首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
光合细菌微生物产氢研究进展   总被引:3,自引:0,他引:3  
介绍了光合细菌的光合放氢、黑暗产氢机制和催化产氢的酶,固定化、混合培养、先生物反应器和基因工程等实用化技术在光合细菌产氢研究中的应用现状,对存在的问题进行了讨论,并就光合制氢技术的发展和应用前景进行了展望。  相似文献   

2.
发酵法制氢的原理·工艺和挑战   总被引:1,自引:0,他引:1  
桂鑫  吴洪达 《安徽农业科学》2011,39(1):423-426,442
氢气作为一种清洁的新能源,有很多重要的工业用途。发酵生物制氢技术作为一种新兴的技术,在未来的可再生能源的制备中将扮演重要角色。介绍了发酵产氢细菌的菌属、产氢机理以及发酵法制氢的工艺,讨论了当前微生物发酵制氢技术存在的机遇与挑战。  相似文献   

3.
以连续流搅拌槽式反应器(CSTR)作为厌氧发酵生物制氢反应装置,并采用纯菌种R3为产氢菌株,对发酵法生物制氢反应系统的启动和运行进行了实验研究.结果表明,以糖蜜废水为发酵底物,在温度为(35±1)℃、水力停留时间为8h的条件下,反应器具有持续产氢能力,并在16d运行后达到稳定.此时COD平均去除率28%左右,氧化还原电位在-445mV~-420mV,产气量约6.6L/d,氢气体积分数59.4%,产氢效果显著.这表明R3是一株高效产氢菌株,可以应用于连续流制氢工艺.  相似文献   

4.
光合细菌产氢机制研究进展   总被引:5,自引:0,他引:5  
邓平  费良润  刘雪梅 《安徽农业科学》2008,36(15):6184-6186
能源危机已成为全球的首要问题之一,光合细菌因其产氢能力备受关注。主要从光合系统和产氢系统出发,综述了光合细菌光合产氢中各个系统的组成部分、工作原理、在产氢过程中的作用和研究方向等。  相似文献   

5.
影响产氢发酵细菌B49产氢的部分因子研究   总被引:3,自引:0,他引:3  
采用间歇培养实验,研究了部分因子碳源葡萄糖、氮源、菌龄、温度及pH值对产氢发酵细菌新菌种B49(Hydrogen-producingBacterialB49,AF481148inEMBL,简写HPBB49)生物产氢的影响。试验结果表明,以葡萄糖为碳源,其浓度10g.L-1时,HPBB49的葡萄糖利用率为100%,氢气产率为1.69molH2.mol-1葡萄糖;HPBB49不能利用无机氮源,有机氮是HPBB49生长、产氢的适宜氮源;菌龄影响HPBB49的产氢;B49产氢量随细菌生长OD值的增加而增加;HPBB49生长和产氢适宜温度均为35℃;B49最适生长的pH值约为4.5,最适产氢的pH值约为4.0。  相似文献   

6.
研究了反应器顶部在CO_2,N_2,Ar和空气条件下对光合细菌生长和产氢量的影响.试验结果表明,光合细菌在Ar条件下具有最佳的生长和产氢能力,而N_2、空气和CO_2条件下的产氢量比Ar条件下分别减少了66.97%,11.64%,4.57%.当反应器顶部空气量由反应器容积的1/20增加至1/2时,其容积产氢率则由3.034 L·L~(-1)下降到2.57 L·L~(-1),分别是Ar条件下的92.16%和76.07%.反应器初始状态下少量空气的存在并没有对光合细菌产氢产生完全抑制作用,因此连续制氢反应器设计中可以忽略少量空气的影响.  相似文献   

7.
一株产氢产酸厌氧细菌的16S rDNA序列分析   总被引:1,自引:0,他引:1  
从生物制氢反应器活性污泥中。分离到一株高效产氢细菌。分离菌株能利用糖蜜废水产生氢气。根据该菌株形态特征、生理生化与16S rDNA序列的同源性分析,新分离菌株Rennanqilyf6是一个与其最近的梭状菌属各成员都不相同的新种。  相似文献   

8.
氢气是目前最常用的清洁能源,具有能量含量高和清洁燃烧的特点。制氢的方式有多种,生物制氢与传统物理和化学工艺制氢相比,是最清洁的一种方法。然而,大规模生物制氢的产氢量与产氢率往往受到各种环境等因素的限制。近年来的许多研究突破了环境因素的限制,从微生物代谢、能源来源及微生物产氢关键酶等方面有效提高了微生物产氢效率。本文总结了生物制氢的几种主要方法,详细讨论了光合细菌产氢的影响因素,并对其有效促进途径的研究进展进行了综述,以期为生物制氢领域的深入研究提供参考,为工业大规模制氢、减轻环境污染做出贡献。  相似文献   

9.
为建立产氢不产氧光合菌株的快速筛选方法,从采自陕西、河南、安徽3个省8份不同水样中分离出的不产氧光合细菌,通过菌落形态、革兰氏染色、细菌特征峰及16SrDNA鉴定等方法进行初步鉴定获得不产氧光合细菌,同时利用自制的产氢菌株快速筛选系统对其产氢能力进行检测,并分析菌液终点氧化还原电位与细胞产氢的关系。结果表明:共分离得到31株光合细菌,其中18株沼泽红假单胞菌(Rhodopseudomonas palustris)、5株荚膜红细菌(Rhodobacter capsulatus)、4株球形红细菌(Rhodobacter sphaeroides)和2株固氮红细菌(Rhodobacter azotoformans),此外还有2株菌与Rhodobacter sp.TCRI 14相似。这些光合细菌的产氢能力存在显著差异,其中3株产氢性能较高,2株为沼泽红假单胞菌,1株为球形红细菌。通过菌液终点氧化还原电位与细胞产氢能力对比,发现产氢较高的菌株其菌液的终点氧化还原电位也明显较低。  相似文献   

10.
罗欢  黄兵 《江西农业学报》2013,25(4):115-117
研究了不同发酵温度对固定化微生物制氢的影响,结果表明:当发酵温度为35℃时,其最大累积产氢量为496mL,平均比产氢速率为15.8 mL/(h.g)。  相似文献   

11.
李亚丽 《安徽农业科学》2011,39(31):19039-19041
[目的]为光合细菌制氢的工业化发展奠定基础。[方法]以光合细菌混合菌群为试验菌种,研究其在连续制氢反应器中的浓度变化、产氢特性及细菌数量与产氢量的关系。[结果]连续制氢反应器的2#、3#隔室光合细菌浓度最大,产氢量也最大。同一隔室内,第2、3 d光合细菌浓度和产氢量均达到最大。[结论]产氢量随反应器中光合细菌数量的减少而减少。  相似文献   

12.
介绍了悬浮菌种和固定化微生物2种不同方式的生物产氢试验,从累积产氢量、氢气浓度、平均比产氢速率、废水COD去除率方面,比较了这2种不同产氢方式的差异及各自的优缺点。  相似文献   

13.
固定化微生物制氢技术的研究进展   总被引:1,自引:0,他引:1  
综述了国内外固定化微生物制氢技术的发展和研究现状,分析和评价了固定化纯菌制氢与固定化混合菌制氢的优缺点,阐述了目前固定化微生物制氢技术的存在问题与应用前景。  相似文献   

14.
养殖场鸡粪废水碳氮质量比对厌氧发酵产氢的影响   总被引:1,自引:0,他引:1  
以经过热处理的厌氧污泥为接种物,将鸡粪废水和米糠废水按不同体积比例混合进行发酵产氢研究,考察碳氮质量比对发酵产氢的影响;并对液相末端产物、COD去除率和产氢动力学进行分析。结果表明:初始pH5.0、发酵温度为36℃时,最佳碳氮质量比为40~50,最大累积生物气产量1.855L、H2产量1.128L,最大比产氢速率370.46mL/(g.d);COD去除率随发酵液碳氮质量比的增大先升高后降低,最大去除率为32.6%,液相末端产物主要转化为乙酸和丁酸等挥发性有机酸;利用Gompertz模型对鸡粪废水和米糠废水产氢过程进行模拟,实验曲线和拟合变化趋势一致,说明Gompertz模型可很好的模拟该产氢过程。  相似文献   

15.
光合细菌制氢工艺参数对产热量的影响   总被引:1,自引:0,他引:1  
研究了光合细菌制氢工艺参数时产热量的影响.结果表明,初始温度、接种量、光照度、PSB初期活性和pH值等制氢工艺参数对系统产热量均有明显影响,而且产生较高热量的光合细菌制氢工艺条件为初始温度30℃,光照度2 000~3 000 lx.接种量50%~100%,pH值7.0,PSB初期活性72 h.  相似文献   

16.
 在厌氧情况下从牛胃里提取的厌氧菌种——肺炎克氏杆菌,在用蔗糖作为诱导物质的条件下,保持一定温度和pH值,在自行研发制造的厌氧流化床生物反应器中,利用甜高粱秸秆厌氧发酵产生氢气。结果表明,该细菌不仅有产氢能力,还能在反应器中吸附的活性炭上形成白色细菌颗粒。当细菌颗粒形成之后,在保持液压恒定的情况下,反应进行3d之后,细菌会在蔗糖的诱导作用下,利用甜高粱秸秆产生氢气。肺炎克氏杆菌的最佳生长代时为10h,产氢温度和pH值分别为37℃和6.0。反应过程中液压恒定时间由9.3h维持14d之后降低为4.6h,试验证明,细菌利用甜高粱秸秆阶段的氢气产量明显高于直接利用蔗糖阶段的氢气产量,整个实验过程中氢气含量最高达到28%。  相似文献   

17.
孙学习  李俊峰  李涛  曾召刚  任保增  樊耀亭 《安徽农业科学》2010,38(35):19904-19905,19962
[目的]研究稀酸强化水解对玉米秸秆发酵产氢能力的影响。[方法]对玉米秸秆进行机械粉碎、蒸汽爆破和稀酸水解处理,并分析不同处理、玉米秸秆粒度等对玉米秸秆产氢能力的影响。[结果]蒸汽爆破后采用0.8%稀H2SO4强化水解的预处理方法产氢效果较好;玉米秸秆粒度为0.425~0.850 mm时,产氢效果最好;当0.8%H2SO4(质量)∶秸秆(重量)的液固比为10∶1时,产氢效果较好。[结论]玉米秸秆经蒸汽爆破后,再用0.8%H2SO4强化水解处理可以取得较好的产氢效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号