首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Accuracy levels achieved with differential global positioning system (DGPS) receivers in agricultural operations depend upon the quality of the correction signal. This study has assessed differential signal error from a Dedicated Base Station, OmniSTAR VBS, European Geostationary Navigation Overlay System, European reference frame-IP for internet protocol (EUREF-IP) and radio navigation satellite aided technique (RASANT). These signals were utilized in guidance assisting systems for agricultural applications, such as tillage, harvesting, planting and spraying, in which GPS receivers were used under dynamic conditions. Simulations of agricultural operations on different days and at different time slots and simultaneously recording the tractor′s geo-position from a DGPS receiver and the tractor′s geo-position from a real-time kinematic (RTK) GPS allowed the comparison of the GPS correction signals. The hardware used for tractor guidance was a lightbar (Trimble model EZ-Guide Plus) system. ANOVA statistics showed a significant difference between the accuracy of the correction signals from different sources. GPS correction signal recommendations to farmers depend upon the accuracy required for the specific operation: (a) Yield monitoring and soil sampling (<1 m) are possible with all the GPS correction signals accessed in any time slot. (b) Broadcast seeding, fertilizer and herbicide application (<0.5 m) are possible for 80% of time with OmniSTAR VBS, 40% of time with RASANT and EUREF-IP and 100% of time with a dedicated base station. (c) Transplanting and drill seeding (<0.04 m) are not possible with the accuracy correction provided by any one of the systems used in this study.  相似文献   

2.
The accuracy of global positioning system receivers can be improved by differential correction systems (DGPS), which deliver sub-meter accuracy. Higher-accuracy, of about 1 cm on-the-go, is delivered by units generally referred to as real-time kinematic (RTK) DGPS systems. RTK-DGPS systems are presently used by commercial companies for automatic guidance of tractors in row-crop operations. Since high-end DGPS systems with high-accuracy are generally very expensive, it is necessary that the commercial benefit be maximized and that any related errors will be minimized. In the present study, the deviations from a predetermined route of a three-point hitch implement mounted on a RTK-DGPS based automatically guided tractor were recorded and were used to validate that the implement deviation is strongly dependent on the distance from the tractor rear axle. The recorded deviations were analyzed for paved and rough surfaces; the latter caused substantially greater deviations. Based on the above hypothesis, a possible way to improve the performance by reducing the deviations at a point on the implement is suggested.  相似文献   

3.
农机直线行走作业DGPS导航软件开发   总被引:1,自引:2,他引:1  
对于大中型宽幅农业机组的田间行走作业,利用DGPS进行导航具有很多优点,本研究利用VB6.0编程语言,对农机直线行走作业DGPS导航涉及的GPS定位信息的获取、坐标投影变换、导航AB线的确定等编制了相应的程序,开发了应用软件。农业生产中可利用触摸屏计算机实现对机组田间直线行走作业导航。田间作业记录进行模拟试验表明,此软件可有效地实现导航功能,并同时具有作业行走记录和行走距离、作业面积实时显示的功能。  相似文献   

4.
Individual plant care may well become embodied in precision farming in the future and will lead to new opportunities in agricultural crop management. The objective of this project was to develop and evaluate a data logging system attached to a precision seeder to enable high accuracy seed position mapping of a field of sugar beet. A Real Time Kinematic Global Positioning System (RTK GPS), optical seed detectors and a data logging system were retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 16–43 mm depending on vehicle speed and seed spacing. The results showed that the overall accuracy of the estimated plant positions was acceptable for the guidance of vehicles and implements as well as potential individual plant treatments.  相似文献   

5.
The accuracy and interaction among global positioning system (GPS) horizontal accuracy, differential GPS (DGPS) sampling frequencies and machine delay times of a hypothetical variable rate applicator for nitrogen (N) fertilizer application based on an application map in Florida citrus were studied. Parameters studied included: five GPS horizontal accuracy levels, two levels of DGPS horizontal accuracy, two DGPS sampling frequencies and two machine delay times. Two integrated models were developed which documented the effects of the parameters. Machine delay time was the most important factor and GPS horizontal accuracy was the second most important.  相似文献   

6.
Increasing the peanut (Arachis hypogea L.) digger efficiency by accurate placement over the target rows could minimize damaged pods and yield losses. Producers have traditionally relied solely on tractor operator skills to harvest peanuts. However, as peanut production has shifted to new growing regions in the Southeast US, producers face difficulties digging peanuts under conventional and new management schemes. The present study aimed to: (i) determine the effect of row deviations (RD) of the digger from the target row on peanut yield and quality, and (ii) determine the economic value of using RTK auto-steer guidance systems to avoid tractor deviations during peanut harvest. The study consisted of a randomized complete block design of tillage [conventional (CT) and strip tillage (ST)], row patterns [single (SR) and twin (TWR)] and row deviation (RD0 mm, RD90 mm, and RD180 mm). The RD90 mm and RD180 mm treatments exemplify manual driving deviations compared to using an RTK auto-steer guidance system (RD0 mm). Higher yields and higher net returns resulted from using the RTK auto-steer guidance system. Data showed that for every 20 mm row deviation, an average of 186 kg ha?1 yield loss can be expected. Overall, yield was higher for the conventional tillage and twin row pattern treatments compared to the other treatments. Yield losses for the SR-CT treatment were higher as the row deviation increased compared with the TWR-CT treatment. In contrast, higher yield losses for TWR-ST compared to SR-ST were observed when deviations of 180 mm occurred instead of digging using the RTK auto-steer guidance system. While a farmer using an RTK auto-steer guidance system with an accuracy within 25 mm (RD0 mm treatment) could potentially expect additional net returns of between 94 and 404 $ ha?1 compared to those from row deviations of 90 mm, higher net returns of between 323 and 695 $ ha?1 could be perceived if the guidance system is used instead of having row deviations of 180 mm. Therefore, the use of RTK auto-steer guidance system will allow growers to capitalize on the increases in yield potential by implementing changes in tillage and row patterns as those evaluated in this study.  相似文献   

7.
GPS实时动态(RTK)技术在土地测量中的应用研究   总被引:5,自引:0,他引:5  
GPS实时动态(RTK)测量技术是近年来应用的新技术,它与传统的测量技术相比,具有许多优点。结合浙江永康市土地测量的实践,探讨GPS实时动态(RTK)测量技术在土地管理中应用的控制网加密、参数转换、测量数据组织与编码等9个问题。实践表明,RTK测量可以较大幅度提高工作效率,尤其在通视困难地区更具明显优势。  相似文献   

8.
农机直线行走作业DGPS导航算法研究   总被引:2,自引:3,他引:2  
对于大中型宽幅农业机组在大面积的田间行走作业中利用DGPS进行导航具有很多优点。本文对农机直线行走作业DGPS导航涉及的投影转换、导航AB线、行驶方向角、机组在导航AB线的左右位置、机组当前导航线与导航AB线之间的距离、偏航距离及左右确定等问题进行了分析并给出了算法。通过编程测试表明,本文涉及的算法可行,可用于农机直线行走作业DGPS导航中。  相似文献   

9.
The use of Global Navigation Satellite Systems (GNSS) is common among agricultural users and enables the producer to optimize crop production within soil variant fields to provide better farming practices. Many agricultural navigation systems are dependent on real time GNSS navigation solutions to aid and control farm machinery. Direct Current (DC) and Alternating Current (AC) transmission lines overhead are often suspected to create interference with GNSS equipment preventing farmers from utilizing their GNSS supported equipment. This paper provides evidence that only non-impeding effects on the receiver or incoming signals, in the form of cycle slips, were measured or detected from either the overhead lines and/or their corresponding support towers. No effect on code measurements was detected. The latter effect is due to reflection or brief masking by the towers. Tests were conducted under a set of three transmission lines, two 500 kV DC lines and one 230 kV AC line. Several GNSS receivers and processing methods, including real time and post-processed data, are used to measure and process data to study the position accuracy, dilution of precision, number of satellites tracked, code and phase errors, location and number of carrier phase cycle slips, carrier-to-noise density and L1–L2 carrier divergence. One commercial Real Time Kinematic (RTK) survey system was also used to verify the 450 MHz data link was operational.  相似文献   

10.
Guidance of a Forage Harvester with GPS   总被引:1,自引:0,他引:1  
Precision agriculture requires automatic control of agricultural machinery in order to cope with the large amount of information which has to be applied during site specific field work. The driver is occupied with operating and supervising the controlled and non-controlled implements as well as with vehicle guidance. Steering, in particular, is monotonous and tiring. This can result in reduced operation quality. This was the motivation to develop a concept of a guidance system for agricultural vehicles. A self-propelled forage harvester was the test vehicle for this research. The harvester was equipped with an automatic steering system. Real Time Kinematic Global Positioning System (RTK-GPS) was used as the only positioning sensor due to high absolute accuracy within the field and its high reliability. The system performance was investigated under various test conditions. Additionally a guidance-path-planning for swath harvesting operations was developed. Both the automatically steered forage harvester and the path planner could be examined under real field conditions. The standard deviation of the driving performance was better than 100 mm under all conditions. The swaths could be collected reliably with the automatically steered forage harvester.  相似文献   

11.
Evaluation of new technologies using guidance systems is very important and can help producers with choosing the right equipment for their applications. Without using satellite navigation during field operations, there is a tendency for passes to overlap. That results in waste of fuel and pesticides, longer working times and also environmental damage. When utilising satellite guidance for field operations, there is a close connection with controlled traffic farming (CTF) as well. CTF is currently a quite quickly developing farming system based on fixed layout of machinery passes across a field. Tracks precisely set out for a machine’s tyres in the field could be a tool for minimising soil compaction risk which is another threat to the environment. The purpose of this paper was to evaluate the accuracy of currently available guidance systems for agricultural machines. Real pass-to-pass errors (omissions and overlaps) in a field were measured. Consequently, comparison between observed guidance systems was made regarding final working accuracy. Further, intensity of machinery passes, percentage of wheeled area and repeated passes in fields were monitored. These measurements were made in fields under real operating conditions using a conventional tillage system with ploughing and also a conservation tillage system, both systems with randomly organized traffic. Finally, the same parameters were monitored in fields where fixed machinery tracks were used for all operations and passes but only under a conservation tillage system. Pass-to-pass accuracy was measured for the evaluation of different guidance systems. Size of missed areas or overlaps was evaluated statistically. Concerning intensity of machinery passes and total field area affected by machinery passes, the following facts were found out. The experiments with randomized traffic showed a significant difference of the parameters mentioned above between a conventional tillage system with ploughing and a conservation tillage system. Wheeled area was 86 and 64%, respectively which proves benefits of conservation tillage. The experiments with a fixed track system showed that the total run-over area by machinery tyres decreased even more (up to 31%) in comparison to randomized traffic in a field (only fields under conservation tillage system were monitored and evaluated). The following statements based on our results can be made. The navigation and therefore possibility for better accuracy of machinery passes in fields together with permanent machinery tracks utilization could help with soil condition improvement and also energy savings which would result from that. The CTF system will help with further development of a system for soil compaction protection which is currently a real necessity.  相似文献   

12.
随着GPS技术的发展与完善,RTK技术在测绘领域中应用越来越广泛。差分数据传输是实现RTK技术的关键。利用CDMA无线数据传输技术传送GPS差分数据可以扩大测区范围,实现高精度实时动态定位。文章介绍了RTK技术的基本原理,分析了基于CDMA的RTK差分数据传输技术系统构成与主要功能,并对移动站软件设计进行了探讨。  相似文献   

13.
Short-term dynamic accuracy is one of the most significant parameters for agricultural application of satellite-based positioning on straight segments. This is an important characteristic of guidance devices for every user. Two standards are proposed for dynamic testing of satellite-based positioning devices for utilization in agriculture. Previous approaches were typically based on the use of RTK records as a reference for error calculation. A test procedure based on a highly precise testing facility was developed, having a mechanical offset of the test cart less than 0.002 m. The new mathematical approach for straight line segment definition, based on two representative points was developed. This approach enables error-free calculation of off-track errors and determination of U-turn influence based on two additional parameters. Long-term testing was performed (24 h), using a Garmin GPS 18 device for test validation. The obtained results showed that this method can be successfully used for testing dynamic characteristics of GNSS devices. The results were as follows: mean value of the off-track errors was −0.39 m, standard deviation of all measured off-track errors was 1.51 m, being 1.3 m in 95% of the measured off-track errors. The pass-to-pass average error was 0.90 m, being under 0.662 m in 95% of the detected passes. The designed facility and developed procedure can also be successfully applied to the testing of high precision devices, e.g., RTK.  相似文献   

14.
以南川石漠化山区地形测图为例,对实时载波相位差分技术(RTK)联合全站仪进行数字化测图的作业流程、控制点精度进行分析,指出RTK与全站仪的有效结合,不但可以提高速度、节约时间、节约人力、财力,而且可以保证测图的精度.  相似文献   

15.
RTK GPS mapping of transplanted row crops   总被引:2,自引:0,他引:2  
This study demonstrated the feasibility of using a real-time kinematic (RTK) global positioning system (GPS) to automatically map the location of transplanted row crops. A positive-placement vegetable crop transplanter retrofitted with an RTK GPS receiver, plant, inclination, and odometry sensors, and an on-board real-time data logger were used for transplant mapping in the field during planting. Sensing the location where each plant was placed in the soil using an absolute shaft encoder mounted on the planting wheel proved to be more robust and accurate than using an infrared light beam sensor to detect the stem location of each plant immediately after planting. Field test results showed that the mean error between the plant map locations predicted by the planting data and the surveyed locations after planting was 2 cm, with 95% of the predicted plant locations being within 5.1 cm of their actual locations. Along-track errors were greater than transverse-track errors indicating that some improvement in plant map accuracy might be obtained by characterization of dynamic planting effects on final plant location. Overall, the system was capable of automatically producing a centimeter-level accuracy plant map suitable for use in precision plant care tasks such as intra-row weed control.  相似文献   

16.
几种测量方法在森林资源调查中的应用与精度分析   总被引:7,自引:1,他引:6  
通过外业调查数据分析和理论推导,对林业调查中的几种测量方法进行了比较分析。研究表明:①罗盘仪由于制作粗糙,在标准样地测设中尚能满足规范要求,但随着距离和竖直角的增加,精度急剧下降,在大范围的林地面积和科研特殊需要的测量中操作不便捷,精度差,效率低;②全站仪测设样地边长不超过100 m时,半测回的距离测量可达到1/10 000,高差测量误差不超过1 cm,且受距离和竖直角的影响较小;③当面积大于3.34 hm^2,边长超过100 m时,手持全球定位系统(GPS)完全可代替罗盘仪,并可通过坐标差分或修正坐标转换参数来提高测量精度。另外,网络RTK的发展必将连同全站仪成为精准林业测量的主要仪器设备。  相似文献   

17.
The main objective of this research was to examine the feasibility of Multi-GNSS precise point positioning (PPP) in precision agriculture (PA) through a series of experiments with different working modes (i.e. stationary and moving) under different observation conditions (e.g. open sky, with buildings or with canopy). For the stationary test carried out in open space in the UK, the positioning accuracy achieved was 13.9 mm in one dimension by a PPP approach, and the repeatability of positioning results was improved from 19.0 to 6.0 mm by using Multi-GNSS with respect to GPS only. For the moving test carried out in similar location in the UK, almost the same performance was achieved by GPS-only and by Multi-GNSS PPP. However, for a moving experiment carried out in China with obstruction conditions, Multi-GNSS improved the accuracy of baseline length from 126.0 to 35.0 mm and the repeatability from 110.0 mm to 49.0 mm, The results suggested that the addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing improved the positioning repeatability, while a positioning accuracy was achieved at about 20 mm level in the horizontal direction with an improvement against the GPS-only PPP results. In space-constrained and harsh environments (e.g. farms surrounded with dense trees), the availability and reliability of precise positioning decreased dramatically for the GPS-only PPP results, but limited impacts were observed for Multi-GNSS PPP. In addition, compared to real time kinematic (RTK) GNSS, which is currently most commonly used for high precision PA applications, similar accuracy has been achieved by PPP. In contrast to RTK GNSS, PPP can provide high accuracy positioning with higher flexibility and potentially lower capital and running costs. Hence, PPP might be a great opportunity for agriculture to meet the high accuracy requirements of PA in the near future.  相似文献   

18.
The aim of this paper is to assess co-registration errors in remote imagery through the AUGEO system, which consists of geo-referenced coloured tarps acting as terrestrial targets (TT), captured in the imagery and semi-automatically recognised by AUGEO2.0® software. This works as an add-on of ENVI® for image co-registration. To validate AUGEO, TT were placed in the ground, and remote images from satellite Quick Bird (QB), airplanes and unmanned aerial vehicles (UAV) were taken at several locations in Andalusia (southern Spain) in 2008 and 2009. Any geo-referencing system tested showed some error in comparison with the Differential Global Positioning System (DGPS)-geo-referenced verification targets. Generally, the AUGEO system provided higher geo-referencing accuracy than the other systems tried. The root mean square errors (RMSE) from the panchromatic and multi-spectral QB images were around 8 and 9 m, respectively and, once co-registered by AUGEO, they were about 1.5 and 2.5 m, for the same images. Overlapping the QB-AUGEO-geo-referenced image and the National Geographic Information System (NGIS) produced a RMSE of 6.5 m, which is hardly acceptable for precision agriculture. The AUGEO system efficiently geo-referenced farm airborne images with a mean accuracy of about 0.5–1.5 m, and the UAV images showed a mean accuracy of 1.0–4.0 m. The geo-referencing accuracy of an image refers to its consistency despite changes in its spatial resolution. A higher number of TT used in the geo-referencing process leads to a lower obtained RMSE. For example, for an image of 80 ha, about 10 and 17 TT were needed to get a RMSE less than about 2 and 1 m. Similarly, with the same number of TT, accuracy was higher for smaller plots as compared to larger plots. Precision agriculture requires high spatial resolution images (i.e., <1.5 m pixel?1), accurately geo-referenced (errors <1–2 m). With the current DGPS technology, satellite and airplane images hardly meet this geo-referencing requirement; consequently, additional co-registration effort is needed. This can be achieved using geo-referenced TT and AUGEO, mainly in areas where no notable hard points are available.  相似文献   

19.
为了进行室内模拟加载,研制了一套计算机控制的磁粉制动器模拟加系统。本系统由计算机,PC-6313接口卡,加载装置,测试装置等硬件组成,加载系统的软件用TurboC与汇编语言混编写,采用比例控制方法,以汉字系统为工作平台。所研制的系统可以作为农机行业通过用的模拟加载系统,具有重要的理论意义和衫价值。  相似文献   

20.
介绍了农用机器人DGPS的导航方法,以及利用VC++实现导航数据的采集的方法。实验结果证明农用机器人差分导航系统能大大提高GPS定位精度,达到农业生产的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号