首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
利用全国森林资源清查资料中的北京市部分,基于生物量转换因子法,通过建立不同森林类型蓄积量与生物量间的回归方程,估算出北京市不同时期森林的生物量和碳储量,并对碳储量的变化进行了分析。结果表明:北京市森林碳储量在5 a内由796万t增加到852万t,呈现增长的趋势,各森林类型碳储量的变化与相应森林类型面积变化呈正相关关系。在全市森林总碳储量中,栎类Quercus spp.,阔叶类,杨树Populus spp.在碳汇中起着重要的作用。树种年龄组成上的不合理很大程度上限制了北京的森林碳汇能力,幼龄林与中龄林面积大但是碳储量较低,成熟林碳储量所占比例较大,不同植被类型以及不同龄组的森林碳密度呈现略微下降的趋势,碳密度随着龄级的增长而增加,其他林分要素在碳汇中发挥着较为重要的作用。表4参20  相似文献   

2.
【目的】研究陕西省森林碳储量、生产力及固碳释氧经济价值的动态变化,为提高该省森林碳汇的管理和经营提供依据。【方法】利用1994、1999和2004年陕西省森林资源连续清查资料,依据建立的不同森林类型生物量与蓄积量回归方程,估算不同时段森林碳储量和碳密度;并依据不同森林类型生物量与生产力回归关系,推算不同时段森林的生产力和固碳释氧经济价值。【结果】陕西省森林碳储量由1994年的15 140.64万t增加到2004年的16 639.32万t,年增长率为0.99%,特别在1999-2004年,年增长率为1.92%。而平均碳密度在1994、1999和2004年3次调查中依次减小,分别为30.74,29.85和28.73t/hm2。对于不同森林类型,以栎类为主要优势树种的阔叶林对全省森林总碳储量的贡献最大,其碳储量占总碳储量的50%以上。天然林为森林碳储量的主体,占同期碳储量的95%以上,但人工林碳储量以年均9.05%的速度增长,明显大于天然林的增幅(0.79%)。陕西省森林总生产力和固碳释氧经济总价值均不断增加,在1994、1999和2004年的3次调查中,总生产力分别为43.88×106,45.31×106和52.24×106 t/年;固碳释氧经济总价值分别为756.20,780.86和900.25亿元。【结论】陕西省森林表现出了明显的碳汇功能,但碳固定能力还不强,碳密度低于我国平均森林碳密度,未来应加强陕西省各重点造林工程的实施,扩大森林覆盖面积,同时对现有森林应通过科学抚育和管理,挖掘潜力,提高森林碳汇能力,使陕西省的森林生态系统在全球碳循环中发挥更大的作用。  相似文献   

3.
利用2008年全国第七次森林资源清查主要数据,建立不同森林类型生物量与蓄积量之间的回归方程,对河南省森林植被的碳储量、碳密度及其碳汇经济价值进行了估算。结果表明,12008年全省森林总碳储量约为8 090.72万t,主要分布在乔木林中,占86.22%;森林平均碳密度约为20.00 t/hm2,远小于全国平均值;2阔叶林是全省乔木林碳储量的主要贡献者,碳储量约为5 584.44万t;杨树和栎类作为主要的两个优势树种,二者碳储量占阔叶林的86.22%;3全省乔木林碳储量主要集中于幼龄林和中龄林中,占全省乔木林碳储量的81.74%;从起源来看,人工林碳储量占55.26%,且固碳潜力巨大,将是河南省森林碳储量的主体;4河南省全部森林碳汇经济价值约为220.63亿元,其中,乔木林为190.24亿元,主要源于杨树和栎类的贡献。  相似文献   

4.
【目的】研究安徽森林植被碳储量的分布特征,为森林碳汇功能的评价提供依据。【方法】以安徽省第8次(2014年)森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种含碳率,估算安徽森林植被的碳储量和碳密度,并分析了不同森林类型及不同林级、林种和起源的乔木林碳储量分布特征。【结果】安徽不同森林类型的总碳储量为8.51×10~7 t,平均碳密度为20.55 t/hm~2,其中竹林的碳密度最高,为37.33 t/hm~2。乔木林和竹林的碳储量分别为6.42×10~7和1.45×10~7 t,各占总碳储量的75.47%和17.02%;不同龄级乔木林中,中龄林碳储量最大,达2 490.92×10~4 t,约占乔木林总碳储量的40%;过熟林碳储量最小,为256.24×10~4 t,仅占乔木林总碳储量的3.99%,且表现出林龄越大碳密度越高的趋势。用材林和防护林的碳储量分别为3 798.04×10~4和2 205.68×10~4 t,共占乔木林碳储量的93.48%;各林种碳密度大小为特用林防护林用材林经济林薪炭林。天然林的面积(153.86×10~4 hm~2)略低于人工林(154.81×10~4 hm~2),但由于天然林的碳密度高于人工林,使得天然林的碳储量(3 476.50×10~4 t))反而高于人工林(2 946.29×10~4 t)。【结论】安徽省森林植被具有明显的碳汇能力,但其碳密度较低,应对现有森林进行科学抚育和管理,以提高森林的碳汇能力。  相似文献   

5.
基于莫尔道嘎林区森林资源清查资料,依据不同森林类型生物量与蓄积量之间的线性关系,对莫尔道嘎林区不同时段、不同森林类型的森林碳储量进行了推算,并分析其动态变化特征。结果表明:莫尔道嘎林区森林活立木(地上和地下)总碳储量由2008年的18456147 t增加到了2012年的20202875 t,累计增加碳1746728 t,增长率为9.46%。从树种的角度分析,全区总碳储量中落叶松和白桦所占比重最大;从龄组角度看,中龄林和成熟林占总碳储量比重最高。同时,不同森林类型碳密度不同,其中,樟子松林碳密度最大,蒙古栎林碳密度最小;不同龄组的碳密度随着林龄的增加逐渐增大。不同森林类别之间(重点公益林、一般公益林和商品林)森林碳密度也不同,重点公益林碳密度明显高于一般公益林和商品林。  相似文献   

6.
【目的】对黄龙山蔡家川林场主要森林类型的碳储量和碳密度进行计算,为该区域森林碳汇功能研究提供参考。【方法】利用1986和1997年黄龙山蔡家川林场森林资源二类调查数据,依据不同森林类型生物量与蓄积量之间的回归方程以及森林生物量与碳储量、碳密度的关系,对该林场主要森林类型(柏木(Cypress)林、杨树(Populus)林、桦木(Betula)林、栎树(Quercus)林、油松(Pinus tabulaeformis)林、杂木林(Nonmerchantable woods))的碳储量、碳密度进行推算和分析,并与全国及西北五省(区)相同森林类型碳密度进行了对比。【结果】1986和1997年,该林场2年平均森林总碳储量为387 740 t,平均森林碳密度为17.7 t/hm2;1997年森林总碳储量比1986年减少9.65%,森林平均碳密度增长3.38%。各森林类型1986和1997年的平均碳密度大小顺序依次为栎树林(28.06t/hm2)、油松林(24.35 t/hm2)、桦木林(21.04 t/hm2)、杂木林(11.86 t/hm2)、柏木林(11.03 t/hm2)和杨树林(10.04t/hm2);1986和1997年不同生长阶段林分平均碳密度大小顺序依次为近熟林(25.56 t/hm2)、幼龄林(25.49 t/hm2)、中龄林(24.77 t/hm2)、成熟林(13.53 t/hm2)、过熟林(12.84 t/hm2)。该林场柏木林、桦木林、栎树林、杨树林、杂木林的森林碳密度均低于全国平均水平,但油松林的平均碳密度较全国平均水平高92.0%。【结论】1986和1997年,该林场森林具有较好的碳汇能力,但这2年间森林碳汇能力变化不显著;森林类型不同或同期林分生长阶段不同,其所具有的碳汇能力存在差异;保护和管理好栎树林、油松林、桦木林,并大力开展幼龄林、中龄林和近熟林的经营抚育工程,对增加该林场森林的碳汇功能具有重要贡献。  相似文献   

7.
根据研究区昆明市海口林场资源的相关资料,利用不同森林类型生物量与蓄积量之间的回归方程,对研究区8种主要乔木林及其不同林龄结构的生物量和碳储量进行了推算,并分析了天然林与人工林的碳储量和碳密度。结果表明,研究区8种主要乔木林的总碳储量为80 142.30 t,针叶林碳储量占总碳储量的57.94%;碳储量最大的乔木林为华山松林,其碳储量占总碳储量的30.73%;8种主要乔木林不同龄级碳储量由高到低分别为中龄林>近熟林>幼龄林>成熟林;同一龄级、不同类型乔木林的碳汇能力表现各异;研究区人工林的碳储量比天然林小,且人工林和天然林的碳密度低于我国的平均水平。  相似文献   

8.
为了研究林场级森林林木生物量和碳储量的信息,以海南省岛东林场为例,采用系统(等距)抽样方式对该场 林木资源进行抽样调查。选择政府间气候变化专门委员会(IPCC)制定的方法对不同龄组、不同类型森林的林木生 物量和碳储量进行估算。结果显示:林场森林林木碳储量大,达53.00 万t,但单位面积上的碳汇能力低,仅为 54.35 t/ hm2 ;不同类型林分各个生长阶段(龄组)的单位面积碳储量不尽相同,其中木麻黄成熟林最高,为141.08 t/ hm2 。以上结果表明,当前短周期人工林皆伐作业模式下的森林林木生物量积累不足,造成岛东林场碳汇能力较 低。当前经营方式不能满足应对全球气候变化为目的的多功能森林经营的要求,需要寻找一种新的经营方式来改 变这一现状。   相似文献   

9.
为了明确安徽省森林植被碳储量动态变化特征,基于安徽省1989-2014年6次森林资源连续清查数据,采用生物量-蓄积量转换函数,结合主要树种含碳率,估算了安徽省森林植被的碳储量、碳密度和固碳潜力。结果表明:安徽省森林植被碳储量由1989年的32.98×10~6t C增加到2014年的85.72×10~6t C,碳汇量为52.75×10~6t C,年均增长率为4.06%,碳密度增加了8.51 t C/hm~2。乔木林是安徽省森林植被碳汇的主要贡献者,竹林次之,二者分别占安徽省森林植被碳汇的83.27%、13.41%,各林型平均碳密度大小顺序为竹林、乔木林、经济林、灌木林和疏林;不同龄组乔木林的碳储量大小顺序为中龄林、幼龄林、近熟林、成熟林和过熟林,且表现出林龄越大,碳密度越大的趋势;天然林植被碳储量略高于人工林;安徽省森林植被固碳潜力为35.67 t C/hm~2,栎类固碳潜力最大。因此,安徽省森林植被碳汇能力明显增强,但碳密度较低,加强科学经营管理至关重要。  相似文献   

10.
基于全国第七次、第八次、第九次森林资源连续清查安徽省皖南山区的清查数据,运用生物量换算因子连续函数法,对皖南山区森林碳储量及其动态进行了估算。结果表明:皖南山区森林碳储量从2004年的4 491.01万t增加到2014年的6 223.13万t,年平均净增173.21万t,年平均净增率3.86%。乔木林占森林碳储量主导地位,比重不断提高,由2004年的74.99%增加到2014年的79.85%。乔木林中,中龄林碳储量、面积均占优势,幼幼龄、中幼龄、成熟林碳储量均增加,中龄林面积减少,幼龄林、成熟林面积增加,幼幼龄、中幼龄、成熟林碳密度总体呈增加态势。8个主要乔木树种的碳密度总体上呈增加趋势,杉木、阔叶混交林、马尾松、针阔混交林、栎类在乔木林中占优势,阔叶混交林碳储量和面积表现出显著增加,杉木、马尾松有所减少。总体来看,皖南山区森林碳汇发展水平仍然不高。因此,今后在增加森林面积的同时,仍需采取合理经营管理措施,促使森林质量和碳汇水平不断提高。  相似文献   

11.
基于IPCC的河北省2005年森林碳储量   总被引:1,自引:0,他引:1  
基于IPCC的方法,对河北省2005年森林及其它木质生物质碳储量进行了研究.结果表明,河北省2005年森林和其它木质生物质总碳储量为6 111.96万t,折合固定CO2的量为22 410.52万t.现有林以幼、中龄林为主,林分平均碳密度较低,仅为10.32 t·hm-2;按优势树种(树种组)排序,最大的5个碳库为桦树、...  相似文献   

12.
城市森林及其管理相关政策作为减少CO2排放的有效策略得到了较为广泛的关注。采用材积源生物量方程与净初级生产力方法来定量分析了广州市城市森林碳储量和碳固定量,根据化石能源使用量及其碳排放因子核算了广州城市能源碳排放,最后评估了城市森林碳抵消效果。结果显示广州市城市森林碳储量为654.42×104t,平均碳密度为28.81 t/hm2,而森林碳固定量为658732 t/a,平均固碳率为2.90 t·hm-2·a-1。2005-2010年广州市年均能源碳排放则达到2907.41×104t。广州城市森林碳储量约为城市年均能源碳排放的22.51%,其通过碳固定年均能够抵消年均碳排放的2.27%,不过从城市森林综合效益来看其仍是城市低碳发展重要举措之一。分析了林型组成和林龄结构对于广州森林碳储量和碳固定量的影响,并从森林管理角度为城市森林碳汇提升提出建议。这些结果和讨论有助于评估城市森林碳汇在抵消碳排放中所起的效果。  相似文献   

13.
以长白山金沟岭林场作为研究区域,研究了主要森林类型碳储量和碳密度的时空变化,为我国森林生态系统碳平衡提供基础资料。结果表明:1)金沟岭林场森林植被碳储量从1997年的7 621.842 2 t 增加到2007年的8 018.125 9 t,净增加了466.283 7 t。碳储量分布以中龄林与近熟林为主,1997年与2007年所占的比例分别为87%与79%,是一个潜在的巨大碳库;2)森林植被的平均碳密度随着龄级结构的增长而增加,1997年与2007年分别为47.541 7 mg·hm-2与50.186 6 mg·hm-2,高于全国2008年森林平均植被碳密度42.82 mg·hm-2,但是低于世界的平均水平86.00 mg·hm-2;3)利用1997年与2007年两期数据分析了该林场森林植被的年固碳增量为39.63 t·hm-2·a-1,平均年增长率0.51%,低于我国森林的平均年增长率1.6%,该林场森林植被仍具有潜在的固碳空间;4)对森林植被的碳汇效益进行了计量, 1997年与2007年分别为2 728.130 8万元与2 744.954 8万元,净增长了16.824 0万元。应加强对现有森林经营,尤其是中幼龄林抚育,提高森林质量,从而增加现存森林的碳密度,以此来提高森林固碳潜力。  相似文献   

14.
基于森林资源二类调查数据,运用生物量转换因子法和单位面积平均生物量法,估算西藏自治区扎囊县森林生物量,再乘以含碳系数估算森林碳储量。根据生物群落演替的顶级理论和空间代替时间法,以成熟林碳储量作为森林生物量碳容量参照,应用森林生物量碳容量与当前( 或某一年) 森林碳储量的差值估算森林固碳潜力。结果表明,扎囊县森林植被碳储量为768 751.91 t。灌木林是青藏高原的原生植被,碳储量占森林碳储量的84%,发挥着重要的固碳作用。扎囊县森林资源以发挥生态防护功能为主要目的,有利于森林自然生长积累碳储量,防护林面积和碳储量占森林面积和碳储量比例均高达99%。乔木林碳储量按起源以人工林为主,占91%;按树种以柳树和杨树为主,占90%;在龄组方面,中龄林、近熟林和成熟林碳储量较大,占88%。随着龄组增大,从幼龄林、中龄林、近熟林、成熟林到过熟林,碳密度依次增大,从1.17 t/hm2到55.67 t/hm2。乔木幼龄林、中龄林和近熟林在乔木林面积中占88%,但是碳密度远低于乔木成熟林的平均碳密度40.28 t/hm2。随着乔木林从幼龄林逐步成长为成熟林,碳储量将显著增大。乔木林固碳潜力为251 782.90 t,是乔木林碳储量的2.21倍。宜林地、无立木林地、未成林造林地和苗圃地固碳潜力与面积大小正相关,固碳潜力为365 947.81 t。相应的措施可以进一步提高森林碳汇:封山(沙)育林等措施促进灌木林资源发展,稳定并提高灌木林面积和覆盖度;全面提升森林经营管理水平,提高森林资源质量;继续推进重点林业工程建设,因地制宜开展人工造林和封山育林,提升森林资源培育水平,确保人工造林成效。  相似文献   

15.
赵娣  谢世友 《广东农业科学》2013,40(18):155-158
在2012年重庆市森林资源二类调查实测数据和2002年调查资料的基础上,利用西南地区乔木层生物量和蓄积量回归模型,估算了酉阳林地近10年的碳储量动态,并按优势树种、林种、龄组、起源分类计算了各类乔木层的碳储量。结果表明,10年来酉阳林地总碳量呈显著增加趋势,其中杉木的碳储量增量最大,各龄组中中龄林碳储量增加最多。可见,酉阳林地植被是CO2的汇,且随着幼龄林的增长和人工林的发展,碳汇功能将不断上升。  相似文献   

16.
基于NbS的北京市乔木林固碳能力分析   总被引:1,自引:0,他引:1  
  目的  乔木林生物质碳汇是影响森林碳汇的重要组成部分,是一种自然的气候解决方案,在全球气候变化大背景下,森林的固碳潜力一直被广泛关注,本文以北京市为例,分析不同的林业活动对乔木碳储量的影响。  方法  采用北京市森林资源设计调查数据,利用IPCC材积源—生物量法估算北京市乔木林碳储量,分析了2009—2014年北京市在森林转化、造林以及森林经营3种自然方案下碳储量的变化情况。  结果  (1)2009—2014年北京市森林面积净增长8.35 × 104 hm2,碳储量净增量约1.45 × 109 kg,年均碳固持量为0.29 × 109 kg/a。(2)2014年北京市人工林总碳储量高于天然林,且碳密度高于天然林。当前北京市森林龄级结构偏低龄化,随着森林的自然生长,仍有较大的碳固持潜力。在各个优势树种(组)中,人工杨树林的固碳效率尤为突出,远远高于其他优势树种。(3)山地森林活动强度较小,森林经营区域占比较大,城市森林变化剧烈,受造林与森林转化等措施影响较大。2009—2014年北京市由于森林转化为其他土地造成了1.06 × 109 kg的碳损失,造林带来了2.10 × 109 kg的碳固持,森林经营过程中有1.62 × 109 kg的碳固持与1.21 × 109 kg的碳损失,森林经营活动的总碳储量净增量0.41 × 109 kg,避免森林转化可以带来1.17 × 109 kg的碳汇。  结论  增加乔木林的固碳能力是应对气候变化的重要手段,避免森林转化可以凭借较小的森林面积贡献较大的碳汇,是一种低成本且效果显著的增汇方案。   相似文献   

17.
福建省柑橘林生态系统碳储量的时空变化   总被引:3,自引:1,他引:2  
通过野外实地调查对福建省柑橘林生态系统碳储量及其分布特点进行研究.结果表明:柑橘各器官生物量回归模型显示,柑橘各器官的相关性较好,树干、树叶、果实的相关系数均大于0.90,树高和基径的相关系数为0.89;柑橘林生态系统有机碳密度为222.80 t.hm-2,其中,土壤(0-100 cm)碳密度为200.21 t.hm-2,占总有机碳密度的89.86%,果树碳密度为22.58 t.hm-2,占10.14%;1978-2007年,柑橘林生态系统碳储量从3.16×106t增加到37.97×106t,年均增加1.20×106t,表现为碳汇;在第4-6次(1993-2003年)森林资源连续清查期间,柑橘林生态系统碳储量占全省森林生态系统碳储量的比重都高于2.43%;柑橘林生态系统碳储量在空间分布上表现出由闽东南向闽西北递增的规律,9个设区市的柑橘林生态系统碳储量呈现出不同的消长规律,三明市、南平市、漳州市3个地区平均柑橘林生态系统碳储量占全省的63.43%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号