首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
高地钩叶藤与大钩叶藤纤维特性   总被引:3,自引:0,他引:3  
为做到适材适用、全面提高棕榈藤材的高附加值加工利用水平,以高地钩叶藤与大钩叶藤为研究对象,在径向与轴向对两种藤材纤维的特性进行统计分析。结果显示:高地钩叶藤与大钩叶藤纤维的长度、直径、腔径、双壁厚分别为2007.51μm与2016.02μm、18.11μm与20.46μm、10.62μm与8.84μm、7.49μm与11.61μm。径向自外向内,高地钩叶藤纤维长度和宽度先增后降;大钩叶藤纤维宽度、双壁厚和高地钩叶藤纤维长宽比先降后增;大钩叶藤纤维长度、长宽比和两藤纤维壁腔比逐渐下降;高地钩叶藤纤维双壁厚和两藤腔径、腔径比逐渐上升;两种藤纤维腔径经F检验在0.01水平上差异极显著。轴向自下向上,高地钩叶藤和大钩叶藤的纤维长度分别呈降-增-降和增-降-增变化趋势;高地钩叶藤纤维长宽比先增后降;两藤纤维腔径、腔径比和大钩叶藤纤维长宽比逐渐上升;两藤纤维宽度、双壁厚和壁腔比逐渐下降;两种藤纤维长度和腔径经F检验在0.01水平上差异极显著。  相似文献   

2.
高地钩叶藤和大钩叶藤维管束与导管变异研究   总被引:3,自引:0,他引:3  
以高地钩叶藤和大钩叶藤为研究对象,采用生物解剖学方法,分析维管束和导管在径向和轴向的变化规律。结果表明,高地钩叶藤与大钩叶藤维管束径向直径、弦向直径、密度以及导管的直径和密度分别为603.23μm和640.83μm、451.60μm和495.69μm、2.87个·mm~(-2)和2.66个·mm~(-2)以及219.00μm和262.46μm、3.62个·mm~(-2)和2.82个·mm~(-2)。径向由藤皮至藤芯,高地钩叶藤维管束径向直径、弦向直径和导管直径均呈先升后降的变化趋势,大钩叶藤维管束径向直径、弦向直径和导管直径均呈逐渐增加的趋势,两者维管束密度和导管密度呈现逐渐降低的趋势,其中导管密度F检验在0.05水平上差异显著。随着轴向高度的增加,维管束直径高地钩叶藤变化为先减后增,大钩叶藤变化为先增后减,维管束与导管的密度高地钩叶藤变化为"降-增-降",大钩叶藤变化为先减后增,其中维管束密度F检验在0.01水平上差异极显著。  相似文献   

3.
脲醛及热处理对钩叶藤、高地钩叶藤主要物理性质的影响   总被引:1,自引:1,他引:1  
为优化藤材改性处理的方案、提高其加工利用水平,以钩叶藤、高地钩叶藤为研究对象,对其改性处理前后主要物理性质的变化进行分析。结果表明,与素材相比,经过120℃热处理后,钩叶藤密度略有增加;钩叶藤和高地钩叶藤抗胀(缩)率分别为11.94%和1.98%,阻湿率分别为4.80%和5.50%,此外高地钩叶藤的抗吸水率为1.80%。按最佳工艺改性处理后,气干密度、绝干密度和基本密度钩叶藤分别增加了9.71%、9.03%和11.70%,高地钩叶藤分别增加了23.57%、22.11%和18.18%;钩叶藤的抗胀(缩)率为5.40%,钩叶藤和高地钩叶藤抗吸水率分别为13.25%和34.16%。经过上述改性工艺处理后,对钩叶藤和高地钩叶藤密度、尺寸稳定性、阻湿性和抗吸水性有着不同的影响。  相似文献   

4.
为实现棕榈藤材增强保韧、劣藤优用制作家具的目的,以大钩叶藤、高地钩叶藤为研究对象,选择浸注试剂、浸注量、增韧剂量、加热时间4个因素分三水平进行L9(34)正交试验,对改性材弯曲性能进行测定,通过优序数法进行综合分析建立最佳改性工艺。结果表明,与大钩叶藤素材相比,分别浸注脲醛树脂、脲醛树脂和聚乙烯醇后,其抗弯强度分别增加34.1%和12.7%;而高地钩叶藤素材在浸注脲醛树脂后,其抗弯强度增加2.5%。聚乙烯醇添加后,大钩叶藤、高地钩叶藤脲醛树脂改性材柔量分别增加6.00%和1.93%。综合评价的大钩叶藤最佳改性处理工艺为以脲醛树脂(urea formaldehyde resin,UF)+聚乙烯醇(polyvinyl alcohol,PVA)为改性试剂,浸注量为30%,聚乙烯醇添加量为0.10%,在120℃下干燥1.5 h;综合评价的高地钩叶藤最佳改性处理工艺为以脲醛树脂为改性试剂,浸注量为50%,在120℃下干燥0.5 h。恰当的改性处理不仅能提高棕榈藤材的抗弯强度,也能提高改性材的柔韧性。  相似文献   

5.
黄藤发育过程中组织比量的变化   总被引:2,自引:0,他引:2  
以我国特有的黄藤为研究对象,采用生物解剖学方法,系统分析了各组织比量与生长发育规律之间的关系。结果表明:轴向上薄壁组织比量为71.0%~77.3%,平均值为72.6%,径向由内向外呈降低的变化趋势。后生木质部轴向上大导管比量为8.3%~12.4%,平均值为10.6%,藤茎外部最低。轴向上纤维比量为8.2%~10.9%,平均值为10.5%;径向上纤维比量由内向外呈增大的变化趋势。韧皮部筛管比量平均值为3.5%,原生木质部小导管比量平均值为2.8%。  相似文献   

6.
为构建健全的棕榈藤数据库、合理开发利用棕榈藤资源提供理论基础,以高地钩叶藤为研究对象,研究其主要物理力学性质及两种方式下的断裂韧性.结果 表明,高地钩叶藤的气干密度、绝干密度和基本密度分别为0.44、0.46和0.36 g·cm3.体积气千干缩率和体积全千干缩率的变化范围分别为2.91%~8.11%和7.71%~11.36%,干缩各向异性较大.高地钩叶藤的抗弯弹性模量、抗弯强度、抗压强度、抗剪切强度和冲击韧性分别为804.10 MPa、49.95 MPa、33.12 MPa、4.77 MPa和184.02 kJ·m-2.三点弯曲法测得其横纹断裂韧性为1870 kN·m-3/2,紧凑拉伸法测得其顺纹断裂韧性为77.8 kN.m3/2,说明高地钩叶藤的横纹断裂韧性比顺纹断裂韧性大得多.  相似文献   

7.
为更好地了解棕榈藤材性能、提高我国棕榈藤材高附加值和加工利用水平,选择高地钩叶藤为对象,采用显微图像分析系统,对该藤2 m处的节间和节部的纤维形态特征及组织比量进行了统计与分析。结果表明,节间与节部纤维的长度、宽度、腔径、双壁厚、长宽比、径腔比、壁腔比的平均值分别为2 154.50 μm和1 573.22 μm、17.34 μm和18.11 μm、1.48 μm和5.33 μm、6.98 μm和7.78 μm、124.51和86.69、2.30和2.48、2.33和2.59;节间和节部的纤维、筛管、导管、薄壁细胞组织比量的平均值分别为8.89%和10.77%、4.50%和4.78%、12.09%和12.67%、74.52%和71.81%。经F检验,节间与节部的纤维长度、双壁厚、长宽比、壁腔比在显著性水平0.01下差异极显著,而纤维径腔比在0.05水平上差异显著,节间的纤维形态特征优于节部。  相似文献   

8.
不同淹水程度对长江滩地枫杨组织比量的影响及变异   总被引:13,自引:5,他引:13  
研究结果表明:在径向上,阉水1个月和2个月的两组间,除导管比量变化趋势基本相反外,纤维比量、轴向薄壁组织比量和木射线比量变化趋势相近似。在轴向上,两组间纤维比量和木射线比量随树高的增加变化趋势相反,导管比量和轴向薄壁组织比量随树高的增加变化趋势相似。第一组和第二组的纤维比量分别为65.89%、62.7%;木射线比量分别为12.22%、15.07%。经T-检验,在0.05水平上,纤维比量和木射线比量在两组间差异显著,而导管比量和轴向薄壁组织比量差异不显著。  相似文献   

9.
为了更好的对棕榈藤材进行开发和加工利用,以粉藤为研究对象,采用显微图像分析方法对其组织比量、纤维、维管束及导管形态特征进行研究。结果发现,粉藤薄壁组织、导管、纤维筛管比量值分别为34.7%、32.3%、26.9%和6.1%;纤维长度、直径、双壁厚、腔径和长宽比分别为1 425.0μm、16.4μm、11.0μm、5μm和87.9;维管束的径向、弦向尺寸和密度分别为556.1μm、519.4μm和3.6个·mm~(-2);后生木质部大导管分子长度、直径和密度分别为2 089.7μm、296.2μm和3.8个·mm~(-2)。粉藤材质与玛瑙省藤相当,是一种优良的藤种。  相似文献   

10.
黄藤发育过程中主要解剖特征的变异   总被引:2,自引:0,他引:2  
以黄藤为研究对象,采用生物解剖学方法,系统分析了维管束、后生木质部大导管及纤维形态特征等主要解剖特征及其与生长发育规律之间的关系。结果表明:随着轴向高度增加,维管束比量先升后降,导管分子长度和长宽比先降后升;维管束长短径、纤维双壁厚、壁腔比、管直径和形状因子逐渐减小;维管束密度、纤维腔径和导管分子密度呈增加的变化趋势。径向由藤芯到藤皮维管束比量和密度、纤维长度、长宽比和壁腔比、导管密度逐渐增大;维管束长径和短径、纤维腔径、导管分子直径、形状因子逐渐减小。维管束比量、长径、短径、形状因子和密度分别为40.2%、468.933μm、333.838μm、0.722和5.76个.mm-2,纤维长度、直径(宽度)、腔径、双壁厚、长宽比和壁腔比分别为990.476μm、12.041μm、6.350μm、5.691μm、86.23和1.05。导管分子长度、直径、长宽比、形状因子和密度分别为1 621.796μm、187.172μm、9.207、0.877和5.65个.mm-2。  相似文献   

11.
为探究杏鲍菇代料栽培姬松茸的适宜比例,通过床栽试验研究了杏鲍菇替代不同比例稻草对姬松茸J2和J37菌株不同潮次子实体产量、营养品质的影响。结果表明:随着替代比例的增加,姬松茸J2和J37子实体产量呈现先升后降的变化趋势,替代比例为30%时产量最高,姬松茸J2产量可达2.038 kg·m-2,姬松茸J37产量可达2.267 kg·m-2。两种姬松茸子实体产量主要集中于第一潮和第二潮,且杏鲍菇菌渣替代栽培处理前两潮产量占比均高于传统栽培配方。随着潮次增加,姬松茸 J2和 J37子实体中多糖、粗蛋白和氨基酸的质量分数总体呈降低的趋势,但杏鲍菇菌渣替代处理多糖、粗蛋白和氨基酸质量分数随潮次增加降低的幅度小于传统栽培配方。杏鲍菇菌渣替代处理姬松茸子实体中粗蛋白、氨基酸和多糖的质量分数分别比传统栽培配方提高2.42%~10.44%、4.09%~12.00%和11.07%~23.70%,其中替代比例为30%时营养品质最优。从生产成本分析,杏鲍菇菌渣替代可降低姬松茸栽培原料成本35.08%~54.00%。研究表明,适宜比例的杏鲍菇菌渣和养殖场垫料组合代料栽培姬松茸的产量和品质优且不同潮次间相对稳定,而且该方式可以有效降低栽培材料的投入成本,综合效益比较高。  相似文献   

12.
为探讨慢收缩骨骼肌型Tnl(slow skeletal muscle troponin I,TNNI1)基因在鸭早期肌肉发育中的m RNA表达规律及与肌纤维发育的相关性,以地方品种高邮鸭为素材,采用实时荧光定量PCR方法,检测胚胎期21、25、27胚龄及出雏后5日龄时腿肌腓肠肌外侧头中TNNI1基因m RNA表达量,结果发现,25胚龄是TNNI1基因的表达高峰期,之后显著下调,并持续至5日龄。肌纤维类型变化则是随时间的推移,慢肌纤维比例逐渐升高,快白肌纤维比例逐渐下调;25胚龄时,慢肌纤维直径和横切面积均出现显著增高(P0.05),快白肌纤维横切面积则出现下调;之后,3种类型肌纤维直径和横切面积在各个时间点之间无显著差异(P0.05);相关性分析结果显示,TNNI1基因m RNA表达量与快红肌纤维比例呈显著负相关(P0.05),与肌纤维直径、横切面积均无显著相关性(P0.05)。提示TNNI1可能在鸭发育早期骨骼肌肌纤维类型转换中具有重要的作用。  相似文献   

13.
比较研究了鹅掌楸属(Liriodendron)中国鹅掌楸、北美鹅掌楸和杂交鹅掌楸3个树种次生木质部的显微构造。经方差分析,3个树种间导管分子、木纤维、轴向薄壁组织和木射线组织等解剖特征存在极显著差异,杂交鹅掌楸次生木质部结构兼具亲本特征。首次发现中国鹅掌楸中存在单穿孔导管,约占4%。中国鹅掌楸较北美鹅掌楸导管分子短、导管端壁穿孔板横隔数少、弦切面木射线组织的宽度、高度小以及轴向薄壁细胞束的细胞个数少。北美鹅掌楸与中国鹅掌楸相比具有更多的原始特征,中国鹅掌楸较北美鹅掌楸进化。  相似文献   

14.
通过牛津杯法测定不同浓度膜醭毕赤酵母对扩展青霉体外抑制作用,将扩展青霉分别接入膜醭毕赤酵母和无菌水处理(对照组)的苹果,统计发病率和病变直径,结合顶空气相色谱-离子迁移谱(HS-GC-IMS)检测膜醭毕赤酵母拮抗组和对照组苹果的挥发性物质。结果表明,酵母在108 CFU/mL时抑菌圈最大(25.4 mm),并能显著抑制扩展青霉的孢子萌发率和芽管长度。培养10 d,酵母拮抗组的苹果发病率为10.6%,显著低于对照组(92.2%)。HS-GC-IMS共定性出38种挥发性成分,主要为酯类及醇醛化合物。对照组中丙酸乙酯、苯乙烯等含量显著高于酵母拮抗组。108 CFU/mL 膜醭毕赤酵母细胞悬浮液能够明显抑制扩展青霉和有效防治苹果采后青霉病。  相似文献   

15.
人工林米老排木材解剖性质及其变异性研究   总被引:2,自引:0,他引:2  
为了解人工林米老排木材解剖性质,并探求其木材材质变异规律的内在机制,为建立米老排“培育—材性—加工利用”一体化的模式提供必要的理论依据,该文借助电子显微镜和计算机显微图像分析系统,从微观的角度,应用定量解剖学方法,对米老排木材解剖性质及其沿径向的变异规律进行了系统的测定和分析.研究结果表明:①米老排纤维长度、宽度、双壁厚、长宽比、壁腔比、腔径比平均值分别为2 014.2 μm、26.19 μm、11.07 μm、78.68、0.79、0.57;由髓心向外除腔径比呈递减趋势外其余纤维形态指标呈递增趋势. ②导管分子长度、宽度、双壁厚、长宽比、壁腔比、腔径比平均值分别为1 666.0 μm、53.83 μm、5.44 μm、31.85、0.12、0.90;由髓心向外除双壁厚和壁腔比呈递减趋势外其余导管分子形态指标呈递增趋势. ③纤维比量、导管比量、木射线比量和薄壁组织比量平均值分别为54.8%、16.5%、27.6%、1.1%;由髓心向外木纤维比量呈增加趋势,导管分子比量呈递减趋势,木射线比量和薄壁组织比量变异规律不明显. ④微纤丝角平均值为8.4°,由髓心向外呈递减趋势.⑤幼龄材与成熟材的界限为第7年.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号