首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 634 毫秒
1.
  目的  冠幅是树冠结构的重要特征因子,直接影响树木的生产力和生命力,郁闭度是反映森林冠层结构与密度以及评价森林经营管理采伐强度的重要指标之一。利用无人机可以云下飞行,易于获取图像,精度高,低成本等优势,研究无人机影像上提取树冠参数的方法,使无人机影像提取林木树冠参数的操作系统化,实现精准高效的森林资源清查和监测。  方法  以福建将乐林场杉木人工纯林为研究对象,采用四旋翼无人机影像为数据源,基于面向对象分类的方法,将杉木纯林的树冠参数从无人机影像中提取出来。面向对象分类的方法需要先利用ESP工具选取最优分割尺度,然后根据影像的分割结果将树冠对象聚为一类,进而统计每个树冠对象栅格像素个数计算出树冠冠幅面积以及林分郁闭度。  结果  面向对象分类有效地对高郁闭度林分进行了树冠的提取。在分割尺度为70时,单木树冠分割效果最好,树冠被单独分割出来,但也存在一定的过分割以及未分割的问题,以至于部分单木的丢失。分割结束后,对分割对象进行特征空间的优化,选取适当的分类特征,最终将研究区分为树冠和林隙两类。通过统计每个对象栅格点数,计算得出的林分因子包括林分郁闭度,树冠面积。以地面实测数据作为参考,冠幅面积提取精度为0.829 1,林分郁闭度测量精度为0.973 1。  结论  研究结果表明,基于无人机高分辨率影像的树冠参数提取在高郁闭度林分同样适用,能有效提高森林资源调查的效率并且能够满足森林资源调查的精度。   相似文献   

2.
天目山皆伐毛竹林自然更新群落类型与多样性分析   总被引:2,自引:2,他引:0       下载免费PDF全文
  目的  毛竹Phyllostachys edulis林是中国亚热带区域近30 a来不断扩展的森林群落类型之一,物种多样性单一、生态功能不强。近年来,毛竹林蔓延和入侵越来越严重,已威胁到竹林周边植被,势必要进行更新改造。本研究旨在探讨毛竹纯林皆伐后自然更新形成群落类型、生物多样性特点和影响因素。  方法  基于天目山毛竹林皆伐自然更新后形成的次生群落的监测数据,利用TWINSPAN分析方法对自然更新群落进行了分类,比较了不同群落之间α多样性之间的差异性,用冗余分析法分析环境因素的影响。  结果  毛竹林皆伐后自然更新群落物种和类型多样,可分成11个不同的群落,不同群落之间α多样性存在显著差异。冗余分析发现:在海拔、坡向、坡度3个地形因子中海拔是决定自然更新群落木本层以及草本层α多样性大小的主要因子,且与其呈显著负相关关系(P<0.05)。  结论  揭示了毛竹林皆伐后演替初期群落与环境因子的分布格局,为天目山自然保护区内植被恢复提供理论依据。图3表3参38  相似文献   

3.
毛竹林立地与结构的关系及其对生物量的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
  目的  研究立地因子和结构因子中影响毛竹Phyllostachys edulis林生物量的主导因子,并解析主导因子之间的关系及其对毛竹林生物量的影响。  方法  在浙江省10个县(市)选择少受人为干扰的毛竹林,设置52个样地,通过随机森林筛选出影响毛竹林生物量的主导因子,在此基础上构造结构方程模型,分析各主导因子对毛竹林生物量的直接、间接和总影响。  结果  立竹度、林分平均胸径和竞争指数是林分结构因子中影响毛竹林生物量的主导因子。土层厚度和海拔高度是立地因子中影响毛竹林生物量的主导因子。结构方程模型分析结果表明:模型中所预设的路径能够被接受,也能较好体现所采集的数据。立竹度、林分平均胸径、竞争指数和土层厚度的总影响为正,对毛竹林生物量有正影响。海拔的总影响为负,对毛竹林生物量有负影响。林分平均胸径对毛竹林生物量的总影响最大,为0.739。立竹度对毛竹林生物量的直接影响大于间接影响。土层厚度对毛竹林生物量的间接影响最大,达0.492。立地因子中,土层厚度对毛竹林生物量的总影响大于海拔高度。海拔高度、土层厚度和竞争指数对毛竹林的间接影响大于直接影响。  结论  毛竹林的主要构件因子立竹度和林分平均胸径与毛竹林生物量的关系最为密切。海拔高度、土层厚度和竞争指数主要通过影响毛竹林的构件因子,间接影响毛竹林生物量。在毛竹林经营中,应当综合考虑立地因子、非空间结构和空间结构及其相互关系对毛竹林生物量的影响,在充分利用立地潜力的基础上,调控毛竹林结构,提高毛竹林生产力。图3表3参40  相似文献   

4.
  目的  探讨自然封育对毛竹Phllostachys edulis林凋落物和土壤持水效能的影响,为评价不同类型毛竹林水源涵养功能提供科学依据。  方法  以空间代替时间的方法,以浙江省杭州市余杭区不同封育年限(10、20、30 a)和常规经营(对照)的毛竹林为对象,研究不同封育年限对毛竹林凋落物层和土壤层持水性能的影响。  结果  自然封育提高了毛竹林凋落物的持水能力,与对照相比,毛竹林凋落物储量、最大持水量、有效拦蓄量分别增加了85.7%~300.7%,92.0%~402.8%,87.7%~377.6%(P<0.05)。自然封育后毛竹林土壤的非毛管孔隙度显著增大(P<0.05),表层(0~30 cm)土壤容重显著降低(P<0.05),毛竹林土壤非毛管持水量显著增加(P<0.05);自然封育20 a后表层(0~30 cm)土壤最大持水量比常规经营显著提高了18.1%~33.2%(P<0.05)。  结论  自然封育能显著提高凋落物的持水能力和表层土壤的持水效能,且随着封育年限的延长水源涵养功能增强。图4表4参25  相似文献   

5.
  目的  研究浙江省不同地区毛竹Phyllostachys edulis林空间结构特征及其差异性。  方法  以浙江省不同地区近自然生长的毛竹林为研究对象,共设置54个样地,采用聚集指数、竞争指数和年龄隔离度3个空间结构指数。  结果  浙江省不同地区毛竹林竞争指数为2.88~8.81,其中余姚地区最大,庆元地区最小;年龄隔离度为0.30~0.84,其中黄岩地区最大,武义地区最小;聚集指数为0.73~1.24,其中宁海地区最大,余姚地区最小。浙江省不同地区毛竹林年龄隔离度和聚集指数没有显著差异,而不同地区间竞争指数存在显著差异(P < 0.05)。  结论  浙江省毛竹林空间分布格局以聚集分布为主。空间结构指数存在一定的区域变化趋势,从北到南竞争指数逐渐减小。  相似文献   

6.
  目的  为掌握森林资源动态变化情况,及时、快速、准确地发现侵占林地地块,并解决主流遥感变化检测方法对数据源和时相一致性要求高、人工干预多、过程繁琐等应用瓶颈,采用一种基于高空间分辨率时间序列影像的多尺度对象级分割和变化提取方法,对主流方法的分类和检测两个过程进行了融合和简化。  方法  以陕西省白水县为研究区,采用GF-1和ZY-3卫星数据源,将前后两期遥感影像波段拆分和重组形成时间序列影像,对时间序列影像进行多尺度面向对象的分割,通过分割结果的光谱变化值统计学抽样判断临界点并制定提取阈值,再利用NDVI变化值对结果进行优化。  结果  以人工目视解译结果作为参照,该方法的检测精度达86.2%。在成功检出的侵占林地图斑中,形状吻合较好或基本吻合的图斑占48.8%。  结论  该方法能够实现侵占林地图斑的快速检测,在检测效率、精度和适应性方面可满足大范围、多时相、混合数据源森林资源监测工作的实际应用需要。   相似文献   

7.
  目的  森林碳储量是生态系统结构与功能的重要指标,掌握森林碳储量现状有利于森林资源管理。激光雷达能够用于监测森林资源,但是存在森林参数估测的模型多、变量不确定和缺乏林分三维结构解析意义的变量等问题,因此,需要选择合适的林分解析变量和模型。  方法  借助无人机激光雷达点云数据与样地调查数据,以内蒙古自治区赤峰市喀喇沁旗旺业甸人工林为研究对象,分别使用多元线性模型与多元乘幂模型以不同变量对林分碳储量进行估测,选出最优模型并进行精度评价。  结果  研究表明:(1)模型方法而言,非线性模型的检验效果优于线性模型的检验效果:非线性模型(R2为0.66 ~ 0.86,rRMSE为23.51% ~ 9.91%),线性模型(R2为0.52 ~ 0.85,rRMSE为27.70% ~ 12.38%)。(2)模型使用平均高、郁闭度为基础变量,以穷举法筛选出来的变量组合,估算森林参数得出最佳模型,其中非线性模型以激光点云平均高、郁闭度、高度变动系数和叶面积变动系数的估算精度最高(R2=0.86,rRMSE=9.91%)。  结论  通过激光雷达估测人工林碳储量时,加入垂直结构变量可以提高模型拟合效果,非线性模型比线性模型更适合人工林碳储量的估测。   相似文献   

8.
  目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺度,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26  相似文献   

9.
目的郁闭度是森林资源调查的一个重要因子,它不仅可以反映森林冠层的郁闭程度和树木利用空间的程度,并且能够指示林分密度。遥感为区域和全球尺度精确估测郁闭度提供了前所未有的契机,使得大面积郁闭度监测制图成为可能。本文旨在利用资源三号卫星影像数据结合模型对区域尺度上落叶松林进行郁闭度估测。方法以黑龙江省佳木斯市桦南县孟家岗林场落叶松人工林为研究对象,首先采用像元二分模型对植被覆盖度进行估算,通过探寻植被覆盖度与郁闭度的关系,对像元二分模型进行改进,通过计算不同累积频率归一化植被指数(NDVI)的值作为模型参数,对比不同参数取值时模型拟合效果得到最优模型,并利用模型估测郁闭度。结果拟合结果表明,2%累积频率下模型拟合效果最好,模型R2为0.838,RMSE为0.045,最后利用该模型得出孟家岗林场落叶松人工林郁闭度分布图。结论利用改进的像元二分模型可以较为准确地估测郁闭度。本研究对探索我国北方落叶松人工林郁闭度遥感估测提供了更有效的途径,同时也为森林资源和参数的调查提供一定的参考依据。   相似文献   

10.
  目的  高郁闭度华北落叶松林Larix principis-rupprechtii林木树冠交叉重叠,传统的基于高分辨影像的单木识别方法识别精度不高。利用机载LiDAR三维点云数据可提高高郁闭度华北落叶松林的单木识别精度。  方法  在点云数据预处理基础上,提出基于点云空间特征的高斯核函数改进的均值漂移单木位置识别方法(MSP),比较并分析MSP法与基于点云空间特征的区域生长点云分割方法(RGP)、基于冠层高度模型的局部最大值单木位置识别方法(LMC)和基于冠层模型的多尺度分割单木位置识别方法(MSC)的单木识别效果。  结果  4种方法单木位置识别精度从大到小依次为MSP (89.30%)、LMC (85.60%)、RGP (77.50%)和MSC (70.00%),MSP的漏分误差和错分误差最小,分别为8.7%和8.0%,平均单木冠幅提取精度为90.18%。  结论  提出的MSP法对高郁闭度华北落叶松林单木位置识别具有较好的适用性,利用机载LiDAR可为提取华北落叶松林森林结构参数提供新的途径。图3表3参28  相似文献   

11.
  目的  自然干扰引起的森林冠层林隙是天然林更新动态的主要驱动力,林隙的分布、形状和范围可以影响光照和土壤水分等生态因子。林隙的识别和特征描述对于理解森林的动态变化有着重要的意义。  方法  以云南省普洱太阳河保护区无人机飞行区域为研究区,根据无人机激光雷达点云数据提取冠层高度模型;然后使用固定阈值法、相对高度阈值法和面向对象分类法对冠层高度模型数据进行林隙识别,通过图像目视解释获得独立验证样本进行精度评估;最后精度选取最优方法提取的林隙描述其空间特征。  结果  固定阈值法的总体精度为92.00%,高于相对高度阈值法(66.00%)和面向对象分类法(88.00%)。研究区内林隙主要以中小林隙为主,干扰事件较少;研究区林隙的形状指数均值为1.97,多为形状指数较小、边缘效应不太明显的林隙,并且林隙的空间分布为聚集分布。  结论  利用无人机激光雷达数据和固定阈值法可以准确绘制出小范围亚热带天然林的林隙空间分布特征。   相似文献   

12.
  目的  毛竹Phyllostachys edulis林生态修复是当前中国亚热带地区面临的一个难题。了解毛竹林皆伐和剩余物保留后迹地土壤的自然恢复状况可为毛竹林生态修复提供指导。  方法  在毛竹林皆伐迹地设置了保留采伐剩余物(UR)、清理采伐剩余物(CR)和未采伐毛竹林地作为对照(ck)等3个处理。5 a后,通过土壤调查与测定,分析比较不同处理土壤指标变化,运用模糊判别和主成分分析,定量评价毛竹林皆伐后土壤自然恢复效果。  结果  ①CR、UR处理土壤容重分别比ck降低31%和14% (P<0.05),土壤总孔隙度、毛管持水量、田间持水量和饱和持水量均高于ck;UR处理土壤的持水力整体优于CR处理。②CR、UR处理土壤有机碳、全氮、全磷、碱解氮和速效钾质量分数均高于ck,各指标增加幅度为117%~123%;有效磷则表现为CR处理极显著(P<0.01)低于UR和ck;由于保留了毛竹林皆伐后采伐剩余物,UR处理土壤有机碳、全氮、全磷、碱解氮、有效磷显著高于CR处理33%~99% (P<0.05);③CR、UR处理土壤脲酶、β-葡萄糖苷酶和过氧化物酶活性高于ck;UR处理土壤3种胞外酶活性均高于CR处理46%~98%。④综合评价结果表明:土壤质量得到较好恢复,毛竹林皆伐后恢复迹地土壤综合得分从高到低依次为采伐剩余物保留样区、采伐剩余物清理样区、毛竹林样区。  结论  毛竹林皆伐后的土壤经过5 a自然恢复,与毛竹林林地土壤相比得到较快修复,毛竹林皆伐后保留采伐剩余物更有利于土壤修复。图1表4参23  相似文献   

13.
  目的  探索生物质炭基尿素和普通尿素的施用对毛竹Phyllostachys edulis林土壤氧化亚氮(N2O)通量与环境因子的影响效应与作用机制,为研发减缓土壤N2O排放的施肥技术提供科学依据。  方法  2018年9月至2019年9月,在杭州市临安区青山镇亚热带典型毛竹林样地布置野外控制试验。试验设5个处理:对照(不施肥)、低水平尿素(100 kg·hm?2)、高水平尿素(300 kg·hm?2)、低水平炭基尿素(100 kg·hm?2)和高水平炭基尿素(300 kg·hm?2)。采用静态箱—气相色谱法测定毛竹林土壤N2O排放速率,分析在上述施肥处理下土壤N2O通量、温度、含水量、氮素形态及相关酶活性的动态变化规律。  结果  低水平尿素和高水平尿素处理使毛竹林土壤N2O的年累积排放通量增加了17.3%和36.0%,而低水平炭基尿素和高水平炭基尿素处理分别使其降低了3.1%和16.9%。尿素和炭基尿素处理均显著提高土壤铵态氮(NH4 +-N)和硝态氮(NO3 –-N)质量分数(P<0.05);尿素处理显著增加了土壤水溶性有机氮质量分数以及脲酶和蛋白酶活性,而炭基尿素处理显著降低了上述3个指标(P<0.05)。另外,在上述5个处理下,毛竹林土壤N2O排放速率与土壤温度、NH4 +-N、水溶性有机氮、脲酶活性和蛋白酶活性均存在显著相关性(P<0.05)。  结论  与尿素相比,炭基尿素对毛竹林土壤N2O具有显著的减排效应,主要机制是其降低了土壤水溶性有机氮质量分数和氮循环相关酶活性。图5表3参55  相似文献   

14.
  目的  研究黔西南地区不同林分凋落叶不同分解阶段的化学计量特征,深入了解喀斯特地区不同森林生态系统养分循环规律。  方法  选取黔西南地区4种典型林分类型,包括马尾松Pinus massoniana林、毛竹Phyllostachys edulis林、杉木Cunninghamia lanceolata林,以及以麻栎Quercus acutissima、安顺润楠Machilus cavaleriei和滇青冈Cyclobalanopsis glaucoides为优势种的天然林,采集处于不同分解阶段的森林凋落叶,并测定其全碳、全氮和全磷化学计量特征。  结果  ①毛竹林各分解阶段全碳质量分数均显著低于其余林分(P<0.05),马尾松林和杉木林已分解阶段凋落叶全碳质量分数均显著低于未分解和半分解阶段(P<0.05);杉木林未分解阶段全氮质量分数显著低于半分解和已分解阶段(P<0.05);天然林已分解阶段全磷质量分数显著高于其余林分(P<0.05),且其半分解阶段全磷质量分数显著低于未分解和已分解阶段(P<0.05)。②杉木林已分解阶段碳氮比显著高于毛竹林(P<0.05),且其未分解阶段碳氮比显著高于半分解和已分解阶段(P<0.05);毛竹林未分解和已分解阶段氮磷比显著高于天然林(P<0.05);杉木林和天然林半分解阶段碳磷比均显著低于马尾松林(P<0.05),天然林已分解阶段碳磷比显著低于其余林分(P<0.05)。  结论  林分类型和分解阶段对凋落叶全碳、全氮和全磷质量分数及化学计量特征均有显著影响。图2表2参36  相似文献   

15.
目的应用高分辨率遥感影像快速准确提取单木树冠信息,对现代森林管理具有重要意义。面向对象的多尺度分割方法能有效地解决基于像元特征分析的局限,是单木树冠提取的重要技术途径。本文对比分析了不同遥感平台和人工林树种的树冠提取精度,探究实验方法针对不同尺度影像数据和树种的优势及适用性,并结合调查目的为影像数据的选取提供参考。方法以广西壮族自治区高峰林场为研究区,选取低空无人机CCD、机载CCD和星载高分二号遥感影像数据,针对树冠区域与背景区域的对比度效果不佳的问题,首先采用小波变换进行图像增强处理,去除影像噪声,增强树冠与背景的对比度;然后应用面向对象的多尺度分割方法,排除背景区域的干扰,针对树冠区域进行单木树冠的快速提取;最后对3种影像下提取的杉木和桉树人工林单木树冠的流程和方法,以及树冠提取精度进行研究分析。结果采用小波变换对无人机和机载平台影像增强效果显著,无人机平台下桉树和杉木实验区单木分割精度分别为87%和93.3%,冠幅估测精度为84.2%和85.1%;机载平台下桉树和杉木实验区单木分割精度为89%和91.1%,冠幅估测精度为83.9%和84.4%;而小波变换对星载平台影像增强效果不佳,桉树和杉木实验区的单木分割精度为82%和89%,冠幅估测精度为72.3%和73.3%。结论在无人机和机载平台下,应用多尺度分割得到的树冠提取精度相接近;在星载平台下,直接应用多尺度分割进行单木树冠提取,受影像自身空间分辨率的局限,提取精度低于前两种平台,但也能够满足森林调查的基本需求。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号