠层覆盖度的影响表现得更明显。本研究结果用于AquaCrop模型本地化,可提高该模型在北京地区的模拟效率和模拟精度。  相似文献   

12.
基于AquaCrop模型的大豆灌溉制度优化研究   总被引:1,自引:0,他引:1  
王巧娟  何虹  李亮  张超  蔡焕杰 《中国农业科学》2022,55(17):3365-3379
【目的】 探究AquaCrop模型在关中地区的适用性,寻求大豆在不同降水年型下最适宜的灌溉制度。【方法】 用田间试验实测数据对该模型进行校正,并用校准后的模型模拟1961—2019年内所有3种不同降水年型14种灌溉制度下的大豆产量和水分利用效率。【结果】 AquaCrop模型模拟田间产量最高处理的冠层覆盖度的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.96、7.15%、11.03%和0.94;模拟值与实测值生物量的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.99、526.04 kg·hm-2、14.45%和0.97;最终产量模拟的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.97、49.98 kg·hm-2、1.74%和0.82,各处理的冠层覆盖度和生物量实测值与模拟值的R 2均大于0.95,说明AquaCrop模型可以较好地模拟关中地区大豆的生长发育动态与产量。结合模型模拟结果可知,大豆作物需水量平均值为398.2 mm,各个生育时期的需水量差异较大,分枝期需水量为127.8 mm,开花-结荚期需水量为212.6 mm,鼓粒期的需水量为57.7 mm。结合对3种不同降水年型进行不同灌溉制度模拟后发现,大豆开花-结荚期为需水关键期,该生育时期水分供应情况影响大豆的最终产量。在湿润年可以不灌水;平水年和干旱年仅在开花-结荚期分别灌溉45和70 mm可实现最高产量(2 699、2 486 kg·hm-2)和最大水分利用效率(0.74、0.7 kg·m-3)。【结论】 该地区大豆灌溉制度,应以不同降水年型分布情况为基础对大豆灌溉制度进行选择,可保证大豆具有较高的产量和水分利用效率,可作为关中地区大豆灌溉制度的参考依据。  相似文献   

13.
Water productivity (WP) is a key element of agricultural water management in agricultural irrigated regions. The objectives of this study were: (i) to estimate biomass of winter wheat using spectral indices; (ii) integrate the estimation of biomass data with the AquaCrop model using a lookup table for higher accuracy biomass simulation; (iii) show estimation accuracy of the data assimilation method in yield and WP. Spectral variables and concurrent biomass, yield and WP of samples were acquired at the Xiaotangshan experimental site in Beijing, China, during the 2008/2009, 2009/2010, 2010/2011 and 2011/2012 winter wheat growing seasons. The results showed that all spectral indices had a highly significant relationship with biomass, especially normalized difference matter index, with R2 and RMSE values of 0.84 and 1.43 t/ha, respectively. Simulation of biomass and yield by the AquaCrop model were in good agreement with the measured biomass and yield of winter wheat. The results showed that the data assimilation method (R2 = 0.79 and RMSE = 0.12 kg/m3) could be used to estimate WP. The result indicated that the AquaCrop model could be used to estimate yield and WP with the aid of remote sensing for improving agricultural water resources management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号