首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
从氯氰菊酯污染土壤中,分离到一株氯氰菊酯的降解菌,命名为HF12-8.根据形态、生理生化和16S rDNA聚类分析、Biolog GN测试等,将该菌株初步鉴定为铜绿假单胞菌.HF12-8能够以氯氰菊酯或联苯菊酯为唯一碳源生长,5 d内对20 mg·L-1的氯氰菊酯和联苯菊酯降解率分别为93.03%和58%.  相似文献   

2.
一株氯氰菊酯降解菌的分离和鉴定   总被引:12,自引:1,他引:12  
从氯氰菊酯污染土壤中,分离到一株氯氰菊酯的降解菌,命名为HF12-8.根据形态、生理生化和16S rDNA聚类分析、Biolog GN测试等,将该菌株初步鉴定为铜绿假单胞菌.HF12-8能够以氯氰菊酯或联苯菊酯为唯一碳源生长,5 d内对20 mg·L-1的氯氰菊酯和联苯菊酯降解率分别为93.03%和58%.  相似文献   

3.
从上海郊区某农药厂附近生长的牛筋草中分离到一株能以氯氰菊酯作为唯一碳源生长的植物内生菌,命名为A-24。该菌在48 h内对20 mg·L^-1的氯氰菊酯的降解率为91.8%,72 h内可完全降解氯氰菊酯。通过生理生化观察,结合16S rRNA基因序列分析,将该菌株鉴定为Achromobacter sp.。菌株A-24降解氯氰菊酯的最适温度和pH分别为30℃和7.0;当菌株A-24的接种量≥2%时,其对20 mg·L^-1氯氰菊酯的降解效果较好,降解率在80%以上;当氯氰菊酯浓度≤50 mg·L^-1时,菌株A-24对氯氰菊酯有较高的降解率,降解率在70%以上。通过HPLC鉴定降解产物3-苯氧基苯甲酸,推测氯氰菊酯通过酯键断裂生成二氯菊酸和3-苯氧基苯甲醛,然后3-苯氧基苯甲醛生成3-苯氧基苯甲酸。本研究结果为利用功能内生细菌调控植物代谢氯氰菊酯,进而有效规避作物污染风险提供新途径。  相似文献   

4.
MTBE高效降解菌的分离鉴定及降解特性研究   总被引:3,自引:0,他引:3  
通过对取白天津大港油田的土著菌进行培养驯化,分离筛选得到适宜MTBE(甲基叔丁基醚)降解的优势菌种,经生理生化实验结果、菌落特征、菌体形态以及16S rDNA测序结果,鉴定出该菌种为蜡状芽孢杆菌Bacillus cereus,利用间歇反应实验确定了MTBE降解的适宜条件:温度为25℃,pH值为8.5,接种量30%。  相似文献   

5.
【目的】制备高效氯氰菊酯(β-CP)的降解菌菌剂。【方法】将前期分离驯化的β-CP高效降解菌株枯草芽孢杆菌Bacillus subtilis BSF01,通过各助剂成分及含量优化,获得菌剂最佳配方。采用室内模拟试验,检验该菌剂对土壤中β-CP的降解效果。【结果】试验明确了BSF01菌剂的最佳配方为:以w为30%的BSF01菌粉为主体,添加w为5%的十二烷基苯磺酸钠作为润湿剂、w为7%的阿拉伯树胶为分散剂、w为4%的磷酸钾为稳定剂和w为1%的糊精为保护剂,并补足载体高岭土至w为100%。该菌剂主要质量指标的检测结果表明,BSF01菌剂芽孢含量为6.50×10~(11) cfu·g~(-1),含水量(w)≤0.6%,细度≥99%,润湿时间为32.0 s,悬浮率为78.0%,符合国家标准。将BSF01菌剂稀释100、1 000及2 000倍后,分别投入受β-CP污染的田间土壤,5 d后,以100倍菌剂稀释液处理的土壤中β-CP降解率达到87.50%,有效降低了土壤中β-CP的残留水平。【结论】枯草芽孢杆菌BSF01菌剂可成为消除农田拟除虫菊酯类农药残留污染的高效安全生物制品。  相似文献   

6.
筛选分离氯氰菊(cypermethrin)高效降解细菌,研究其降解特性.根据分离菌株的生理生化特征以及16SrDNA序列同源性分析鉴定降解菌;气相色谱法测定该菌降解氯氰菊酯的能力;利用化学消除剂消除细菌质粒,测定消除质粒后细菌降解能力,初步定位降解酶基因.从长期使用氯氰菊酯的土壤中筛选分离出三株优势菌,编号为LF-1、LF-2和LF-3.选择对氯氰菊酯降解潜力最高的菌株LF-l进行鉴定和降解特性研究.LF-1初步鉴定为kurthiasp.,该菌降解氯氰菊酯最适pH和温度分别为7、35 ℃;在最佳降解条件下培养8天,对100mg/L氯氰菊酯降解率达80.15%,LF-1还能降解甲氰菊酯、联苯菊酯等菊酯类农药.经SDS或EB消除质粒后,LF-1降解氯氰菊酯的能力丧失,表明该菌降解基因可能位于质粒DNA.LF-1能有效的降解多种菊酯类农药,该研究为菊酯类农药的生物修复提供理论依据.  相似文献   

7.
田静  李尔炀 《安徽农业科学》2007,35(35):11502-11503
[目的]为乙醛的微生物降解研究提供理论依据。[方法]采用重铬酸钾法测定乙醛降解率;采用分光光度计,在波长600nm下,以未接种菌悬液为对照,测定菌体生长量。[结果]从被污染的土壤中采集土样,经驯化富集筛选到1株能高效降解乙醛的菌株A572。根据表型特征、生理生化特性,初步鉴定A572菌株为醋酸单胞菌。菌株的生长曲线和乙醛的降解曲线相吻合。当菌体生长进入对数期时,在底物浓度为0.10%时,乙醛的降解率高达94%。在底物浓度为0.15%时,菌体生长比较缓慢,降解率下降。在pH值为7时,A572的生长及乙醛的降解最好。通气量对A572的生长和乙醛降解率的影响都比较小。[结论]A572能在含0.10%乙醛的基础盐液体培养基中降解乙醛,48h的降解率可达94%。  相似文献   

8.
杨娜  张建新  张帆 《西北农业学报》2007,16(1):73-76,94
从郑州力克农药厂长期堆放回收农药瓶子处、排污水口处、沉淀池内、堆放成品药品处、工厂周围长期受农药污染的土壤中分别采集了5份混合土样。通过对5种土样的分离、筛选,发现排污口的污泥和沉淀池内的土样所分离、筛选的氯氰菊酯降解菌数量相对较多;其中在土样3中分离出了高效降解氯氰菊酯菌株3—7,经鉴定,该菌为革兰氏阴性球菌,在通气、28℃、pH7.5条件下培养7d,对氯氰菊酯农药(250mg/L)的降解率为78.1%。  相似文献   

9.
【目的】筛选能降解灭线磷的微生物,解决土壤环境中存在的灭线磷残留问题。【方法】从长期施用灭线磷的土壤中采集土样,通过富集培养方法分离能降解灭线磷的微生物。用紫外分光光度法测定灭线磷的含量。【结果】获得一株能以灭线磷为唯一碳源生长的细菌DS-1,结合生理生化特性及16SrDNA序列相似性分析将其鉴定为蜡状芽孢杆菌(Bacilluscereus)。生长特性和灭线磷降解试验结果表明,灭线磷浓度为10mg·L-1时降解率最高为77.1%,50mg·L-1的相对降解量最高为26.8mg·L-1;DS-1在温度为30℃时对灭线磷的降解率为51.6%,显著高于4℃、25℃以及40℃的降解率。【结论】DS-1降解灭线磷的最适温度为30℃,最适pH为7.0,最佳碳源和氮源分别为蔗糖和硫酸铵,最佳碳氮摩尔比为4:1。  相似文献   

10.
11.
为探明高效氯氰菊酯降解菌RH7的种属地位及其对高效氯氰菊酯的降解率,通过分子生物学方法对菌株RH7进行鉴定,并采用响应曲面法对其降解条件进行优化.结果表明:菌株RH7属于铜绿假单胞茵属(Pseudomonas sp.),将其命名为Pseudomonas sp.RH7.通过响应面模型分析,得最优降解条件为高效氯氰菊酯浓度111.7 mg/L、温度32.05℃、pH 6.88.在此条件下,菌株RH7在5d内对高效氯氰菊酯降解率为79.46%,与所建立模型的预测值(80.83%)接近.  相似文献   

12.
谭洪  彭超  唐赟  刘亮  杨艳 《安徽农业科学》2011,39(35):21943-21946
[目的]研究正二十二烷降解菌的分离及鉴定。[方法]以正二十二烷无机盐培养基为选择培养基,从南充市炼油厂曝气池的回流污泥中筛选出1株高效降解长链烷烃的菌株,命名为T2,并对其进行形态学观察、生理生化鉴定和16S rDNA比对以及17种药物敏感试验。[结果]T2菌株鉴定为沙雷氏菌属。在正二十二烷浓度为1%(W/V)无机盐培养基中接入1%种子液,并在30℃和180 r/min摇瓶震荡下培养6 d,正二十二烷降解率可达70%。药敏试验表明,T2菌株对链霉素、卡拉霉素、大观霉、氯霉素、氧氟沙星、庆大霉素、恩诺沙星、新霉素、阿米卡星、复方新诺明高度敏感;对环丙沙星为中度敏感;对青霉素G、氨苄青霉素、四环素、乙酰螺旋霉素、克林霉素、阿莫西林不敏感。[结论]该研究为石油污染的生物处理提供良好的微生物菌种资源。  相似文献   

13.
一株苄嘧磺隆降解菌的分离·筛选与鉴定   总被引:1,自引:0,他引:1  
王占利  王克柱  高乐全  文庆 《安徽农业科学》2009,37(25):11880-11881
[目的]从长期使用苄嘧磺隆的土壤中分离筛选出降解苄嘧磺隆的微生物菌株,并对其进行形态学和生理生化鉴定。[方法]从河北保定农郊被农药污染的土壤中分离筛选出降解苄嘧磺隆的微生物菌株。采用液体发酵的方法筛选降解苄嘧磺隆的菌株,分别于18、48、72h取发酵液。用结晶紫染液涂片染色,观察细菌的生长情况,对涂片结果中菌体生长较好的菌种进行菌种鉴定。[结果]从含有除草剂苄嘧磺隆的初筛培养基中分离筛选出一株具有较好降解能力的菌株C1—11-2,它能够以苄嘧磺隆作为碳源生长。通过形态学、生理生化鉴定及16S rDNA测序,初步鉴定该菌为黄单胞菌属(Xanthornonas)。[结论]为苄嘧磺隆微生物降解的研究奠定了坚实的基础。  相似文献   

14.
取精噁唑禾草灵废水处理系统进水口处污泥进行驯化培养,分离到8株有效菌株,通过高效液相色谱分析这8株菌株降解精噁唑禾草灵的残存量,确定其中降解精噁唑禾草灵最好的一株菌株为本实验菌株,通过传统的微生物鉴定方法,将其鉴定为产碱菌属(Alcaligenes sp.),标记为Alcaligenes sp.H.分离菌株H可以以精噁唑禾草灵为唯一碳源和能源生长;在纯培养条件下,分离菌株H对较高浓度的精噁唑禾草灵(50 mg·mL-1和100 mg·mL-1)均能较好地降解.  相似文献   

15.
[目的]为紫色非硫光合细菌的应用研究打下基础。[方法]从杭州养鱼塘水样和底泥样品中分离纯化到1株紫色非硫光合细菌菌株,通过对其细胞形态观察、活细胞色素吸收光谱测定及生理生化特征研究等进行分类鉴定。[结果]HZ-1菌株可在光照厌氧或黑暗好氧条件下生长;菌体呈短杆状,稍弯,为革兰氏阴性菌株;含有细菌叶绿素a和类胡萝卜素;接触酶试验、吲哚试验、硝酸盐还原试验阳性,硫化氢生成试验、明胶液化试验阴性。[结论]通过对分离纯化的紫色非硫光合细菌菌株的分类鉴定,判断菌株HZ-1为沼泽红假单胞菌。  相似文献   

16.
芳香族化合物降解菌PM8的分离鉴定及降解特性   总被引:1,自引:0,他引:1  
通过富集培养,从化工厂的活性污泥中分离出1株能以芳香族化合物作为惟一碳源和能源的优势菌株PM8,对该菌株进行了鉴定和降解特性研究.结果表明,经形态观察和16 S rDNA序列分析,该菌株属于苍白杆菌属(Ochrobactrum);30℃、200 r/min培养8d,该菌株对500 mg/L萘和吡啶的降解率分别为77%和88%;在72 h内,菌株PM8对焦化废水、酒厂废水和猪粪水的CODc去除率分别达到11.69%、83.68%、57.85%.PM8在含有芳香族化合物的污水处理中具有广泛的应用前景.  相似文献   

17.
一株植物乳杆菌的分离鉴定及特性研究   总被引:1,自引:0,他引:1  
从泡菜中富集培养分离到12株乳酸菌,经测定发酵液pH值筛选到一株产酸性能较好的菌株PS-9,结合菌落形态特征、生理生化特性及菌株特异性序列分析等手段,确定其分类归属,并对其特性进行了研究。结果表明PS-9为植物乳杆菌(Lactobacillus plantarum),菌株PS-9在pH值2.0环境中的存活率为85.2%,0.4%胆盐浓度环境中存活率为37.2%,对鸡大肠杆菌O78和金黄色葡萄球菌C56011的抑菌圈直径均超过18 mm。  相似文献   

18.
丁草胺降解菌P10的分离鉴定及其对植株修复效果的研究   总被引:1,自引:0,他引:1  
通过富集培养技术从长期受丁草胺污染的污泥中分离出一株丁草胺高效降解细菌,命名为P10,经形态特征、生理生化特征和16S rDNA序列同源性分析,将该菌株鉴定为克雷白氏杆菌属(klebsiella sp.)。P10在30℃,pH 7.0条件下7 d可降解89.6%的丁草胺;在28℃,16 h光照和8 h黑暗的条件下培养10 d,该菌株对药害植株修复效果明显。  相似文献   

19.
张宇  闫春秀  王萌  楚小强  邓晓 《安徽农业科学》2011,39(12):7053-7055,7059
针对海南地区长残效除草剂残留对后茬产生药害问题,以高效盖草能作为研究对象,采用富集培养的方法从长期施用长残效除草剂的土壤中分离到3株细菌,经过对这3株降解菌的培养特性及生理生化特征的测定试验,经传统鉴定方法对3种菌种进行鉴定,结果显示,HM1和HM2同为芽孢杆菌属(Bacillus sp.),HM3为甲基球菌属(Methyloeoccus sp.)。并分别研究了培养含糖量、温度、pH和高效盖草能初始浓度对分离出的3株降解菌生长的影响,结果表明,HM1和HM3的最适含糖量是0,HM2的最适含糖量为0.5%;HM1和HM3的最适温度范围相同,为20~37℃,HM2的最适温度为25~41℃;HM1、HM2和HM3的最适生长温度分别是35、30和30℃;HM3的生长对酸碱度要求不严格,最适生长pH范围为6.0~9.0,HM1适宜在中性偏酸的条件下生长,而HM2则适宜在中性偏碱的条件下生长,其最适生长pH均为6.0~8.0;HM1和HM2生长的最适高效盖草能浓度是100 mg/L,HM3生长的最适高效盖草能浓度为200mg/L。  相似文献   

20.
从长期生产丁草胺的农药厂排水口土壤中分离得到1株能够降解丁草胺的细菌,将其命名为BTC-3。在以丁草胺为唯一碳源的基础盐培养基中,6 d内可将100 mg/L的丁草胺降解85%以上。经培养特征、生理生化分析和16S rRNA序列分析,将该菌株鉴定为芽孢杆菌属(Bacillus sp.)。菌株BTC-3降解丁草胺的最适温度为30℃,最适p H值为7;当接种量≤3%时,接种量越大,降解率越高;当丁草胺初始浓度≤100 mg/L时,浓度越高,降解效果越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号