首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 404 毫秒
1.
不同环境下多个玉米穗部性状的QTL分析   总被引:9,自引:3,他引:6  
 【目的】探讨穗部性状之间的相互关系及其遗传机制。【方法】以优良玉米自交系黄早四为共同亲本,分别与掖478和齐319杂交,构建两套F2:3群体为研究材料(分别缩写为Y/H和Q/H),在2007年和2008年分别在北京、河南、新疆等3个地点共6个环境下进行了穗长、穗粗、穗行数和穗粒重4个性状的表型鉴定,采用单环境分析和多年多点的联合分析方法对其进行了数量性状位点(QTL)分析。【结果】在单环境分析中,2个群体分别检测到33个QTL和 46个QTL,主要分布在第4、5、6、7、10染色体上。进一步分析发现,在Y/H群体中共定位到4个环境钝感的QTL(即在2或2以上环境下均能被检测到的QTL,且在联合分析中与环境无互作效应),其中以位于第4、5染色体上的qGW1-4-1、qKRE1-5-1对表型的贡献率最大,在不同的环境中对表型的贡献率均大于10%;在Q/H群体中共定位到6个环境钝感的QTL,其中以qKRE2-3-2、qED2-2-1对表型的贡献率最大,分别解释7.23%—18.3%和7.1%—15.6%表型变异。通过多个环境的联合分析,Y/H和Q/H群体分别检测到2个和6个QTL与环境存在显著互作,且以穗粒重与环境互作的QTL最多,而其它性状的大部分QTL与环境的互作效应不显著。上位性分析结果表明,只有少数几个显著QTL位点参与上位性互作,而大部分上位性QTL为非显著位点间的互作,对表型的贡献率较小。比较分析2个群体的QTL定位结果,在2个群体间共检测到4对共有QTL,分别与穗粒重和穗行数相关,位于bin1.10、bin5.05、bin6.05和bin7.02。【结论】这些在不同环境或不同遗传背景下检测到的QTL,可作为穗部性状改良的候选染色体区段,用于分子标记辅助选择或图位克隆,但是同时也要注意上位性和环境对它们的影响。  相似文献   

2.
利用184个纯合的以Lx 9801为遗传背景的昌7-2染色体单片段代换系群体,通过一年两点的田间试验,对玉米开花期相关性状进行了QTL分析。利用显著性检测的方法在浚县、长葛两试验点共检测到51个玉米花期相关性状的QTL,包括16个吐丝期QTL、15个散粉期QTL和20个散粉-吐丝间期QTL,其中在2个环境中重复检测到4个吐丝期QTL、2个散粉期QTL和2个散粉-吐丝间期QTL。  相似文献   

3.
【目的】筛选玉米花期性状主效QTL(基因)的SSR标记,为玉米分子育种与相关基础研究提供参考和依据。【方法】选用花期不同的玉米自交系JZ8、JZ16、JW1100为亲本,分别组配得到2个杂交后代F1(JZ8×JW1100)和F1(JZ16×JW1100),F1经自交获得2个F2(JZ8×JW1100)、F2(JZ16×JW1100)群体。从前人已报道的与玉米花期相关性状主效QTL(贡献率10%)连锁的SSR标记中,选取30对SSR标记引物,利用亲本、F1代对这30对引物进行筛选,将获得的特异性引物再通过F2群体单株花期性状与单株SSR标记的符合度和准确率验证,筛选出符合率大于50%的主效标记。【结果】umc1875、umc1016、bnlg1651、umc1115为玉米花期性状的主效SSR标记,其中标记umc1875适宜用于筛选抽雄期(DTT)、散粉期(DTP)、吐丝期(DTS)晚的材料,筛选准确率分别为57.5%,66%和61%;标记umc1016适宜用于筛选散粉期和吐丝期早的材料,筛选准确率分别为66%和58.5%;标记bnlg1651和umc1115适宜用于筛选散粉期早的材料,筛选准确率分别为69%和62.5%。【结论】筛选出4个与花期性状连锁且高通用性的标记,在分子水平上揭示了材料之间的内在联系,在某种程度上揭示了对不同的玉米材料在分子水平上直接对目的性状进行选择的可能性。  相似文献   

4.
水稻籽粒大小相关性状QTL定位   总被引:1,自引:0,他引:1  
【目的】水稻籽粒大小是影响产量和品质的数量性状,籽粒大小相关QTLs的定位是进一步克隆、功能研究以及分子育种的基础。【方法】用1个大粒水稻ZD05321和斯里兰卡的极小粒Suwandel为亲本,创建了1个246个单株的F2群体,用48个SSR标记对控制粒长、粒宽、千粒重和长宽比进行QTLs定位分析。【结果】F2群体粒长、粒宽、千粒重等性状呈现连续分布的数量性状遗传特点,多数植株的表型偏向大粒亲本。粒长、粒宽与千粒重都存在极显著的正相关;随着粒重的增加,粒长对粒重的作用逐渐变小。在第1、4、6、7、8和9号染色体上,共检测到15个与籽粒大小相关的QTL,单个性状QTL为3~5个,可分别解释1.02%~16.52%的相应性状变异。在第9染色体上检测到同时控制粒长、粒宽、千粒重和长宽比等4个性状的4个QTL,它们位于该染色体的RM3609~RM7586和RM6543~RM566区段上。【结论】大粒亲本ZD05321中可能存在控制籽粒大小的效应值较大的QTLs,第9染色体上存在同时控制多个粒形性状区域,为下一步精细定位这些新的粒形相关QTL奠定了基础。  相似文献   

5.
温室黄瓜产量相关农艺性状QTLs的定位   总被引:7,自引:3,他引:4  
【目的】秋冬茬和冬春茬是目前中国日光温室黄瓜栽培的两种重要茬口,对两茬黄瓜产量相关性状的QTLs进行定位,为温室黄瓜产量分子标记辅助选择的研究提供理论依据。【方法】选用欧洲8号×秋棚自交系的113份黄瓜重组自交系(RILs)群体作为试验材料,并利用该群体已经构建的包含182个标记的分子连锁图谱对与产量相关的9个性状进行QTL分析。【结果】共检测到58个QTLs,其中与单株平均产量相关的QTL1个,定位于LG4连锁群上;控制黄瓜日增重量的QTL位点6个,分别位于LG2、LG3、LG6连锁群上;控制平均单瓜重的QTL位点5个,分别位于LG1和LG5连锁群上;控制坐瓜数的QTLs2个,位于LG2和LG4连锁群上;控制化瓜率的QTL1个,位于LG7连锁群上;控制第一雌花节位的QTLs28个,在1-8个连锁群上都有分布;控制总叶片数的QTLs8个,分别位于LG2、LG7和LG4连锁群上;控制叶面积的QTLs2个,分别位于LG1和LG3连锁群上。以上产量相关性状的QTLs仅在一个茬口中被检测到。控制雌花总数的QTLs5个,全部位于LG2连锁群上,其中ffa2a、ffa2b是两个茬口共有的QTLs,并且其遗传效应方向一致。研究还发现若干QTL富集区域和成束分布的QTLs。【结论】本项研究共检测到温室黄瓜与产量相关的9个性状的58个QTLs,其中ffa2a、ffa2b在两个栽培环境中表达稳定。  相似文献   

6.
【目的】挖掘新的控制水稻抽穗期的QTLs,为水稻花期调控的遗传机理研究和分子育种提供新的基因资源。【方法】以籼稻品种特籼占空间诱变突变体CHA-1和籼稻航恢7号空间诱变突变体H335为亲本进行杂交,构建包含275个株系的重组自交系(RIL)作图群体,利用由两亲本重测序及RIL群体简化基因组测序所构建的高密度遗传图谱,在2个环境下进行水稻抽穗期QTL定位。【结果】经两亲本重测序及RIL群体简化基因组测序,构建了包含2 498个Bin标记的高密度遗传图谱。该图谱覆盖水稻12条染色体,各染色体标记数平均208.17,标记间平均遗传距离为0.95 cM。在2个环境下共定位到4个影响抽穗期的QTLs,分布于第3、第6和第8号染色体,其中qHD-6和qHD-8-1位于前人已报道定位的区域并被克隆,另外2个QTLs(qHD-3和qHD-8-2)尚未见报道,并且qHD-8-2能在2个环境中被重复检测到,贡献率分别为8.30%和10.89%。【结论】通过构建的高密度遗传图谱在2个环境中共检测到4个影响抽穗期的QTLs,其中qHD-3和qHD-8-2是新的抽穗期QTL位点,可用于后续抽穗期调控基因的精细定位及克隆研究,也可用于水稻抽穗期的分子调控机理研究与育种。  相似文献   

7.
利用一套来源于玉米杂交种农大108的RIL群体及其IF_2群体,对玉米开花期相关性状进行比较QTL分析。表型分析结果表明,杂交种农大108和IF_2群体具明显的杂种优势,其玉米开花期相关性状在不同环境间较双亲和RIL群体更加稳定。通过QTL分析,RIL群体中定位到17个开花期相关的QTLs,IF_2群体中定位到15个QTLs,主要分布在染色体区域bin 1.02~1.03,bin 4.00~4.01,bin 4.07~4.08,bin 9.04和bin 10.03。但仅q DS1在2个群体中同时被检测到,表明玉米杂交种和自交系具有截然不同的开花期遗传调控机制。本研究检测到的环境间、性状间保守QTLs可能含有调控玉米开花期的主效基因,在育种过程中可用于筛选开花期适合的优良自交系,并指导适于玉米机械化收获优良品种的选育。  相似文献   

8.
基于掖478导入系的玉米产量性状QTL鉴定   总被引:6,自引:3,他引:3  
 目的】鉴定玉米产量相关性状基因位点及包含有利等位基因的导入系,为了解产量性状形成的遗传基础及针对玉米自交系产量性状的分子设计提供参考和依据。【方法】以QB80和Qi319为供体亲本,掖478为轮回亲本,采用回交结合定向选择,分别构建含有61和72个家系的基础导入系群体。通过2年4点田间试验,利用完备复合区间作图进行产量及其相关性状的QTL(quantitative trait locus,QTL)分析。【结果】4个环境下,在QB80为供体的导入系群体中,共检测到9个性状的49个QTL;在Qi319为供体的导入系群体中,检测到9个性状的42个QTL。在2个及以上环境中均检测到的QTL有16个。同一性状在不同环境下所检测的QTL定位在相同的染色体区域,不同性状的QTL也定位在相同或临近的染色体区域,形成多个QTL富集区。2个群体所检测的QTL位点具有较少的一致性,说明2个供体材料中含有不同的有利基因位点。同时,导入片段中含有利基因的导入系,其相关性状明显得以改良,这些导入系可用于QTL聚合以改良掖478的产量相关性状。【结论】QB80较Qi319与掖478间的遗传差异更大,能检测更多的产量性状QTL;2个导入系群体中含有优良等位基因的导入系可用于QTL聚合改良掖478;QTL富集区是为产量性状基因的克隆提供可供参考的重要染色体区域。  相似文献   

9.
【目的】杂种优势利用是实现玉米高产育种的重要途径。解析玉米骨干亲本黄早四杂种优势形成的遗传基础,对指导中国玉米骨干亲本高效利用和高产育种具有重要的理论研究意义与生产利用价值。【方法】以玉米黄改系杂种优势类群的骨干亲本黄早四为共同亲本与11个代表性自交系构建的、包含2 000个重组自交系(recombination inbred line,RIL)的巢式关联分析群体(nested association mapping population,NAM)为试验材料,分别与改良瑞德×黄改系杂优利用模式的代表自交系郑58和昌7-2进行测交,并在全国4个玉米主产区10个试验点开展测交群体的多环境产量及重要农艺性状鉴定。在开展NAM测交群体产量和重要农艺性状相关性分析、各性状在NAM群体及其测交群体之间相关性分析基础上,基于高密度遗传图谱,利用联合逐步回归(Joint stepwise regression)模型进行了NAM及其测交群体QTL定位和产量QTL的复等位遗传分析,并对NAM及其测交群体定位QTL所在区域的遗传重组率进行了比较。【结果】表型分析结果表明,2个测交群体的株高和产量相关性状(主要是行粒数和百粒重)与小区产量均表现出较高的正相关关系。但强优势测交组合(郑58测交群体)的产量表现与NAM群体自身的产量表现相关性较低,表明相对于弱优势测交组合(昌7-2测交群体),强优势测交组合的产量表现受RIL家系自身的产量影响较小。QTL定位结果表明,与NAM群体相比,利用其测交群体检测到的QTL数目较少,但能解释更高的表型变异。昌7-2和郑58测交群体定位到的QTL中,分别仅有27%和25%的位点与NAM群体定位结果重叠或相邻。主效位点的复等位分析结果表明,对于郑58测交群体(强优势测交组合),在单穗产量QTL中,68.69%的增产等位变异来自骨干亲本黄早四。但在昌7-2测交群体中(弱优势测交组合),仅有36.36%的增产等位变异来自黄早四。利用郑58测交群体共鉴定到13个重要的产量相关基因组区段,来自黄早四的等位变异在其中的11个区段表现为增产,这些区段对黄早四杂种优势的形成可能具有重要作用。QTL所在区域的重组率分析结果表明,利用郑58测交群体检测到的QTL所在区域具有较低的遗传重组率,符合杂种优势相关位点更容易分布于低重组区的基因组基本特征。【结论】在强优势测验种郑58遗传背景下,来自黄早四的等位变异对测交组合的产量具有重要遗传贡献,定位到的相关遗传区段与玉米杂种优势形成密切相关。  相似文献   

10.
【目的】杂种优势利用是实现玉米高产育种的重要途径。解析玉米骨干亲本黄早四杂种优势形成的遗传基础,对指导中国玉米骨干亲本高效利用和高产育种具有重要的理论研究意义与生产利用价值。【方法】以玉米黄改系杂种优势类群的骨干亲本黄早四为共同亲本与11个代表性自交系构建的、包含2 000个重组自交系(recombination inbred line,RIL)的巢式关联分析群体(nested association mapping population,NAM)为试验材料,分别与改良瑞德×黄改系杂优利用模式的代表自交系郑58和昌7-2进行测交,并在全国4个玉米主产区10个试验点开展测交群体的多环境产量及重要农艺性状鉴定。在开展NAM测交群体产量和重要农艺性状相关性分析、各性状在NAM群体及其测交群体之间相关性分析基础上,基于高密度遗传图谱,利用联合逐步回归(Joint stepwise regression)模型进行了NAM及其测交群体QTL定位和产量QTL的复等位遗传分析,并对NAM及其测交群体定位QTL所在区域的遗传重组率进行了比较。【结果】表型分析结果表明,2个测交群体的株高和产量相关性状(主要是行粒数和百粒重)与小区产量均表现出较高的正相关关系。但强优势测交组合(郑58测交群体)的产量表现与NAM群体自身的产量表现相关性较低,表明相对于弱优势测交组合(昌7-2测交群体),强优势测交组合的产量表现受RIL家系自身的产量影响较小。QTL定位结果表明,与NAM群体相比,利用其测交群体检测到的QTL数目较少,但能解释更高的表型变异。昌7-2和郑58测交群体定位到的QTL中,分别仅有27%和25%的位点与NAM群体定位结果重叠或相邻。主效位点的复等位分析结果表明,对于郑58测交群体(强优势测交组合),在单穗产量QTL中,68.69%的增产等位变异来自骨干亲本黄早四。但在昌7-2测交群体中(弱优势测交组合),仅有36.36%的增产等位变异来自黄早四。利用郑58测交群体共鉴定到13个重要的产量相关基因组区段,来自黄早四的等位变异在其中的11个区段表现为增产,这些区段对黄早四杂种优势的形成可能具有重要作用。QTL所在区域的重组率分析结果表明,利用郑58测交群体检测到的QTL所在区域具有较低的遗传重组率,符合杂种优势相关位点更容易分布于低重组区的基因组基本特征。【结论】在强优势测验种郑58遗传背景下,来自黄早四的等位变异对测交组合的产量具有重要遗传贡献,定位到的相关遗传区段与玉米杂种优势形成密切相关。  相似文献   

11.
玉米籽粒构型与产量性状的关系及QTL作图   总被引:21,自引:1,他引:20  
 【目的】探讨玉米籽粒构型性状(粒长、粒宽、粒厚、粒形等)与产量性状间的相互关系,进行籽粒构型性状相关QTL的检测与定位。【方法】以自交系齐319和黄早四构建的226个F2:3家系为试验材料,利用相关分析、主成分分析、出籽率模拟运算及QTL定位等方法,对在不同生态环境下(北京春播和河南夏播)玉米籽粒构型与产量性状间相关性进行探讨,并初步分析籽粒构型性状遗传基础。【结果】单穗产量与绝大多数籽粒构型性状显著相关,特别是与粒长的相关系数最高。主成分分析结果表明,对单穗产量影响较大的性状有粒长、粒厚、穗长、出籽率和粒长/穗半径。出籽率是影响果穗同化产物分配状况的衡量指标,受到粒长、粒长/穗半径、穗长和粒宽的显著影响。模拟运算亦表明粒长/穗半径与出籽率具有十分紧密的关系。对在两个生态环境下籽粒构型性状和产量性状的相关QTL进行了检测,共检测到了36个QTL。进一步分析发现,在不同生态环境下的部分QTL定位在相同的染色体区域;同时,还有不同性状的QTL定位在相同或临近的染色体区域。【结论】玉米籽粒构型性状与产量性状具有较高的相关关系,籽粒构型QTL与产量相关QTL的重叠区域对剖析玉米产量形成遗传机制可能具有重要的研究价值。  相似文献   

12.
Better understanding of genotype-by-environment interaction (GEI) is expected to provide a solid foundation for genetic improvement of crop productivity especially under drought-prone environments. To elucidate the genetic basis of the plant and ear height, 2 F2:3 populations were derived from the crosses of Qi 319 × Huangzaosi (Q/H) and Ye 478 × Huangzaosi (Y/H) with 230 and 235 families, respectively, and their parents were evaluated under 3 diverse environments in Henan, Beijing, and Xinjiang, China during the year of 2007 and 2008, and all the lines were also evaluated under water stress environment. The mapping results showed that a total of 21 and 12 QTLs were identified for plant height in the Q/H and Y/H population, respectively, and 24 and 13 QTLs for ear height, respectively. About 56 and 73% of the QTLs for 2 traits did not present significant QTL-by-environment interaction (QE1) in the normal joint analyses for Q/H and Y/H population, respectively, and about 73% of the QTLs detected did not show significant QEI according to joint analyses for stress condition in Q/H. Most of the detected major QTLs exhibited high stability across different environments. Besides, several major QTLs were detected with large and consistent effect under normal condition (Chr. 6 and 7 in Q/H; Chr. 1, 3 and 9 in Y/H), or across 2 water regimes (Chr. 1, 8 and 10 for in Q/H). There were several constitutive QTLs (3 for Q/H and 1 for Y/H) with no or minor QTL-by-environment for the 2 populations. Finally, we found several genomic regions (Chr. 1, 10, etc.) to be co-located across the populations, which could provide useful reference for genetic improvement of these traits in maize breeding programs. Comparative genomic analysis revealed that 3 genes/genetic segments associated with plant height in rice were orthologous to these 3 identified genomic regions carrying the major QTLs for plant and ear height on Chr. 1, 6, and 8, respectively.  相似文献   

13.
不同氮水平下玉米苗期生长性状及成熟期产量的QTL定位   总被引:5,自引:0,他引:5  
 【目的】研究玉米苗期氮素利用效率相关性状与成熟期产量之间的遗传关系。【方法】以优良杂交种豫玉22两亲本Z3和87-1为基础构建的一套F8家系的RIL群体为研究材料,在高、低氮两种条件下,通过苗期水培试验和成熟期田间试验,利用复合区间作图法对玉米苗期地上部干重、根干重、总根长、根冠比以及成熟期产量性状进行了QTL定位。【结果】利用Windows QTL Cartographer 2.5 软件,在LOD>2.5条件下共定位到22个QTL位点,其中高氮下定位到10个QTL,低氮下定位到12个QTL,两种氮水平下共位或紧密连锁的QTL位点很少,表明不同氮水平下的遗传机制不同。在第5和第7染色体上发现了苗期根系相关性状与成熟期产量之间存在连锁关系。【结论】苗期根系性状对成熟期的产量形成具有重要的作用,在氮高效遗传育种中可以把苗期根系性状作为一个重要的选择指标。  相似文献   

14.
水稻产量性状杂种优势的QTL定位   总被引:3,自引:2,他引:1  
 【目的】利用QTL定位方法检测水稻产量性状杂种优势QTL,并解释杂种优势产生的可能分子机理。【方法】利用重组自交系与亲本协青早B构建BC1杂种群体,通过两地重复试验,以中亲优势考察6个产量性状的杂种优势表型,利用Windows QTL Cartographer 2.5的复合区间作图法检测其QTL。【结果】多数产量性状均表现出较强的杂种优势。在两地试验中,共检测到20个产量性状杂种优势QTL,分布在水稻第2、3、6、7、8、10等6条染色体上,包括3个控制单株产量杂种优势的QTL、2个控制单株穗数杂种优势的QTL、6个控制每穗总粒数杂种优势的QTL、4个控制每穗实粒数杂种优势的QTL、4个控制结实率杂种优势的QTL和1个控制千粒重杂种优势的QTL。单个QTL对群体性状表型变异的贡献率为4.90%—12.85%。【结论】检测到控制6个产量性状杂种优势的20个QTL,其中qHNP-3、qHTNSP-7、qHNFGP-7、qHSF-7、qHTGWT-3 5个QTL在两地试验中稳定表达;检测到的20个杂种优势QTL中,有13个与在RIL群体中检测到的QTL重叠,重叠率达65%,因此,认为来自纯系的产量性状加性效应对杂种优势产生具有重要贡献。  相似文献   

15.
水稻第6染色体短臂产量性状QTL簇的分解   总被引:1,自引:0,他引:1  
【目的】将水稻第6染色体短臂上产量性状QTL分解到更小的区间中。【方法】从珍汕97B/密阳46重组自交系群体筛选到针对第6染色体短臂RM587-RM19784区间的剩余杂合体,衍生了一个由221个株系组成的F2:3群体,种植于海南和浙江两地,考察每株穗数、每穗实粒数、每穗总粒数、千粒重、结实率和单株产量,建立SSR标记连锁图,应用Windows QTL Cartographer 2.5检测QTL。【结果】在所分析的6个性状中,除穗数外在第6染色体短臂上的目标区间均检测到QTL,分别座落于目标区域中3个以上的不同区间中,单个QTL对群体性状表型变异的贡献率为6.3%~35.2%;控制产量构成因子的QTL基本以加性作用为主,但3个单株产量QTL的显性度分别为1.65、0.84和0.42。【结论】目标区间存在3个以上的产量性状QTL,且同一区间控制不同性状的QTL、不同区间控制同一个性状的QTL在遗传作用模式、效应方向和效应大小上存在一定差异。  相似文献   

16.
小麦单株产量与株高的QTL分析   总被引:4,自引:2,他引:4  
 【目的】在QTL水平上揭示株高与产量的遗传关系及株高对产量的影响,为小麦高产育种株高的选择提供参考依据。【方法】利用分别包含229和485个家系的2个关联重组自交系群体(recombinant inbred lines,RIL)潍麦8号/烟农19(WY)和潍麦8号/济麦20(WJ),绘制2个较高密度遗传连锁图谱。在3个环境下对单株产量和株高性状进行测量评价及非条件和条件QTL分析,研究株高与产量QTL的相互关系及排除株高影响后单株产量QTL效应的变化,探讨群体大小对QTL定位精度和准确性的影响。【结果】在WY群体中检测到5个单株产量QTL和15个株高QTL,其中,8个QTL解释大于10%的表型变异,3个为一因多效QTL;条件QTL分析表明,3个单株产量QTL与株高QTL无关,2个单株产量QTL的效应完全或部分由株高QTL所贡献,1个单株产量QTL的效应被株高QTL抑制。在WJ群体中检测到7个单株产量QTL和11个株高QTL,其中1个主效株高QTL加性效应值为8.82 cm,可解释20.68%的表型变异;条件QTL分析表明,5个单株产量QTL与株高QTL无关,2个单株产量QTL的效应完全由株高QTL所贡献。大群体WJ检测到的QTL效应值比小群体WY小,但LOD值高。【结论】株高与产量的关系是多重因素共同作用的结果,包括一因多效或紧密连锁、株高QTL对产量QTL表达的贡献与抑制、环境效应以及与其它性状的互作等。不同遗传背景、不同生态环境下株高对产量的贡献是各个因素相协调的结果,高产育种中对株高的选择在不同背景下应该有所区别;与小群体相比,大群体检测QTL的精度和准确性更高。  相似文献   

17.
 【目的】通过测量猪体长、体高、管围、胸围、胸宽、胸深、腹围和腿臀围等8个体尺性状,应用全基因组扫描定位影响猪体尺性状的数量性状位点(QTL)。【方法】在210日龄,活体测量白色杜洛克×二花脸资源群体129头F2个体的上述8个体尺性状,利用分布于猪18条常染色体和X染色体上的183个微卫星标记,对这129头F2个体及其父母和祖代亲本进行基因型检测。应用基于最小二乘线性回归分析的复合区间作图法在QTL Express进行在线QTL定位分析,并通过1 000次的Permutation来确定不同显著水平的临界值。【结果】在8条染色体上共检测到19个影响猪体尺性状的QTL,其中位于4和7号染色体上的5个QTL达到基因组1%显著水平,位于2和7号染色体上的2个QTL达基因组5%显著水平,但是没有检测到影响胸深的QTL。【结论】影响猪体尺性状的QTL位点大多数分布于不同染色体区域,QTL所解释的表型方差介于5.23%—41.58%。白色杜洛克和二花脸中均存在增加表型值的有利等位基因。  相似文献   

18.
【目的】栽培种花生是世界范围内重要的油料作物和经济作物,其株型相关性状是典型的数量性状,亦是重要的农艺性状,与产量和机械化收获密切相关。对花生株型相关性状进行遗传分析和QTL定位,筛选与之紧密连锁的分子标记,有助于花生的品种保护和品种鉴别,为花生株型分子育种提供重要的理论依据。【方法】以直立型花生品种冀花5号和匍匐型M130为亲本构建的包含321个家系的RIL群体为研究材料,于2016—2018年分别在海南市、邯郸市、保定市和唐山市等7个环境下种植,各个环境均在收获时调查统计花生侧枝夹角、主茎高、侧枝长、株型指数和扩展半径等5个株型相关性状的表型值。同时,利用SSR、AhTE、SRAP和TRAP等分子标记扫描亲本及群体的基因型用于构建分子遗传连锁图谱。最后结合多年多点的表型数据,采用QTL Icimapping V4.2中的完备区间作图法(inclusive composite interval mapping,ICIM)对7个环境下的株型相关性状进行加性QTL和上位性QTL分析。【结果】构建了一张包含363个多态性位点的分子遗传连锁图谱,所有标记被分配到20条染色体和1个未知连锁群;图谱总长度覆盖全基因组的1 360.38 cM,标记间平均距离为3.75 cM;单个连锁群长度为39.599—101.056 cM,包括4—50个分子标记。共检测到30个与株型相关性状的加性QTL,分布在A04、A05、A06、A08、A09、B02、B09等7条染色体上。其中,5个QTL与侧枝夹角相关,可解释的表型变异(phenotypic variance explained,PVE)为3.48%—11.22%;15个QTL与主茎高相关,PVE为3.58%—10.05%;2个QTL与侧枝长相关,PVE为6.03%—8.56%;4个QTL与株型指数相关,PVE为4.68%—15.08%;4个QTL与扩展半径相关,PVE为3.30%—9.33%。qLBAA05.1qLBAA05.2qMSHA04.2qIOPTA05.1等4个主效QTL,可解释的表型变异分别为11.22%、10.59%、10.23%、10.05%和15.08%。此外,共检测到59对上位性QTL。其中,6对上位性QTL与侧枝长相关,PVE为2.23%—2.78%;50对上位性QTL与株型指数相关,PVE为0.25%—1.44%;3对上位性QTL与扩展半径相关,PVE为7.28%—12.25%。发现3个QTL聚集区,分别为A04染色体的GM1867—AHGS1967区间、A05染色体的me14em5-116—PM418区间和A08染色体的HBAUAh177—AhTE0658区间,涉及侧枝夹角、主茎高、株型指数和扩展半径等4个株型相关性状。【结论】构建了一张包含363个标记位点的分子遗传连锁图谱;获得30个与株型相关性状的加性QTL和59对上位性QTL;发现3个QTL聚集区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号