首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
基于目前国内外对农业土壤N_2O产生与排放过程的研究成果,分析了N_2O的产生途径及其研究方法、影响农业N_2O产生的主要因素。农业土壤N_2O产生的主要过程有硝化作用(自养硝化作用和异养硝化作用)、反硝化作用和硝化微生物反硝化作用。目前研究硝化和反硝化作用的研究方法主要包括15N示踪法和气体抑制剂抑制法;影响土壤硝化—反硝化作用及N_2O产生的因素主要包括土壤基质、土壤物理性质、土壤化学性质、生物因素以及人类活动等。在此基础上探讨了目前研究中存在的主要问题,并对今后研究提出展望与建议。  相似文献   

2.
氮肥品种和含水量对水稻土N2O排放速率及排放过程的影响   总被引:1,自引:1,他引:0  
稻田是全球重要的N_2O排放源,氮肥有效性和水分状况是影响稻田N_2O排放的关键因素。为探明水稻土在施用尿素和硫酸铵时,水分变化对短时间内N_2O总排放速率及不同硝化过程(自养硝化、异养硝化、非生物作用)贡献的影响,通过室内培养实验,采用乙炔抑制法,测定了不同时间段N_2O释放量,并计算释放速率。结果表明:施用氮肥可以显著提高自养硝化、异养硝化及总过程的N_2O排放速率,并且施尿素处理N_2O排放速率大于施硫酸铵。随着土壤水分含量由48%增加至160%,总N_2O排放速率以及自养硝化、异养硝化N_2O排放速率显著增加。供试水稻土N_2O的产生主要是由生物过程主导的,其中硝化作用(包括自养硝化、异养硝化)最高贡献达51.1%,非生物作用贡献所占比重很小。这些结果可为科学施肥,降低农田土壤N_2O排放提供科学依据。  相似文献   

3.
【目的】通过室内培养试验,研究不同含水量对北京顺义潮褐土N_2O排放及同位素特征值(δ15Nbulk,δ18O和nitrogen isotopomer site preference of N_2O,简称SP)的影响,以期获得不同水分条件下土壤N_2O产生途径及变化规律,为农田土壤N_2O减排提供理论依据。【方法】结合稳定同位素技术与乙炔抑制法,以北京顺义潮褐土为试材,设置3个含水量梯度:67%、80%和95%WFPS(土壤体积含水量与总孔隙度的百分比或实际重量含水量与饱和含水量的百分比,简称WFPS),在此基础上设置无C2H2,0.1%(V/V)C2H2和10%(V/V)C2H2处理。将土壤装入培养瓶中培养2 h,之后收集培养瓶中的气体测定N_2O浓度及同位素特征值,并采集土样测定其NH+4-N和NO-3-N的含量。利用同位素二源混合模型计算硝化和反硝化作用对土壤N_2O排放的贡献率,对N_2O产生途径进行量化分析。【结果】根据室内土壤培养测定结果,高(95%WFPS)、中(80%WFPS)和低(67%WFPS)含水量土壤N_2O加权平均排放通量分别为1.17、0.27和0.08 mg N·kg-1·d-1,高含水量土壤N_2O排放量均显著高于中、低含水量处理,中含水量处理显著高于低含水量;整个培养周期,高、中和低含水量土壤N_2O+N_2累积排放量分别为培养初期总的无机氮含量的18.05%、5.27%和1.24%(N_2O+N_2累积排放量分别为19.61、5.72和1.35 mg N·kg-1;各处理NH+4-N+NO-3-N初始含量均为108.62 mg N·kg-1);与低含水量处理相比,高、中含水量土壤的N_2O+N_2累积排放量分别增加了13.53倍和3.24倍,高含水量土壤N_2O+N_2累积排放量比中含水量高2.43倍,表现为随着含水量的增加,土壤无机氮(NH+4-N+NO-3-N)以气态氮(N_2O+N_2)形式的损失量逐渐增加。3个含水量处理N_2O的δ15Nbulk加权平均值变化范围为-42.93‰—-4.07‰,且较高含水量处理显著低于较低含水量处理;10%(V/V)C2H2抑制土壤中N_2O还原成N_2的过程,各含水量土壤中,10%(V/V)C2H2处理组其N_2O的δ18O值显著低于0.1%(V/V)C2H2处理组,且N_2O/(N_2O+N_2)比率随土壤含水量增加而降低;各处理土壤中同时存在多个N_2O产生过程,对于培养第一周,土壤产生的N_2O的SP值于培养前4 d呈逐渐增加的趋势,之后又逐渐降低,低含水量土壤在第1—2天产生的N_2O的SP值为6.74‰—12.04‰,反硝化作用对土壤N_2O排放的贡献率为56.36%—66.15%,此培养阶段表现为土壤主要通过反硝化作用产生N_2O,之后,硝化作用贡献率(55.78%—100%)增强;中含水量土壤N_2O的SP加权平均值为10.26‰,该土壤中反硝化作用(40.90%—74.04%)占据主导地位;加10%(V/V)C2H2的高含水量处理,在整个培养第一周均具有较高的SP值,变化范围为7.61‰—21.11‰;与0.1%(V/V)C2H2处理组相比,10%(V/V)C2H2处理的高、中和低含水量土壤排放N_2O的SP加权平均值分别降低了0.10倍、0.33倍和0.06倍。【结论】土壤含水量增加促进N_2O排放,高含水量处理中N_2O排放量最高。67%WFPS处理中,N_2O排放前期以反硝化作用为主,后期以硝化作用为主;80%WFPS处理中,N_2O主要由反硝化过程产生;95%WFPS处理中,N_2O排放以硝化作用为主。  相似文献   

4.
为获得减少稻田N_2O排放的合适灌溉模式和施氮管理,通过大田试验,研究了不同灌溉方式和施氮处理对生育期内稻田N_2O排放通量和不同时期土壤无机氮含量和硝化-反硝化细菌数量的影响,并分析了采样当天稻田N_2O排放通量与无机氮含量和硝化-反硝化细菌数量的关系。试验设3种灌溉方式,即常规灌溉(CI)、"薄浅湿晒"灌溉(TI)和干湿交替灌溉(DI),以及2种施氮处理,即全部施用尿素(RN1)和50%尿素+50%猪粪(RN_2),2种施氮处理氮用量相同。相同施氮处理下,TI模式可以降低稻田N_2O排放;DI和TI模式土壤无机氮含量、硝化细菌数量和亚硝化细菌数量较CI方式高,而CI和TI模式土壤反硝化细菌数量较DI模式高。相同灌水模式下,RN1处理可显著降低稻田N_2O排放,且RN1处理土壤无机氮含量、硝化细菌数量、亚硝化细菌数量和反硝化细菌数量较RN_2处理低。稻田N_2O排放通量与土壤反硝化细菌、硝化细菌数量和NH_4~+-N含量之间均呈极显著正相关关系(r≥0.309,P0.01),且土壤NH_4~+-N含量与硝化细菌数量和反硝化细菌数量之间也均呈极显著正相关关系(r≥0.555,P0.01)。因此,"薄浅湿晒"灌溉和尿素处理可以降低稻田N_2O排放,且稻田N_2O排放通量受到土壤NH_4~+-N含量、反硝化细菌数量和硝化细菌数量的综合影响。  相似文献   

5.
土壤生态系统与温室气体排放关系密切。蚯蚓参与调控土壤的能量流动和物质循环过程,对土壤温室气体如N_2O的产生与排放产生重要影响。蚯蚓影响N_2O排放的关键酶基因,特别是反硝化过程中的Nir与Nos基因比,调控土壤硝化和反硝化作用进程,影响土壤N_2O排放。蚯蚓促进土壤氮素分解矿化过程,与氮素可利用性密切相关,显著影响了N_2O的产生和排放。秸秆残体还田处理是一种常见的农田管理方式,有助于培肥土壤。但不同C/N的秸秆、秸秆施加方式(混施、表施)在接种不同生态型蚯蚓后,对土壤N_2O排放量的影响差异很大。蚯蚓在取食、活动包括死亡后,都可能直接释放出N_2O,尽管直接排放的N_2O量在田间的比例相对较低,但这在微系统中仍然不容忽视。  相似文献   

6.
土壤氮循环微生物过程的分子生态学研究进展   总被引:17,自引:2,他引:15  
固氮作用、硝化作用和反硝化作用是土壤微生物参与氮素循环的三个重要方面。自分子生态学方法应用于土壤学后,土壤微生物作用于氮素循环过程的机理研究取得了若干重要进展。包括:1)利用固氮菌的nifH基因作为分子标记研究有机质、氮素与固氮微生物之间的关系,发现固氮微生物的丰度和群落结构与土壤有机质含量呈正相关。然而,固氮微生物的丰度和群落结构与土壤速效N含量呈负相关,施用氮肥会抑制固氮微生物的生长,施氮土壤固氮微生物数量减少,多样性降低。2)以氨氧化微生物功能基因为探针,揭示了土壤pH与氨氧化微生物分布关系密切,碱性土壤中氨氧化细菌是硝化作用主要参与者,而酸性土壤中氨氧化古菌是硝化作用的主导者。土壤中N素的含量也影响氨氧化微生物的数量和群落结构,施入氮肥后氨氧化微生物的数量和活性增加。3)利用反硝化功能基因为分子标记研究土壤因子对反硝化细菌群落的影响,阐明了土壤可溶性有机碳、pH和土壤水分是影响反硝化细菌数量和群落结构的重要因子,并且发现土壤反硝化细菌与土壤反硝化能力和氧化亚氮释放之间存在着一定的联系,但这种联系在不同研究对象中存在差异,需要进一步确认。目前,利用分子生物学技术解析土壤氮素循环微生物生态功能取得了重要的进展,但还需进一步深入。今后,将采用包括同位素在内的示踪技术与分子生物学方法相结合共同分析氮循环不同代谢过程微生物种群间的相互关系以及氧化亚氮产生与硝化和反硝化微生物之间的关系。  相似文献   

7.
中国主要旱地农田N_2O背景排放量及排放系数特点   总被引:5,自引:0,他引:5  
【目的】收集中国已发表的旱地农田N_2O排放田间监测文献并建立数据库,以此为基础解析中国主要旱地农田(小麦地、玉米地、蔬菜地)的N_2O背景排放值(不施肥情况下土壤的N_2O排放量)和排放系数(EF)及影响因子,为估算区域温室气体清单和提出相应的减排策略提供数据支持。【方法】利用亚组归类和回归分析等方法对主要类型旱地农田N_2O背景排放量的影响因子(如土壤全氮含量和土壤碳氮比)及影响EF的因子(如氮肥用量及肥料类型——硝化抑制剂和缓控释肥)进行分析。【结果】(1)中国旱地农田N_2O背景排放量为0.70—3.14 kg N_2O-N·hm~(-2);小麦地和夏玉米地的N_2O背景排放量和蔬菜地的N_2O日背景排放量均随土壤全氮含量增加而增加,并随土壤碳氮比的增加而降低,灌溉促进小麦地N_2O背景排放量增加;(2)EF随着无机氮肥用量的增加而增加,不同作物种植类型农田的EF大小依次为蔬菜地(0.61%—1.13%)夏玉米地(0.50%—0.68%)春玉米地(0.35%—0.40%)小麦地(0.22%—0.36%);夏玉米地的EF是小麦地的2倍左右;(3)使用不同种类硝化抑制剂后氮肥的EF均有不同程度的降低,EF降低了34%—60%,EF降低程度依次为:DCD+HQ(58.9%)NBPT+DCD(52.9%)DMPP(51.1%)NBPT(44.1%)吡啶(39.5%)DCD(38.9%);硝化抑制剂降低EF的效果在不同旱地农田的表现为:小麦地(60.0%)蔬菜地(50.6%)春玉米地(39.6%)夏玉米地(34.7%);(4)与常规尿素相比,不同类型缓控释肥使得EF降低了15.9%—78.9%,降低次序依次为:长效碳酸氢铵(78.9%)聚合物包膜尿素(59.8%)脲甲醛(53.4%)树脂包膜尿素(44.9%)硫磺包膜尿素(30.6%)钙镁磷肥包膜尿素(15.9%);缓控释肥降低EF的效果在不同农田表现为:蔬菜地(78.4%)春玉米地(58.2%)小麦地(49.2%)夏玉米地,控释肥在降低夏玉米地EF的作用较小。【结论】旱地农田N_2O排放主要受土壤养分状况(全氮含量和碳氮比)和管理措施(灌溉和施肥)及其他因素的共同影响,应依据不同气候生态区的气候和土壤特点以及作物类型并考虑氮肥用量和类型采取针对性的减排措施,以有效降低农田N_2O排放。  相似文献   

8.
【目的】明确土壤水含量与氮肥类型对碱性水稻土N_2O释放总量及释放途径的影响,为制定合理的农田氮素管理措施及减少土壤N_2O排放提供理论依据。【方法】以潮土性水稻土(pH 7.9)为供试土壤,通过室内培养调整不同的土壤水含量,即调节土壤最大持水量(WHC)分别为50%、80%、100%、120%和160%,施用尿素与硫酸铵(N 100 mg/kg)两种氮肥,使用乙炔(C2H2,10 Pa)与氧气(O2,100 k Pa)抑制100%WHC时不同氮肥处理的自养硝化与反硝化过程,利用气相色谱及流动分析仪测定不同处理下土壤的N_2O排放量、硝态氮与铵态氮含量。【结果】对比不施肥处理(CK),尿素和硫酸铵处理的N_2O排放速率与累计排放量明显提高,其中尿素对N_2O排放速率的影响大于硫酸铵,且随着土壤水含量的增加,尿素和硫酸铵处理的N_2O排放速率均呈先增大后减小的变化趋势。施氮后土壤自养硝化和异养硝化作用中N_2O排放速率均有所提高,且施氮处理自养硝化对N_2O排放的贡献大于异养硝化作用,但尿素与硫酸铵对自养和异养硝化过程N_2O排放贡献的影响存在差异。硫酸铵提高了自养硝化对N_2O排放的贡献,降低了异养硝化的贡献,分别由CK的31.0%提高到49.0%,以及从63.0%降低至5.3%;尿素却同时降低了自养硝化和异养硝化对N_2O排放的贡献,分别由31.0%降低到25.0%及由63.0%降低到1.7%。【结论】碱性水稻土N_2O释放速率随土壤水含量的增加呈先增加后减小的趋势,不同土壤水含量下尿素的N_2O累积释放量均高于硫酸铵。添加氮肥降低了异样硝化对N_2O释放的贡献,硫酸铵与尿素分别由自养硝化和反硝化作用起主导作用。因此,旱地土壤施用尿素、水田施用铵态氮肥有利于减少N_2O释放。  相似文献   

9.
为了筛选适合亚热带农田土壤性质和气候条件的N_2O减排调控措施,采用室内培养试验研究了添加硝化抑制剂、秸秆和生物炭三种调控措施对亚热带红壤(JX)和紫色土(SC)农田土壤N_2O排放的影响。结果表明,在添加硝化抑制剂(三氯甲基吡啶)的初期阶段(24 h),可显著降低两种土壤N_2O的排放,尤其是SC土壤,抑制程度可达62%。而生物炭的添加可显著增加JX土壤的N_2O排放,但在SC土壤中虽有升高趋势却不显著。添加秸秆对土壤N_2O排放的影响与秸秆类型和性质、土壤质地和理化性质,以及添加的时长有关。短时条件内(24 h),苜蓿和水稻秸秆可显著增加SC土壤N_2O排放,而添加甘蔗渣后N_2O排放虽有增加但不显著;JX土壤中添加水稻秸秆可显著刺激N_2O排放,但苜蓿和甘蔗渣则显著降低了其排放。添加秸秆较长时间后,苜蓿和水稻秸秆对土壤N_2O排放的影响程度下降,而甘蔗渣在6个月后仍能显著降低SC土壤N_2O的排放。研究表明,在对土壤进行调控时,若以减少N_2O排放为目的,应当根据土壤类型和性质选择合适的措施。  相似文献   

10.
农田N2O排放与NO-3-N淋失是土壤活性氮损失的主要途径,是全球活性氮污染的重要来源,对全球气候变化和水质安全构成严重威胁。农田活性氮的产生途径与土壤硝化和反硝化作用密切相关,不同种植体系下土壤硝化和反硝化过程存在很大差异,尤其是我国甘蔗等经济作物连作农田长期大量施肥导致大面积土壤加速酸化、土壤硝化程度不断加强,直接影响到农业源活性氮库的变化趋势和控制策略。近年来,生物炭作为一种被广泛关注的多功能化炭基土壤调理剂,在农田活性氮转化调控、土壤改良、农作物稳产增产中具有重要的应用潜力。综述了农田活性氮的损失现状、主要影响因素及其关键微生物过程,指出了生物炭在农田活性氮转化和氮素循环利用中的潜在调控途径,并展望其未来研究发展方向,为我国农田活性氮污染控制、氮肥高效利用以及农业高效绿色与可持续发展研究提供新思路。  相似文献   

11.
土壤微生物对土壤变化的反应极为敏感,秸秆还田对土壤微生物产生的影响对维持稻田系统氮素循环极其重要。秸秆还田通过对土壤微生态环境的改变影响氮素在土壤中的生物化学转化过程,进而影响水稻生产的氮素管理策略。在查阅近年来发表的相关研究论文基础上,对秸秆还田下水稻土壤氮素转化过程中相关功能微生物的作用以及关键功能基因驱动机制等研究进行综述,以期厘清秸秆还田后稻田生态系统中微生物介导的氮素循环转化机制,为稻田科学施用氮肥提供理论依据。  相似文献   

12.
探讨不同耕作方式下氮肥调节对稻田CH4排放及与土壤还原物质间的关系。通过田间试验研究水稻在常耕与免耕2种耕作方式、3种施氮量(N0、N1、N2)和2种施氮方式(F1、F2)条件下,稻田CH4排放的动态变化规律。结果表明:各处理CH4排放通量均呈双峰曲线变化规律,峰期分别出现在分蘖期和抽穗期,拔节前稻田CH4排放占水稻全生育期排放量的75.12% 。免耕能显著降低稻田CH4排放,氮肥极显著地促进稻田CH4排放。重施基蘖肥有利于降低免耕稻田CH4的排放,重施穗肥有利于降低常耕稻田CH4的排放。耕作方式和施氮方式对稻田CH4排放的互作效应显著,其中免耕和重基蘖肥搭配能极显著降低稻田CH4排放。耕作方式和氮肥调节对稻田CH4排放的影响与稻田土壤还原物质总量,活性还原物质量及Fe2+含量的变化密切相关。  相似文献   

13.
不同施肥措施对稻田土壤温室气体排放的影响   总被引:21,自引:11,他引:10  
选取江西红壤性双季稻水稻土为研究对象,采用盆栽模拟试验研究了4种不同施肥措施即当地农民习惯施肥(FP)、较FP减施20%化肥氮且有机肥替代20%化肥氮(T1)、在T1基础上加施Si、Zn、S三种微肥(T2)和在T2基础上采用20%缓释氮肥替代普通化肥氮(T3)对稻田主要温室气体CO2、CH4和N2O排放的影响,并对土壤微生物量碳(SMBC)、土壤微生物量氮(SMBN)、水稻产量的影响进行了分析。结果表明:4种处理稻田土壤CO2的总排放通量均无显著性差异;稻田土壤N2O的总排放量与FP处理相比,T1、T2和T3处理均有显著性减少(P<0.05),分别减少了31.72%、27.17%和43.65%,T3较T2处理显著减少22.83%(P<0.05);稻田土壤CH4的总排放量与FP处理相比,T1、T2、T3处理分别高了13.06%、13.90%、21.97%,其中T3处理差异达到显著水平(P<0.05)。与FP处理相比,T1、T2、T3处理显著提高了SMBC和SMBN的含量(P<0.05),分别提高了18.91%、19.30%、20.07%和28.95%、31.66%、29.96%;T1、T2、T3处理对水稻产量均无显著性影响。稻田土壤CH4和N2O的排放与SMBC和SMBN存在显著的相关性(P<0.01)。总体看,T3处理在降低N2O的总排放量的同时对提升土壤SMBC和SMBN含量具有明显作用。  相似文献   

14.
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide(N_2O)emissions in cold regions.However,the mechanisms of soil N_2O emission during the freeze-thaw cycling in the field remain unclear.We evaluated N_2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China,and the structural equation model(SEM)was used to determine which factors affected N_2O production during non-growing season.Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period,but simultaneously increased the gaseous N_2O-N losses at the annual time scale under field condition.The N_2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha~(–1) for the paddy and maize fields,respectively,and contributed to 66 and 18%of the annual total.The highest emission rates(199.2–257.4μg m~(–2) h~(–1))were observed during soil thawing for both fields,but we did not observe an emission peak during soil freezing in early winter.Although the pulses of N_2O emission in spring were short-lived(18 d),it resulted in approximately80%of the non-growing season N_2O-N loss.The N_2O burst during the spring thawing was triggered by the combined impact of high soil moisture,flush available nitrogen and carbon,and rapid recovery of microbial biomass.SEM analysis indicated that the soil moisture,available substrates including NH_4~+and dissolved organic carbon(DOC),and microbial biomass nitrogen(MBN)explained 32,36,16 and 51%of the N_2O flux variation,respectively,during the non-growing season.Our results suggested that N_2O emission during the spring thawing make a vital contribution of the annual nitrogen budget,and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.  相似文献   

15.
不同施肥类型对北方稻田土壤温室气体排放的影响   总被引:2,自引:0,他引:2  
利用静态暗箱-气相色谱法研究了吉林省延边地区不同施肥类型对水稻土壤CO2、CH4和N2O排放通量的影响。结果表明,稻田3种温室气体的排放存在明显的季节特征,CO2排放主要集中于8~10月,而CH4排放以7、8月为主,水稻生育盛期时N2O表现出明显的负排放特征,净排放发生于移栽期及秋季晒田期;有机肥与化肥配施促进了水稻生育盛期CO2和CH4的排放,导致生长季CO2和CH4排放总量显著高于单施化肥和单施有机肥处理,而单施化肥处理促进了生长季N2O净排放。水稻植株促进了水稻生育期6~8月稻田CO2和CH4的排放,与无植株相比,月均通量分别增加了42.9%~226.1%和146.6%~418.9%。生长季土壤温度对稻田CH4排放具有显著影响,但对CO2和N2O排放影响不显著。  相似文献   

16.
[目的]该研究探讨光照对分蘖期水稻根、叶界面N2O和NOX排放的作用及其机制。[方法]试验在水培控氮、小型光控培养箱控光和同步测定条件下,探讨了不同光质、光强及光控处理对分蘖期水稻叶际及根系-培养液体系 N2O和 NOX 排放的影响。[结果]①在相同氮源(NH4NO3-N,90 mg/L)、日间光照为6000、8000 lx条件下,分蘖期平均水稻叶际 N2O和NO排放速率分别为27.08、32.33μg/(pot·h)和0.114、0.057μg/(pot·h),分别占 N2O和 NO总排放的57.38%、58.65%和9.65%、4.52%,水稻叶际是N2O的重要排放源;②在光强(1600 lx)一致条件下,LED黄、绿、白、红、蓝光处理的平均水稻叶际N2O 排放速率分别为6.83、9.40、9.73、2.82和4.08μg/(pot·h),光 X强较高的红(3000 lx)、蓝光(2500 lx)处理能同步抑制分蘖期水稻根、叶界面N2O的挥发(P<0.01),LED红、白光有促进日间水稻叶际NO排放的作用,LED蓝光则有同步抑制水稻根、叶界面 NO挥发的作用效果,但不同光控处理下水稻根、叶界面均无明显的NO2净排放作用;③0~8000 lx 范围内随着光照增强,水稻根部NO及根、叶界面 N2O排放同步增加,但高光强(6000~8000 lx)下水稻叶际 NO排放显著大幅下降(P<0.01)。[结论]水稻根、叶界面均以N2O挥发为主;试验供氮水平下适度控制日间光强并同步增加红光、蓝光比例的技术,能同步抑制水稻根、叶界面氮氧化物的排放。  相似文献   

17.
中国稻田水稻生长季N2O排放估算   总被引:1,自引:0,他引:1  
由于土壤水分状况的不同,水稻生长季土壤N2O排放量明显不同于旱地作物。基于多元统计模型,通过多点代面的方法进行尺度扩展,并应用蒙特卡洛方法模拟影响因素的变异程度,模拟了中国稻田水稻生长季的N2O排放情况。所模拟的378个点的水稻生长季N2O排放通量为6.0~74.3μgN.m-2.h-1,其均值接近于原始观测结果;378个点位的N2O排放通量空间分布不均,排放量较高的点位于北纬20°到30°之间;378个点中单季稻、稻-旱轮作中的水稻和双季稻的生长季N2O平均排放量分别占年总排放量的53%、34%和59%。多点代面的尺度扩展结果显示2008年中国稻田水稻生长季N2O排放量均值为22.48Gg,其95%的概率区间为20.5~24.8Gg;化肥氮的N2O排放系数为0.27%,与IPCC缺省值0.3%接近。用秩相关关系表征影响因子对中国稻田水稻生长季N2O排放量的不确定性的贡献,结果表明水分管理类型、有机肥类型、土壤属性、氮用量等对结果均有显著影响。  相似文献   

18.
于2016—2017年连续开展大田定位试验,采用随机区组设计,以嘉优中科6号为材料,设置4种施氮水平(以纯N计:N0,不施氮;N1,225 kg·hm-2;N2,300 kg·hm-2;N3,375 kg·hm-2),研究秸秆全量还田下氮肥调控对浙北地区稻田土壤养分、碳库、微生物,及水稻产量的影响。结果表明,在秸秆全量还田下,随着施氮量的增加,稻田土壤有机质、全氮、速效磷、速效钾、碳库和微生物数量呈先增后减的趋势。与N0相比,N1处理的全氮、铵态氮、硝态氮、易氧化有机碳含量分别显著(P<0.05)增加了7.14%、9.86%、54.74%和21.70%;N2处理的全氮、速效钾、铵态氮、硝态氮、可溶性碳、易氧化有机碳、微生物碳、土壤细菌、真菌和放线菌数量分别显著(P<0.05)增加了32.59%、20.16%、12.12%、58.34%、54.45%、29.57%、56.49%、211.16%、241.61%和96.10%; N3处理的全氮、铵态氮、硝态氮、易氧化有机碳、微生物碳含量和真菌数量分别显著(P<0.05)增加了28.57%、16.84%、61.72%、27.45%、49.79%和231.54%。在产量方面,与N0相比,N1、N2和N3处理分别显著增加37.97%~45.47%、41.85%~53.35% 和38.85%~47.57%。在试验设置条件下,秸秆全量还田配施300 kg·hm-2纯N可以改善土壤养分含量、土壤碳库和土壤微生物活性,增加作物产量。  相似文献   

19.
为了评估氮肥配施不同改良剂(腐殖酸、磷石膏、禾康改良剂)对滨海盐土区稻田CH4、N2O排放和综合温室效应(global warming potential,GWP)的影响,于2017年7—10月采用静态暗箱-气相色谱法对滨海盐土区稻田CH4和N2O排放通量进行原位监测。共设置5个处理:空白(N0)、仅施氮肥(N1)、氮肥配施腐殖酸(N1H1)、氮肥配施磷石膏(N1G1)、氮肥配施禾康改良剂(N1A1)。结果表明:与N0处理相比,无论是否添加改良剂,氮肥处理都显著增加了稻田N2O排放量的110.2%~139.1%(P<0.05),增加水稻产量的41.1%~71.6%(P<0.05),但不显著影响CH4排放。与N1处理相比,氮肥配施3种不同改良剂并没有显著影响CH4、N2O排放和GWP;N1A1处理显著增加了水稻产量的21.6%(P<0.05)。因此,推荐使用N1A1施肥方案,以增加水稻产量,同时不显著影响温室气体排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号