首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
我国南方主要城市土壤有机氯农药残留及分布特征   总被引:1,自引:0,他引:1  
采用现场采样及室内分析方法,利用气相色谱仪采用ASE萃取技术,测定了我国南方主要城市土壤有机氯农药(OCPs)的残留量、残留物组成及垂直分布,并探讨了OCPs与总有机碳(TOC)以及有机氯农药组分之间的相关性。结果表明,南方主要城市土壤中残留有机氯农药主要是滴滴涕(DDTs)、六六六(HCHs)和六氯苯(HCB),三者占有机氯农药残留总量的97.30%,总有机氯农药类OCPs物质质量分数平均值为23.02 ng·g-1,其中DDTs占总有机氯农药类OCPs物质的58.95%,是南方主要城市土壤残留有机氯农药类的主要成分;氯丹(TC+CC)、九氯(TN+CN)硫丹(α-End+β-End)残留量较低,是南方主要城市土壤中普遍存在的一类持久性有机污染物,没有对土壤质量造成危害;大部分土壤中DDT/(DDE+DDD)均小于1,表明DDTs主要来自历史残留物;大部土壤中α-HCH/γ-HCH均小于1,并且较高的γ-HCH残留,表明南方主要城市土壤中HCH同系物之间发生相互转化,HCHs可能存在新的输入来源;OCPs物质及TOC含量均随土层深度的增加而降低,主要集中在土壤表层(0~5 cm),"表聚性"较为明显;土壤中TOC、DDT s、HCH s和HCB类农药与有机氯农药总含量之间显著相关(P0.05),在决定有机氯农药含量和分布上起着重要的作用。  相似文献   

2.
为了解有机氯农药企业搬迁遗留场地土壤的污染状况, 采用气相色谱法定量分析了北京市原某农药厂表层土壤中的有机氯农药(六六六和滴滴涕).结果表明,土壤中HCHs的浓度在1 mg·kg-1到440 mg·kg-1之间,DDTs的浓度在5 mg·kg-1到966 mg·kg-1之间.通过对污染物组成的分析发现,HCH异构体中β-HCH,DDT异构体和代谢产物中DDD含量相对较高.结果说明,从1981年此农药厂停止生产农药产品至今,经过20多年的降解,厂区土壤污染依然非常严重.通过克立格插值方法绘出的等值线图可以看出,厂区中部农药生产车间和南部农药存放场地土壤污染最为严重, 污染物浓度要高于土壤需要进行修复的调解值.  相似文献   

3.
采用现场采样与室内分析相结合的方法,利用气相色谱仪测定了黄河流域农田土壤有机氯农药(OCPs)残留物组成。结果表明:黄河流域农田土壤中残留有机氯农药主要是六六六(HCHs)、滴滴涕(DDTs)和六氯苯(HCB),其中HCHs是土壤残留有机氯农药类的主要成分。氯丹(TC+CC)、九氯(TN+CN)、硫丹(α-End+β-End)残留量较低,是黄河流域农田土壤中普遍存在的一类持久性有机污染物。土壤OCPs农药均随土层深度的增加而急剧降低,并且随深度的增加其降低幅度逐渐增加,垂直分布表现出明显的"表聚性";不同土地利用类型OCPs农药含量基本为水田菜地耕地林地,并且相同土层OCPs农药含量基本表现为水田菜地耕地林地,其中CC和β-End在不同类型农田土壤中差异均不显著。土壤DDTs含量平均值顺序基本表现为o,p'-DDTp,p'-DDTp,p'-DDD,o,p'-DDT是DDT类污染物的主体物质;DDT/(DDD+DDE)均大于1,说明黄河流域农田土壤的DDT降解程度低。土壤HCH含量基本表现为β-HCHγ-HCHα-HCHδ-HCH,其中α-HCH和β-HCH所占比例相对较高,具有较高的潜在危害性;菜地和耕地土壤α-HCH/γ-HCH比值小于1,说明菜地和耕地土壤中HCH同系物之间发生相互转化,存在较多的γ-HCH残留。主成分分析结果显示α-HCH、β-HCH、γ-HCH和δ-HCH在第1主成分上有较高载荷;DDTs类物质在第2主成分上有较高载荷;TC和CC、α-End和β-End、TN和CN在第3主成分上有较高载荷。Pearson相关分析表明,TOC与HCHs、HCB、OCPs呈极显著正相关(P0.01),与α-End和β-End呈显著正相关(P0.05),与DDTs相关性不显著,说明黄河流域农田土壤HCHs、HCB含量在很大程度上受TOC影响,HCHs与HCB、DDTs,HCB、DDTs与九氯(TN+CN)类农药的分布机制和输入来源可能相一致,在决定有机氯农药含量和分布上起着重要的作用。  相似文献   

4.
通过检测重庆市长江沿岸表层土壤(0-5 cm)和深层土壤(0-20 cm)中六六六和滴滴涕的含量发现,表层土壤中总六六六(包括α-六六六、β-六六六、γ-六六六、δ-六六六)和总滴滴涕(包括p,p'-DDE、p,p'-DDD、o,p'-DDT、p,p'-DDT)含量范围为0.185-1.374 ng/g和0.807-38.281 ng/g,分别对应深层的总六六六含量0.079 5-1.692 ng/g和总滴滴涕含量0.308-88.306 ng/g.研究区内有机氯农药在土壤中的垂直分布反应了滴滴涕残留是"老"的来源,并证实了林丹的使用对该区域的有机氯农药污染有一定的影响.
Abstract:
Concentrations of hexachlorocyclohexane(HCH)and dichlorodiphenyltrichloroethane(DDT)were determined in shallow subsurface(0~5 cm depth)and deep soil layers(5~20 cm depth)from the agricultural soils along the Yangtze River in Chongqing,China.Concentrations of total HCHs(including α-HCH,β-HCH,γ-HCH and δ-HCH)and total DDTs(including p,p'-DDE,p,p'-DDD,o,p'-DDT and p,p'-DDT)in shallow subsurface soils ranged from 0.185 to 1.374 ng/g,averaging 0.479 ng/g,and from 0.807 ng/g to 38.281 ng/g,averaging 7.274 ng/g,respectively,and those in the deeper layers ranged from 0.079 5 to 1.692 ng/g,averaging 0.564 ng/g,and from 0.308 to 88.306 ng/g,averaging 13.718 ng/g,respectively.The vertical distribution of HCHs and DDTs suggested that DDT residues resulted from"old"sources and that the contamination of HCHs in this region was partially attributed to the local use of lindane.  相似文献   

5.
北京官厅水库有机氯农药分布特征及健康风险评价   总被引:7,自引:0,他引:7       下载免费PDF全文
为了研究北京官厅水库中有机氯农药(OCPs)对人体产生的潜在健康危害风险,从位于官厅水库、洋河和妫水河的9个采样点采集了水样和沉积物样品,采用气相色谱法对其中的有机氯农药残留状况进行了测定.结果表明.水样中,17种有机氯化合物的总浓度范围为10.06~87.37 ng·L-1,其中六六六(HCHs,即:α-HCH、β-HCH、γ-HCH和δ-HCH)和滴滴涕(DDTs,即:o,p'-DDT、p,p'-DDT、p,p'-DDE和p,p'-DDD)的含量范嗣分别为3.93~38.94 ng·L-1和3.71~16.03 ng·L-1,官厅水库及其支流水体受到有机氯农药轻度污染,其周边地区农田排放水是水库中农药的重要来源.沉积物中有机氯农药总含量范嗣为8.48~24.40 ng·g-1,其中HCHs和DDTs的含量高于其他OCPs的含量,其含量范围分别为1.11~7.73 ng·g-1和2.97~10.52 ng·g-1,沉积物中六六六异构体和滴滴涕类似物的含量组成表明这些农药来自环境中的早期残留.利用健康风险评价模型对官厅水库表层水体中的OCPs所致健康风险的评价结果表明,目前官厅水库中有机氯农药类污染物对人体健康的风险处于较低水平.  相似文献   

6.
以西溪湿地为主要研究区域,分丰水期和枯水期两季,采集西溪湿地的主要河口地表水样品,以气相色谱(GC)/电子捕获检测器(ECD)定量测定样品中六六六(HCH)和滴滴涕(DDT)含量。结果显示西溪湿地地表水丰、枯两季各7个水样均检出HCH和DDT。定量分析结果显示,丰、枯季西溪湿地地表水中有机氧农药(OCPs)总量分别是2.98~11.38 ng/L、15.39~39.53 ng/L。OCPs含量变化有着明显的季节性,枯水期水样中OCPs含量明显高于丰水期。水样中HCH含量明显大于DDT,β-HCH为主导污染物。OCPs残留主要是历史原因,且污染源单一。河流流量影响OCPs的含量和分布。各点OCPs浓度均低于国家《地表水环境质量标准》,存在OCPs生态风险的可能性较低。  相似文献   

7.
通过在天津塘沽和宁河地区野外实地采样分析,了解研究区域有机氯农药各异构体在土壤及作物各部位的残留水平,并通过特征比值推测其来源.结果表明,塘沽和宁河地区土壤中六六六的残留浓度均值分别为88.76 μg·kg-1与98.46μg·kg-1,β-HCH占绝对优势而γ-HCH均未在土壤样品中检出,a-HCH手性分析结果显示为非消旋体,均表明土壤中六六六来自历史残留而非新近输入或林丹的使用.塘沽和宁河地区滴滴涕的残留浓度均值分别为30.87μg·kg-1与1.30μg·kg-1,亦来自历史残留,在个别点位可能曾使用过三氯杀螨醇.作物样品中六六六与滴滴涕的含量较高,经对数变换的生物富集系数变化范围分别为0.24~0.73与2.02~2.90.六氯苯、七氯、艾氏剂、异艾氏剂、反式氯丹、顺式氯丹、狄氏剂与异狄氏剂在大部分土壤与作物样品中也有不同程度的检出.  相似文献   

8.
微山湖水体中有机氯农药的分布及风险评价   总被引:3,自引:0,他引:3  
葛冬梅  韩宝平  郑曦 《安徽农业科学》2010,38(22):11987-11989,12024
[目的]研究微山湖水体中有机氯农药残留的现状,为微山湖生态评价提供依据。[方法]采用气相色谱毛细管柱程序升温,ECD检测器,定量测定底泥和水体中有机氯的含量,并对结果进行分析。[结果]微山湖表层沉积物和上覆水样品中有机氯农药总的浓度分别为0.065~0.338ng/ml和8.40~17.62ng/g,六六六、DDT在多数采样点都有检出,有机氯农药含量较多的化合物类有P,P′-DDE、β-HCH和δ-HCH,属低污染水平;微山湖沉积物和上覆水中α-HCH/γ-HCH的比值均小于等于1,而DDT的比值均在1以上,表明微山湖农药主要来源于早期输入。[结论]微山湖中的残留农药主要来源于早期输入;利用水生环境沉积物化学品风险评价标准对微山湖水体的有机氯农药的风险评价表明,微山湖沉积物中有机氯农药的含量属于低生态风险水平。  相似文献   

9.
利用高温堆肥方法 ,研究比较了堆肥对堆肥原料中有机氯农药六六六 (HCH)和滴滴涕(DDT)及其异构体和衍生物的降解特点。六六六4种异构体的去除率大小顺序为 :δ -666>γ -666>α -666>β-666 ,其降解性能随着原料中污染物含量的增加而降低 ,滴滴涕及其衍生物的生物降解能力相对较强 ,其中o,p' -DDT、p,p' -DDD和 p,p' -DDT经堆肥处理后 (除南口添加化肥处理的 p,p' -DDD外 ) ,去除率可达100 %。添加化肥与不添加化肥处理没有看到明显差异。  相似文献   

10.
采用现场采样及室内测试分析方法对吉林省西部松原地区农田———水田、旱田种植类型下的包气带及地下水中有机氯类农药的长期残留进行了研究。结果表明,在研究区包气带土壤的各个取样层位都检测到了有机氯类农药,均为六六六、滴滴涕,在地下水中检测到了β体六六六。同时解释了不同类型农田包气带中六六六异构体含量差异的原因。  相似文献   

11.
采样测定了巢湖东半湖4个样点的表层沉积物中有机氯农药(OCPs)的含量.结果表明,11种有机氯农药在样品中被检出,总含量为8.26~31.73 ng·g~(-1);OCPs在沉积物中的垂直分布从上往下大体呈递减趋势;且OCPs的最高含量都出现在上层沉积物中,说明巢湖东半湖沉积物中有机氯农药主要集中在0~3 cm的表层.根据分析,DDTs来自于早期残留或者施用农药后的长期风化残留.沉积物风险评估表明,巢湖东半湖表层沉积物中的有机氯农药存在一定的生态风险.  相似文献   

12.
不同产地莲子和莲子心中有机氯农药残留分析   总被引:1,自引:0,他引:1  
吴梅青 《安徽农业科学》2014,(19):6233-6236
[目的]检测10个不同产地莲子和莲子心中有机氯农药残留.[方法]样品采用超声提取-磺化法或超声振荡提取-Varian柱提取纯化,OV-17毛细管柱程序升温,外标法定量,GC-ECD测定了10个不同产地的莲子和莲子心中六六六4种异构体、滴滴涕4种异构体和五氯硝基苯共9种有机氯农药残留.[结果]9种有机氯农药在1~ 250 μg/L浓度范围内呈良好线性关系,平均加样回收率在93.21%~102.16%,10个产地的莲子心中未检测到有机氯农药残留,莲子中有机氯农药残留量远远低于《中国药典》标准.[结论]建立了一套简便、操作性强的莲子和莲子心中有机氯农药残留的分析方法.  相似文献   

13.
基质固相分散-气相色谱法测定苹果中的多种农药残留   总被引:8,自引:1,他引:7  
 【目的】研究适合苹果中35种有机磷、有机氯及拟除虫菊酯类农药的多残留快速检测方法。【方法】通过对35种农药的色谱条件试验、基质固相分散(MSPD)材料的选择及其与样品的比例试验、洗脱条件试验以及加标回收率试验,建立和优化35种农药的MSPD-GC多残留分析方法。【结果】MSPD-GC-FPD法对苹果样品中16种有机磷农药回收率为79.67%~104.68%,变异系数≤4.15%,方法的最低检出限为0.0032~0.010 mg•kg-1;MSPD-GC-ECD法对苹果中19种有机氯和菊酯类农药的回收率为78.6%~103.4%,变异系数≤4.06%,方法的最低检出限为0.000098~0.007 mg•kg-1。对苹果中上述35种农药的最低检出限均低于国内及国际上对苹果中农药残留的MRL值。【结论】基质固相分散-气相色谱方法简便、快速、准确、灵敏、节省样品和有机溶剂,可满足苹果中多种常见农药残留同时检测的实际需要。  相似文献   

14.
不同土地利用方式下土壤养分特征变化分析   总被引:1,自引:0,他引:1  
【目的】研究不同土地利用方式下土壤有机质及土壤养分元素特征的变化规律。【方法】在阿克苏地区采集小麦地、枣园、枣麦间作园、荒地枣园和撂荒地等5种典型的土地利用方式下的土壤,运用土壤化学分析方法,测定土壤有机质及氮磷钾等含量。【结果】各土壤养分指标在不同土地利用方式下变异系数为0.92%94.00%,均为中等空间变异性。由农田更替为枣园及枣麦间作后,提高了各层土壤有机质含量,其中020 cm土层各层土壤有机质均显著提高(P<0.05)。由荒地改建为枣园后,各层土壤有机质均有提高,其中010 cm、2030 cm土层显著提高(P<0.05)。0100 cm土层各养分元素含量和有机质含量均随土壤深度的增加而逐渐减少。土壤有机质、全磷、全钾、碱解氮、速效磷和速效钾含量均表现为枣麦间作园>枣园>小麦地>荒地枣园>荒地,全氮表现为枣园>枣麦间作园>小麦>荒地枣园>荒地。土壤有机质与土壤各养分元素之间存在着显著正相关关系。【结论】阿克苏地区农田或荒地改建为枣园或枣麦间作园后,均有利于提高土壤有机质及土壤肥力。  相似文献   

15.
黄土坡耕地地表糙度的空间异质性研究   总被引:2,自引:0,他引:2  
【目的】探讨微尺度下(2 cm×2 cm)地表糙度在侵蚀过程中的空间异质性规律,为进一步理解和定量化描述地表糙度与土壤侵蚀的相互耦合关系奠定基础,并为黄土高原坡耕地水土流失的治理提供一定的理论依据。【方法】以黄土高原不同耕作措施条件下(4种常见的农业耕作措施:人工锄耕、人工掏挖、等高耕作、直线坡(对照)的坡耕地为研究对象,通过室内人工模拟降雨实验,利用激光扫描仪获取地表糙度数据,运用地统计学和分形维数方法对地表糙度的空间分布特征及变异性进行研究。【结果】基本统计特征分析表明,黄土坡耕地地表糙度在整体上的分布较均匀,具有较弱的空间变异特征。半方差函数分析表明,黄土坡耕地地表糙度均表现出中等以上的空间自相关性,其空间自相关尺度范围为2.02—3.82 m。由空间结构特征引起的异质性占总异质性的比例较大。分形维数分析表明,黄土坡耕地地表糙度具有良好的分形性质,其分形维数介于1.59和1.91之间;随坡度的增大,各坡面地表糙度的空间分布趋向复杂,空间异质性增强;人工锄耕、人工掏挖、等高耕作坡面的空间异质性在小尺度范围内依次增强,具有良好的水土保持作用。【结论】造成地表糙度空间异质性差异的主要原因是由人为耕作和坡度所形成的空间结构特征。地表糙度的空间配置格局在小尺度范围上由人为耕作和坡度、在大尺度范围上由降雨及其侵蚀过程所控制。该研究结果可为进一步理解地表糙度与侵蚀的相互耦合关系奠定基础,并为黄土坡耕地的水土流失防治提供一定的科学依据。  相似文献   

16.
天全河流域土壤氮素的空间分布特征及其影响因素分析   总被引:1,自引:0,他引:1  
【目的】研究天全河流域土壤氮素的空间分布特征及其影响因素。【方法】采用常规统计、地统计学和地理信息系统相结合的方法分析780个表层土壤(0~30cm)样点数据。【结果】该流域土壤全氮含量达(1.40±0.52)g/kg,碱解氮含量达(125.79±56.24)mg/kg。土壤全氮含量由高到低为水稻土>潮土>黄壤>紫色土,土壤有效氮含量则为水稻土>黄壤>潮土>紫色土。全氮和有效氮块金值/基台值分别为0.78~0.90和0.96~0.97,两种氮素空间变异均以指数模型最好。【结论】全氮和有效氮的空间分布均呈由西向东逐渐减少的趋势。成土母质、地形部位、土地利用和耕地种植制度都极显著地影响土壤全氮和有效氮的含量。  相似文献   

17.
【目的】基于地质统计学影像纹理,定量分析草地植被群落空间结构的变异规律,为草地生态系统的恢复与重建提供依据。【方法】从科尔沁草原地区奈曼县57个退牧还草区域中遴选出25个有代表性的样地,应用地质统计学方法,计算10种典型植被群落的试验变异函数并拟合到球状模型,用变程和基台值来表达植被群落的空间结构特征,然后将从影像中计算得到的变异函数模型参数与样地植被群落空间结构特征对应起来,反演植被群落的空间结构,分析样地植被群落的空间分布规律。【结果】在分析的25个样地植被群落中,大多数种群的空间相关性和变异强度均较大;根据变异函数值、变程推断得到的样地优势物种与实际调查结果吻合率达到95%。【结论】应用地质统计学影像纹理研究草地植被群落空间结构特征的方法可行,该方法能较准确地从影像上直接推断优势物种并分析种群空间结构的变异规律,极大地减少了人工调查的投入。  相似文献   

18.
鄂东南崩岗洪积扇土壤物理性质空间分异特征   总被引:6,自引:0,他引:6  
【目的】研究崩岗洪积扇农田土壤颗粒组成、容重、土壤孔隙度、土壤持水情况、有机质并分析它们之间的相互关系,同时探索崩岗洪积扇农田土壤物理性质空间分异规律,不仅有利于农业用地规划,也为崩岗洪积扇农田土壤改良提供理论依据,对山区农林业生产具有重要的意义。【方法】运用野外调查结合室内分析的方法,以通城县杨垄小流域崩岗洪积扇农田为研究对象,选定水田和旱地两种洪积扇土地利用方式,分别采集洪积扇农田扇顶、扇中、扇缘以及对照4个区域测定其土壤物理性质,运用Pearson相关系数分析法对各指标之间的内在联系进行探究,研究崩岗对洪积扇农田的影响规律。【结果】崩岗侵蚀导致洪积扇农田土壤严重沙化,土壤结构性恶化。洪积扇农田土壤粗颗粒物质(砾石和砂粒)平均比对照区多75.89%,土壤细颗粒物质(粉粒和黏粒)平均比对照区减少39.13%。土壤有机质含量减少,洪积扇土壤有机质含量平均比对照区减少58.70%;容重增大,相对对照区平均增加0.25 g·cm-3;土壤孔隙度均小于对照区,饱和持水性和毛管孔隙度显著低于对照区。同时,沿着洪积扇扇缘到扇顶,土壤砾石和砂粒含量呈现逐渐增加,而粉粒和黏粒含量逐渐减少,容重随之增大,土壤孔隙度减少,持水性能也逐渐减弱,有机质逐渐减少的趋势。相关性分析得出,土壤容重与有机质含量呈极显著的负相关(R=-0.907**),土壤容重与土壤孔隙性和土壤持水特性呈极显著的负相关,总孔隙度、毛管孔隙度与土壤持水特性均呈极显著的正相关,非毛管孔隙度与各物理性质之间没有明显的相关性。土壤各粒级大小与土壤容重、土壤持水性指标、总孔隙度和毛管孔隙度之间呈显著或极显著相关性。【结论】崩岗侵蚀发生后,洪积扇农田以土壤颗粒组成、有机质、土壤容重、孔隙度以及持水性能为代表的土壤物理性质退化严重。此外,崩岗洪积扇农田土壤物理性质存在空间分异规律,离扇顶越近,土壤物理结构性越差。洪积扇农田土壤指标间存在息息相关的联系,尤其是土壤颗粒组成和其他物理性指标之间的关系,突出了改良洪积扇土壤从土壤颗粒方面入手是可行的,如采取客土法和深耕法可有效改良被侵蚀的土壤结构。研究结果为明确洪积扇农田土壤物理性质提供了依据,为改良崩岗洪积扇土壤结构性奠定了基础,对农业生产和提高农业经济效益有重要意义。  相似文献   

19.
冬小麦-夏玉米轮作区土壤养分时空变化特征   总被引:8,自引:2,他引:6  
【目的】研究冬小麦-夏玉米轮作区土壤养分的时间和空间变化规律以及多年轮作对土壤养分的影响。【方法】以国家精准农业示范研究基地为例,利用GIS技术和地统计学方法,结合《北京土壤养分分等定级标准》,分析冬小麦-夏玉米轮作区土壤养分时空变异特征。【结果】从2000—2007年,研究区严重缺乏磷、钾养分,且含量等级呈下降趋势;土壤全氮含量虽在部分区域偏高,但盈亏等级也呈下降趋势;有机质含量略微增加,处于平衡状态。不同年度的各土壤养分的变异系数范围为11.00%—51.71%,属于中等程度的变异。随着时间的推移,有效磷、有机质、全氮和碱解氮空间分布稳定。速效钾在2001年空间分布规律与2000年和2007年不同,但2000年和2007年空间分布一致,说明土壤速效钾空间分布也具有一定的稳定性。【结论】整体上来说,研究区南部和东北部土壤养分含量偏高,中部含量偏低。当田块土壤物理特性有大的变动时,土壤养分的空间结构特征会受到一定影响;但当长时间田块耕作管理相对一致时,结构性因素(尤其土壤特性、气候)起主要作用。  相似文献   

20.
多功能微生物制剂对农田栽参土壤有机氯降解的影响   总被引:1,自引:0,他引:1  
应用气相色谱-质谱仪联机检测土壤中有机氯残留及人参中有机氯的富集量,探讨多功能微生物制剂对农田栽参污染土壤的治理效果。结果表明:施用微生物制剂后,土壤中有机氯降解作用明显,其残留量与施加鹿粪和对照处理含量达极显著差异,尤其以微生物制剂激活后施入方式最佳。当五氯硝基苯加入量为5g/m2、10g/m2及15g/m2时,经过降解后土壤中含量分别减少为0.023μg/g、0.114μg/g和0.135μg/g;相对应处理的人参中含量也为最低,分别为0.038μg/g、0.311μg/g和0.371μg/g,且人参中检测到了土壤中未检出的六六六的4个同分异构体;施用微生物制剂后有机氯的富集系数也较对照低。多功能微生物制剂是适宜农田栽参土壤改良的有效生物制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号