首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用常规热压法对没有施加胶粘剂的干法纤维板板坯进行热压,找出了板坯中心层温度的变化纪律与板坯含水率、板厚、板材密度及热压温度等的关系。根据实验结果对理想的数学模型进行了修正与完善,建立了无胶干法纤维板板坯中心层温度变化的实用数学模型。  相似文献   

2.
该文在不同板材密度和厚度、不同板坯含水率及热压温度条件下,对干法纤维板板坯的表面增湿后进行热压,并测定板坯中心层在热压过程中的温度变化数据,比较、分析了各条件下不同表面喷水量时中心层温度的变化曲线.结果表明:①板坯表面增湿处理对板坯表面温度的上升速度影响较小,仅有短暂的温度停滞现象.②板坯表面增湿处理不适于要求固化温度在120℃以上的胶粘剂,板坯表面增湿处理有利于提高板坯中心层在达到水分沸点温度之前的升温速度.③板坯中心层的升温速度随板坯表面喷水量的增加而增加,但当表面喷水量达到某值(即最佳喷水量)后,其升温速度不再明显增加.此最佳表面喷水量随板材密度和厚度的增加及热压温度的提高而增大.④对相同的表面喷水量,板材密度或厚度越小、板坯含水率越低,就越能明显增加板坯中心层的升温速度,而热压温度对其影响不大.⑤板坯表面增湿处理,能使其中心层的升温速度提高约一倍.   相似文献   

3.
【目的】研究板坯含水率、目标密度、热压温度及板材厚度4个因素对棉秆重组材板坯中心层升温的影响,为制定棉秆重组材的热压工艺提供参考。【方法】采用先进的温度在线测量手段,测定棉秆重组材热压过程中板坯中心层的温度,分析板坯含水率、目标密度、热压温度及板材厚度与棉秆重组材板坯中心层升温速度的关系。【结果】棉秆重组材板坯热压时中心层温度的变化曲线可分为3个阶段,即水分开始气化前的快速升温段、水分气化时的恒温段和水分基本气化完的慢速升温段。在快速升温段,板坯中心层的升温速度随着板坯含水率、热压温度的增加而加快,随着目标密度、板材厚度的增加而减小;在水分气化时的恒温段,随着板坯含水率、目标密度、板材厚度的增大,气化段的时间延长,热压温度越高,气化段时间越短;在慢速升温段,热压温度高,板坯升温速度快,板材厚度、目标密度大的板坯升温速度慢,板坯含水率对慢速升温段的升温速度几乎没有影响。【结论】在棉秆重组材板坯热压过程中,板坯含水率、热压温度、目标密度和板材厚度对板坯中心层升温速度均有不同程度的影响。  相似文献   

4.
刨花板常规热压传热研究   总被引:1,自引:1,他引:0  
采用常规热压法对刨花板板坯进行热压。探讨热压时中心层温度变化规律与板坯含水率、板厚、板材密度及热压温度等的关系.结果表明:在快速升温段.升温速度随板厚的增加而明显减小,随热压温度的提高而加快;在慢速升温段.升温速度随板厚的增大而显著加快.随热压温度的升高而明显加速.升温速度受目标密度和板坯含水率影响很小;板坯内水分蒸发所需时间随板厚、板坯含水率、热压温度、板材密度的增长而增加;板坯内水分蒸发温度随板材密度的增加而升高.随板厚的减少而升高.热压温度和板坯含水率对其几乎没有影响;加入胶粘剂会使快速升温段的升温速度有所加快,而使恒温段的水分蒸发温度有所降低。  相似文献   

5.
低密度刨花板的常规热压传热   总被引:4,自引:0,他引:4  
采用常规热压方式对刨花板坯进行热压、制造低密度刨花板,测定并记录了热压过程中板坯中心层的温度,根据实验数据分析了热压温度、板坯含水率、板材厚度及板材密度与低密度刨花板中心层升温速度的关系,得出了低密度刨花板常规热压传热的基本规律。  相似文献   

6.
杉木积成材的热压传热特性   总被引:1,自引:0,他引:1  
采用热电偶测温仪测量了杉木积成材热压过程中板坯芯层温度的变化规律,探讨了杉木积成材的热压传热特性.结果表明:在杉木积成材的热压制板过程中,木束条的形态对其热压过程中热量的传递影响很小;板材的密度对其热压过程的传热有较大影响,密度越大板坯内部的传热速度越小;板材的厚度对其热压过程中的传热有显著影响,板材越薄其升温速度越快,越厚保持恒温阶段的时间越长;板坯的含水率对其热压过程初期的传热有影响,后期的影响极小;热压温度对板材热压过程中的传热影响显著,热压温度越高升温速度越快;热压压力越高,板坯中心层的升温速度越快,但是压力越大,蒸汽排出的阻力随之加大.  相似文献   

7.
纤维板断面密度分布热压形成过程的研究   总被引:2,自引:1,他引:1  
为优化热压工艺、提高板材质量,该文通过改变两段式热压(高压—低压)工艺各段压力及其对应时间,采用平压法热压不同断面密度分布(VDP)的纤维板,监测热压过程中板坯温度和厚度的实时变化,分析板材VDP热压形成过程以及不同热压工艺对板材VDP的影响。结果表明:热压过程中板坯VDP存在动态变化,内部温度以及热压工艺决定这一动态过程;温度梯度的产生及实时变化是产生板材VDP的重要原因;增大高压压力有助于表层密度的提高;提高低压压力有助于心层密度及心层厚度的增大;表层厚度随着高压保压时间延长而增大;表层到心层的密度梯度随着高压降至低压时间的增加而降低。   相似文献   

8.
本文研讨了板坯含水率、板坯处理和热压曲线等因素对湿法两面光纤维板性能的影响.  相似文献   

9.
为研究过压缩工艺对板坯内部温度和蒸汽压的影响,在实验室条件下制备了薄型中密度纤维板,考察了过压缩工艺参数(过压缩程度、过压缩时间、闭合时间、热压温度以及压板从过压缩位置返回的时间)对板材物理力学性能的影响。结果表明:压板从过压缩位置返回的过程中,板坯心层蒸汽压显著下降,过压缩工艺增大了中密度纤维板表心层密度差;与常规热压工艺相比,采用过压缩工艺可以提高薄型中密度纤维板的物理力学性能。  相似文献   

10.
采用先进的温度在线测试方法,在不施加胶黏剂的情况下,研究热压板坯的密度对软木板热压过程中传热的影响。结果表明,软木板热压过程中芯层温度变化曲线可分为4段,即温度几乎不上升的短暂恒温段、水分汽化前的快速升温段、水分汽化时的恒温段、水分汽化后的慢速升温段;随着板材密度的增加恒温段持续时间延长;快速升温段表芯层中心点的温度随着密度的增加,升温速度变慢但程度不同;随着密度的增加板材芯层汽化温度升高,汽化段时间延长;芯层中心点达到100℃的时间也随密度的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号