首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 812 毫秒
1.
基于GNSS航向微分和MEMS陀螺仪的农机轮角测量方法   总被引:1,自引:0,他引:1  
【目的】设计一种农机前轮转角测量方法,代替安装复杂的连杆式轮角传感器。【方法】采用GNSS天线测量航向和速度,MEMS陀螺仪测量车身和车轮的合转动速率,计算MEMS陀螺仪与GNSS航向微分差值,获得车轮转动速率;设计自适应卡尔曼滤波器进行信息融合和校正,获得车轮转向角,并进行性能验证和田间应用试验。【结果】与连杆式轮角传感器测量结果对比,轮角测量方法的拖拉机在偏离航线2.5和1.5 m进行上线时,平均绝对误差(MAE)分别为1.13°和0.87°,均方根误差(RMSE)分别为0.90°和0.68°,上线时间分别为29.4和23.5 s;以4 km/h田间导航应用时,MAE为0.44°,RMSE为0.87°,满足拖拉机旱地作业要求。【结论】GNSS航向微分和MEMS陀螺仪轮角测量方法与连杆式轮角传感器测量性能相当,能够替代轮角传感器用于较低速农业机械导航。  相似文献   

2.
【目的】利用双天线GNSS的精准平地系统可以达到提高土地平整度、提高肥料利用率和降低水土流失的目的,可以提高农作物产量、提高平地机在不同地形作业的精度和效率,减少农民的劳动强度。【方法】GNSS精准平地控制系统通过GNSS移动站接收到的GNSS差分站发送的差分信号确定平地铲的高程和姿态角,向控制器发送指令调节电磁换向阀的开闭,通过控制液压油管中流量和流向实现实时精准调节平地铲高程和姿态角的工作目标。【结果】1.平整作业后土地最大高差从平整前的0.245 m高差缩减到0.139 m,平整度显著提升;2.该试验平地铲最大姿态角为1°,即平地铲变化范围小,始终保持平稳;3.试验田平整后记录点到基准平面距离小于2.5 cm的点占总试验田面积60%以上,平地效果良好。【结论】双天线GNSS精准平地控制系统定位精确可以达到厘米级、稳定性高、不受拖拉机行驶速度影响;液压系统响应快速,可以实现根据控制器信号精准调节平地铲高程和姿态角;系统整体设计合理,平地效果达到精准平地要求。  相似文献   

3.
针对MEMS陀螺仪输出信号中含有的随机漂移噪声造成海参捕捞装置惯性导航精度明显下降的问题,采用时间序列分析法和Kalman滤波算法,对MEMS陀螺仪随机漂移噪声的削减问题进行研究。以MEMS惯性测量单元的实测数据和三维电子罗盘测量的姿态角为样本,对本研究的低成本陀螺仪的降噪效果进行测试,试验结果表明:1)经过降噪处理后的陀螺仪随机漂移信号的方差比陀螺仪原始采样信号的方差降低1个数量级,显著改善了陀螺仪随机漂移数据的精密度;2)以高精度三维电子罗盘实测的姿态角作为参考基准,将降噪后的陀螺仪随机漂移数据导入捷联惯导姿态更新算法程序,在300s时间内,解算出的俯仰角、横滚角和航向角的均方根误差RMSE全部小于1°;与降噪前相比,相应的俯仰角、横滚角、航向角的RMSE分别降低了170.5、97.6和42.5倍,明显提高了惯性导航精度。  相似文献   

4.
【目的】对拖拉机转向跟踪控制进行研究,寻求提高转向跟踪控制精度的方法。【方法】以福田欧豹4040型拖拉机为研究对象,以车辆航向角偏差和前轮转角为输入变量,转向驱动电机转速为输出变量,设计车辆转向控制模糊控制器,并用于拖拉机航向角的控制。【结果】拖拉机以0.53 m/s的速度行驶时,航向角偏差可控制在1°以内;拖拉机在50 m行驶距离内,最大横向偏差为0.16 m。【结论】所设计的控制器能够满足拖拉机转向跟踪控制的要求。  相似文献   

5.
为了提高车载捷联惯导系统的定位精度,需要对加速度计和陀螺仪进行实时在线标定。首先推导了惯性导航系统状态方程和组合导航系统量测方程,然后构建了8状态松组合扩展卡尔曼滤波模型,最后利用仿真数据验证分析了3种标定方案。结果表明,增加航向角辅助观测值或改变载体的机动性,可以有效估计惯性传感器误差,明显改善了导航系统的精度。  相似文献   

6.
平地机车身倾角是水田平地机平地铲自动调平控制的重要反馈信息。为满足平地铲自动调平的倾角测量精度要求,达到水田精准平整、减少水资源的浪费、提高水稻产量的目的,设计了一种基于DSP的水田平地机倾角传感系统。采用惯性加速度计和陀螺仪作为倾角传感系统的倾角测量传感器,分析了倾角传感系统倾角测量原理、设计了硬件系统和基于卡尔曼滤波器的传感器融合算法。倾角传感系统综合利用加速度计所测的重力加速度分量和重力加速度的三角关系以及陀螺仪所测的角速度和车身倾角的导数关系测量获得平地机车身倾角;采用三轴加速计ADIS16300、陀螺仪ADXRS453和DSP处理器TMS320F28069等器件组成倾角传感系统的硬件系统,其中DSP处理器主要实现传感器数据采集、算法执行和数据通讯等功能;以平地机真实倾角和陀螺仪零位偏差作为系统状态向量,建立系统状态方程和测量方程,通过离散化卡尔曼滤波器递归融合得到平地机车身实时倾角。通过三轴多功能转台对倾角传感系统的卡尔曼滤波融合算法测量精度进行了试验。试验结果表明:该倾角传感系统在静态和动态时均能准确地测量平地机车身实时倾角。静态测量时车身角度平均绝对误差≤0.01°,均方根误差≤0.01°,最大误差0.07°。动态测量时车身角度平均绝对误差≤0.18°,均方根误差≤0.20°,最大误差0.41°。说明该系统为水田平地机平地铲自动调平控制提供了低成本倾角测量方案。  相似文献   

7.
【目的】提高遥控操作农业车辆的智能性与安全性。【方法】提出一种新的无人农业车辆遇障后的速度控制方法。建立动态环境中无人车辆的碰撞预测模型,确定实时碰撞位置,依据专家经验与农业作业环境制定的云推理规则,建立速度控制策略,实现速度控制。【结果】算法预测判断平均耗时0.170 1 s,无人车辆速度控制过程没有受到无威胁障碍物影响,且符合速度云推理规则。【结论】该算法能够实现实时碰撞预测,具备抗干扰能力,满足实时性要求。  相似文献   

8.
【目的】建立剪切带宽度的准确测量方法,为正确揭示材料的渐进破坏过程提供支持。【方法】根据仿射变换和梯度塑性理论制作了水平虚拟剪切带,检验了高斯拟合方法的剪切带宽度测量精度,同时提出了测量剪切带宽度的背景值方法,并测量了单轴压缩条件下土的剪切带宽度。【结果】利用高斯拟合方法能准确测量常应变剪切带宽度,而对于含应变梯度的剪切带,测量误差很大。利用背景值方法测量的剪切带宽度较为可信;随着纵向应变的增加,剪切带宽度的演变主要有增加、减小、基本不变及不确定4种趋势;剪切带宽度为15~38像素(1.35~3.42mm)。【结论】对于常应变剪切带,可以利用高斯拟合方法准确测量剪切带宽度,而对于含应变梯度的剪切带,建议利用背景值方法测量。  相似文献   

9.
[目的]针对环境监测中单一传感器测量数据精度低、可靠程度低的问题,本文提出在无线传感网络监测系统中,通过改进自适应加权融合算法并利用模糊神经网络算法实现多传感器数据融合,来提高环境监测的准确性。[方法]基于多传感器同一时段采集的数据,先采用欧式距离及相关函数改进的自适应加权算法进行同质传感器数据融合,再设计模糊神经网络分类器把异质传感器的数据转化为环境质量等级信息。[结果]仿真实验显示出本文提出的同质传感器数据融合算法融合精度较高于其他几种算法、模糊神经网络算法通过对350组训练样本的学习后能够对96%的验证样本的环境等级进行正确分类且预测曲线基本可以拟合实际输出。[结论]本文的同质传感器数据融合算法提高了数据融合精度,异质传感器数据融合算法能够对整体环境质量得出较可靠的评价。  相似文献   

10.
基于全球卫星导航系统(GNSS)的水田旋耕平地机田间试验,采集平地机在调平过程中的倾角信号,采用小波硬阈值法,获取低频信号,并实时估计倾角信号的噪声方差,作为卡尔曼滤波的修正信息,再将低频信号作为系统输入,运用卡尔曼滤波对信号进行二次修正。试验结果表明:小波硬阈值–卡尔曼融合算法的滤波效果优于单一的小波阈值法和卡尔曼滤波,倾角信号经融合算法处理后,信号的信噪比由21.704提高到39.116,均方根误差从0.035 1减小至0.012 6。倾角信号中的噪声成分明显减少,信号的精确度更高。  相似文献   

11.
以东方红X-804拖拉机为平台,开发了一种基于RTK-DGPS定位和双闭环转向控制相组合的农业自动导航系统。系统主要包括RTK-DGPS接收机、姿态航向参考系统(AHRS)、转向控制器、电控液压转向装置和转向角检测传感器。设计了Kalman滤波器对定位数据进行平滑处理,同时实现航向角的校正。为实现自动转向,在拖拉机原有手动控制系统基础上加上电控比例液压阀,并设计电控单元。然后,推导了转向系统的数学模型,通过Matlab仿真工具箱得到传递函数的参数,设计了双闭环转向控制算法。最后,进行了算法验证试验和田间试验,结果表明,双闭环控制方法较好抑制了稳态时的震荡现象,方波信号的角度跟踪稳态时最大误差0.60°,平均误差0.40°,平均延时为0.20 s;设计的Kalman滤波器有助于提高定位系统的精度,横向跟踪误差不超过0.09 m,转向角度平均跟踪误差为0.43°,延时0.25 s。  相似文献   

12.
目的 针对林间或冠层下等卫星信号严重遮挡的区域,提出一种面向农业机器人导航环境感知的低成本3D激光雷达(LiDAR)点云信息处理与植物行估计方法。方法 利用直通滤波器滤除感兴趣区域外的目标无关点;提出均值漂移聚类、扫描区域自适应的方法分割每棵植物主干,垂直投影主干点云估算中心点;利用最小二乘法拟合主干中心,估计植物行。分别在开阔地的仿真果园与水杉树林进行模拟试验与田间试验,以植物行向量与正东方夹角为指标,计算本研究提出的方法识别的植物行信息与GNSS卫星天线定位测得的植物行真值间的角度误差。结果 采用提出的3D LiDAR点云信息处理与植物行估计方法,模拟试验和田间试验对植物行识别误差平均值分别为0.79°和1.48°,最小值分别为0.12°和0.88°,最大值分别为1.49°和2.33°。结论 车载3D LiDAR能够有效估计水杉树植物行。该研究丰富了作物识别思路与方法,为无卫星信号覆盖区域的农业机器人无图导航提供了理论依据。  相似文献   

13.
【目的】具备自主飞行、航线规划与优化、精准控制与变量作业能力是农用小型无人机(Agricultural smallunmanned aerial vehicle, ASUAV)的发展方向。本研究为ASUAV在全区域覆盖下自主飞行作业前的航线拐点坐标解算、飞行航向、起降点位置以及转弯掉头模式等提供优化选择。【方法】利用基于自主恒速飞行和最小转弯半径约束的无人机转弯掉头策略,分析并设计了任意凸多边形作业区域下无人机的路径规划方法,提出了基于幅宽微变的航线归整法路径规划方案,并对结构化农田区域实现全区域覆盖条件下的路径进行了规划与优化选择。【结果】基于最优转弯掉头模式下的ASUAV全区域覆盖路径规划方法适用于任意凸多边形结构的农田区域,GUI程序在解算地头边界航线拐点坐标的同时能优化选择出效率最高的飞行作业航线。在试验田随机规划出一个面积约为2.7 hm2的不规则凸六边形田块,仿真发现当无人机沿着平行于最长边飞行作业时,其空行行程最短,约为540 m,工作效率也最高,接近90%。【结论】经过优化选择后的ASUAV掉头转弯模式、起降点位置、飞行航向以及解算后航线拐点坐标等可以实现全区域覆盖,研究结果为ASUAV自主飞行作业提供了参考。  相似文献   

14.
目的 提出一种基于多传感器融合的果园导航方案,解决果园机器人在GPS导航过程中受果树遮挡导致信号弱、定位效果差的问题。方法 通过16线激光雷达采集高精度的三维点云数据,利用Voxel grid filter滤波算法进行点云预处理,降低点云密度并去除离散点,将果树行通过欧几里类算法进行聚类,采用改进的随机采样一致性 (Random sample consensus, RANSAC) 算法拟合出果树行直线,根据平行直线的关系,推算得到导航线,并融合惯性测量单元(Inertial measurement unit, IMU)对果园机器人进行高精度定位。基于差速转向和纯追踪模型进行轨迹跟踪,实现果园机器人在果树行间自主导航以及自动换行的目标。结果 在将激光雷达和IMU的数据进行融合后,获取到果园机器人的准确位姿,当机器人以速度0.8 m/s在果园作业时,对比最小二乘法和传统RANSAC法产生的偏差,基于密度自适应RANSAC法产生的横向偏差不超过0.1 m、航向角偏差不超过1.5°,均为3种方法中的最小值。但当机器人速度增加到1.0 m/s时,各项偏差均明显增大。结论 本文提出的基于多传感器融合的果园机器人导航技术适用于大多数规范化果园,具有重要推广价值。  相似文献   

15.
目的 开发基于星基增强精密单点定位的农机自动导航系统。方法 以国产雷沃TX1204拖拉机为平台,采用国产星基增强定位板卡的输出数据作为农机位置反馈量,设计位速卡尔曼滤波器对定位数据进行滤波处理,开发预瞄跟随PID路径跟踪控制算法进行导航控制,整定不同行驶速度条件下的模型控制参数,采用地基增强RTK高精度定位接收机输出数据作为参考量,搭建农机自动导航测试系统并开展系统性能测试。结果 在直线跟踪误差方面,所开发的农机自动导航系统平均误差为?0.0009436 m,标准差为0.02452 m,最大误差绝对值为0.08472 m;在邻接行误差方面,平均误差为0.0007128 m,标准差为0.02986 m,最大误差绝对值为0.15444 m。这一精度可满足大部分农机自动导航作业需求。结论 将国产星基增强精密单点定位技术用于农机自动导航是可行的;本文设计的预瞄跟随PID路径跟踪控制模型和提出的不同速度条件下PID参数与前视距离的整定方法,提高了系统对不同速度的自适应能力。  相似文献   

16.
Development of a teleoperation system for agricultural vehicles   总被引:1,自引:0,他引:1  
A teleoperation system for a hydro-static transmission (HST) drive crawler-type robotic vehicle is described in this paper. The system was developed to satisfy the needs of various farm operations and teleoperation in unknown agricultural fields. The controller has a layered architecture and supports two degrees of cooperation between the operator and robot, direct and supervisory control. The vehicle can travel autonomously by using an RTK-GPS and a fiber-optic gyroscope during supervisory control, and the operator interface also provides a field navigator based on Google Map technology. The vehicle's position and heading direction was capable of 1 Hz update using precise satellite image maps. The results of field tests using direct control showed that it is difficult for the operator to control the movement of the vehicle along the target lines. On the other hand, the vehicle could travel in a straight line with a maximum lateral error of 0.3 m by using supervisory control.  相似文献   

17.
The use of Global Navigation Satellite Systems (GNSS) is common among agricultural users and enables the producer to optimize crop production within soil variant fields to provide better farming practices. Many agricultural navigation systems are dependent on real time GNSS navigation solutions to aid and control farm machinery. Direct Current (DC) and Alternating Current (AC) transmission lines overhead are often suspected to create interference with GNSS equipment preventing farmers from utilizing their GNSS supported equipment. This paper provides evidence that only non-impeding effects on the receiver or incoming signals, in the form of cycle slips, were measured or detected from either the overhead lines and/or their corresponding support towers. No effect on code measurements was detected. The latter effect is due to reflection or brief masking by the towers. Tests were conducted under a set of three transmission lines, two 500 kV DC lines and one 230 kV AC line. Several GNSS receivers and processing methods, including real time and post-processed data, are used to measure and process data to study the position accuracy, dilution of precision, number of satellites tracked, code and phase errors, location and number of carrier phase cycle slips, carrier-to-noise density and L1–L2 carrier divergence. One commercial Real Time Kinematic (RTK) survey system was also used to verify the 450 MHz data link was operational.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号