首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
AquaCrop模型在北疆滴灌春小麦生产中的校准及验证   总被引:1,自引:0,他引:1  
为精确模拟干旱区不同灌溉制度下的小麦耗水量,进一步提高水分利用效率,在北疆春小麦生产中引进FAO推荐的AquaCrop作物水分生产力模型,基于实测资料对模型进行校验。结果表明,校准后的模型能够准确模拟北疆滴灌春小麦蒸散量,以此为基础得到的冠层覆盖度、地上部干生物量及籽粒产量具有良好的模拟精度。因此,在干旱区应用AquaCrop模型模拟滴灌春小麦蒸散量指导精准灌溉是可行的。  相似文献   

2.
AquaCrop模型对旱区冬小麦抗旱灌溉的模拟研究   总被引:2,自引:1,他引:1  
【目的】根据干旱情况及时采取灌溉措施,对旱区抗旱以及提高水分利用效率具有重要意义。从大田农业的实际情况出发,研究AquaCrop模型在旱区的适用性及干旱年份抗旱灌溉模拟,为实现抗旱保产提供依据。【方法】于2012-2014年,在旱区陕西杨凌及杨凌周边区域进行冬小麦大田试验,采用2013-2014年揉谷试验区的冬小麦观测数据进行模型的参数调试,采用2012-2013年揉谷试验区和2013-2014年武功试验区的冬小麦观测数据进行模型的验证,从而获得AquaCrop模型在陕西杨凌及周边地区的模型参数。模型参数包括影响冠层生长的冠层增长系数、冠层衰老系数和最大冠层覆盖度,影响生物量积累的水分生产力,影响产量形成的参考收获指数等。然后根据调查的干旱年份2012-2013年的灌溉情况制定出4种灌溉情景,并利用参数本地化后的AquaCrop模型模拟2012-2013年4种灌溉情景对冬小麦生物量和产量的影响,通过模拟结果得出最优灌溉策略。最后比较2012-2013年揉谷试验区、2013-2014年揉谷试验区和武功试验区冬小麦的产量水分利用效率。【结果】在冬小麦冠层覆盖度方面,AquaCrop模型模拟的冠层覆盖度和实测值之间的决定系数(R2)与均方根误差(RMSE)分别为0.464和8.0%。在冬小麦生物量模拟方面,AquaCrop模型模拟的生物量和实测值之间的R2和RMSE分别为0.889和1.622 t·hm-2。在冬小麦产量模拟方面,AquaCrop模型模拟的产量与实测产量之间的RMSE为0.377 t·hm-2。2013年为干旱年份,在播种后第77天进行冬灌并且在播种后第172天的拔节期再进行灌溉的两种情景获得最大的生物量;在播种后第77天进行冬灌、播种后第172天拔节期和播种后第200天抽穗期再分别灌溉,小麦产量最高,达到6.451 t·hm-2。2012-2013年揉谷试验区、2013-2014年揉谷试验区和武功试验区冬小麦的产量水分利用效率分别为1.84、1.69和1.82 kg·m-3。【结论】AquaCrop模型能够较好地模拟旱区冬小麦的生物量和产量,并且AquaCrop模型模拟的干旱年份下不同灌溉策略的生物量和产量,基本可以说明不同灌溉时间和灌溉次数对冬小麦最终产量的影响。同时说明2012-2013年增加的2次灌溉使干旱年份冬小麦的产量水分利用效率超过正常年份。以上研究符合当地农业生产实际情况,说明AquaCrop模型可以为旱区抗旱保产提供依据。AquaCrop模型具有很好的应用前景,正逐渐成为一个重要的田间决策工具。  相似文献   

3.
【目的】通过评价AquaCrop模型对覆膜条件下冬小麦的生长发育、土壤水分、产量以及水分利用效率的模拟效果,为AquaCrop模型在覆膜条件下的校准和应用提供科学的方法和理论依据。【方法】试验设臵不覆盖(CK)和白色地膜覆盖(PM)两个处理,于2013年10月至2016年6月年在陕西杨凌进行田间试验,利用2014—2015年度试验数据对AquaCrop模型进行参数校准,利用2013—2014年度和2015—2016年度的冬小麦观测数据对AquaCrop模型进行验证。【结果】AquaCrop模型较好地模拟了冬小麦冠层覆盖度,冠层覆盖度模拟值和实测值之间的决定系数(R2)为0.86—0.99,均方根误差(RMSE)为2.1%—8.1%。AquaCrop模型也较好地模拟了冬小麦生物量和土壤贮水量,其中地上部生物量的模拟值和实测值之间的R2均大于0.95,RMSE为0.814—1.933 t·hm-2;CK土壤贮水量模拟值和实测值间的相关系数均大于0.85,PM土壤贮水量模拟值和实测值间的相关系数均大于0.75,CK和PM土壤贮水量模拟值和实测值的均方根误差表现为9.2 mmRMSE17.6 mm,标准均方根误差(NRMSE)小于5.5%。冬小麦产量实测值和模拟值相对误差(RE)为-4.4%—9.0%,PM产量实测值和模拟值的平均值较CK分别提高40.5%和40.3%,表现出较好的一致性,处理间成显著性差异。水分利用效率实测值和模拟值RE为-10.4%—-1.5%,PM水分利用效率实测值和模拟值的平均值较CK分别提高54.1%和47.5%,同样表现出较好的一致性,处理间成显著性差异。在冠层覆盖度、地上部生物量、产量和水分利用效率方面,模型模拟值和实测值的变化趋势基本一致,且PM模拟值和实测值间均较CK表现出显著性差异。【结论】AquaCrop模型能够较好地模拟覆膜条件下冬小麦生长发育过程,可以用于覆膜条件下作物生产力的模拟和预测,为AquaCrop模型的推广应用提供了可靠的数据支持。  相似文献   

4.
以河北曲周为例,利用AquaCrop模型和指标评价法,建立了粮食作物生长环境要素(气象、土壤等)与产量之间的定量关系,并评价了地膜覆盖和育苗移栽技术下作物(冬小麦、夏玉米)对水热资源的利用效率。结果表明:1)AquaCrop模型能较好地模拟作物(冬小麦、夏玉米)的冠层覆盖度、生物量和产量,并能分析作物种植技术对水热资源利用效率的影响;2)地膜覆盖和育苗移栽技术显著影响作物(冬小麦、夏玉米)在播种-拔节时期的水热资源利用效率;3)冬小麦地膜覆盖和夏玉米育苗移栽技术的水热资源利用效率分别提高0.67和0.50,产量分别增加326和972kg/hm2。说明冬小麦地膜覆盖和夏玉米育苗移栽技术可以影响作物在关键生育期内对水热资源的利用以及提高作物的产量。本研究旨在为其他作物效率和理论潜力的提升提供技术支撑,研究结果可作为冬小麦和夏玉米因干旱、冻害以及播种不及时等原因受灾的一种补救技术,为曲周地区的作物种植技术调整提供参考。  相似文献   

5.
通过评价AquaCrop模型对马铃薯的生长发育、土壤水分动态变化、产量及水分利用效率的模拟效果,为AquaCrop模型在宁夏中部干旱带马铃薯种植的应用提供科学方法和理论依据。试验设置5d、7d、10 d、13 d和15 d共5个灌水周期,于2018年在宁夏中部干旱带进行田间试验,对马铃薯冠层覆盖度、地上生物量、土壤储水量、产量及其构成指标进行测定。结果表明,AquaCrop模型可较好地模拟马铃薯冠层覆盖度的变化、地上生物量和土壤储水量,其实测值和模拟值的相对误差(RE)为0.06%~7.51%、0.95%~13.33%和0.15%~4.35%,均方根误差(RMSE)为1.04%~3.36%、0.092~0.335 t/hm~2、1.68~4.1mm;马铃薯产量实测值和模拟值RE为0.10%~2.22%,RMSE为294.45 kg/hm~2,腾发量和水分利用效率等指标的模拟也有类似的结果,表现出较好的一致性,但AquaCrop模型在灌水量较大或者较小时对各指标的模拟效果较差。总体来看,AquaCrop模型对各指标的模拟结果均较好,其结果可作为马铃薯适宜生长区域划分及特定条件下产量的预测。  相似文献   

6.
为评估AquaCrop模型在黑龙港流域模拟冬小麦-夏玉米水分利用与作物产量的适用性,根据田间试验数据和FAO提供的参数值,对AquaCrop模型进行模型非保守性参数的本地化校准和验证。结果表明,AquaCrop模拟冬小麦冠层覆盖值和实测值的归一化均方根误差(NRMSE)为15.90%,模拟产量与实测产量之间的NRMSE为4.23%;模拟夏玉米冠层覆盖值和产量值与相应实测值之间的NRMSE分别为11.59%和11.69%。本研究校准所得参数对黑龙港流域典型站点有较好的适应性,校验后的AquaCrop可以用于黑龙港流域冬小麦-夏玉米水分管理、产量潜力等相关研究。  相似文献   

7.
基于AquaCrop模型的北京地区冬小麦水分利用效率   总被引:3,自引:0,他引:3  
【目的】作物水分利用效率(water use efficiency,WUE)是农业水分管理与决策的重要指标。北京是严重缺水的城市,其主要种植作物冬小麦灌溉用水占比高,开展冬小麦产量水分利用效率的分析研究,可为北京地区的冬小麦节水灌溉与增产平衡提供决策信息支持。【方法】利用2011—2012、2012—2013和2013—2014年国家精准农业示范研究基地冬小麦不同生育期不同灌溉处理下的田间实测数据,对AquaCrop作物模型进行参数本地化。统计北京地区2004—2014年冬小麦生育期的日降雨量数据,利用Pearson-Ⅲ型分布划分了3种降雨年型:湿润年(2012—2013年生育期)、平水年(2009—2010年生育期)和干旱年(2005—2006年生育期)。应用AquaCrop研究分析了3种不同降雨年型、14种灌溉情景下冬小麦籽粒产量水平和产量水分利用效率特征变化。【结果】基于AquaCrop模型的产量模拟值和实测值的R 2、RMSE和d分别为0.99、0.3 t·hm~(-2)、0.99。模型模拟的冬小麦产量水分利用效率:2011—2012年正常灌溉条件下为1.72 kg·m~(-3),2012—2013年正常灌溉条件下为1.67 kg·m~(-3),2013—2014年雨养、正常灌溉和过量灌溉条件下分别为1.27、1.74和1.64 kg·m~(-3),正常灌溉条件下产量水分利用效率最高,其次是过量灌溉,雨养条件下产量水分利用效率最低。在此基础上应用AquaCrop模型模拟分析了3种不同降雨年型冬小麦籽粒产量和产量水分利用效率随灌溉量变化的响应特征,其中,湿润年产量水分利用效率和籽粒产量达到最大值时所需的灌溉量分别为35和50 mm;平水年达到最大值所需的灌溉量分别为35和40 mm;干旱年达到最大值所需的灌溉量均为65 mm。【结论】AquaCrop模型可以很好预测北京地区不同年份不同灌溉条件下冬小麦的籽粒产量和产量水分利用效率。冬小麦产量与产量水分利用效率均随着灌溉量的增加逐渐增大,至最大值后开始减小,在干旱的情况下,植物通过自身适应策略会提高水分利用效率,随着水分的增加,水分利用率将降低,因此3种不同年型的产量水分利用效率的大小顺序依次为干旱年、平水年和湿润年。因此,在制定冬小麦灌溉策略时,要做到产量和产量水分利用效率兼顾。以上研究结果表明,利用Aqua Crop模型可以为北京地区冬小麦田间灌溉和决策提供指导。关于降雨年型本研究仅对湿润年、平水年和干旱年3种年型在越冬期、返青期、拔节期、开花期和灌浆期不同灌溉量和籽粒产量和产量水分利用效率之间的关系进行模拟,对于不同时期不同灌溉量对籽粒产量和产量水分利用效率的影响没有考虑,需要进一步研究验证。  相似文献   

8.
对CROPGRO_Cotton模型中敏感的参数进行分析,来对南疆棉花进行生长模拟。通过扩展傅里叶幅度检测法(EFAST)对棉花模型的18个输入参数实行敏感性分析,以棉花的开花期、成熟期、生物量、籽棉产量观测数据实行对比,运用glue和试错法相结合进行参数调节,实现南疆地区棉花的本地化。经过分析研究,对籽棉产量敏感的品种参数有出苗到初花期的光热时间(EM-FL)、初花期到第1个棉铃产生的光热时间(FL-SH)、最适合条件下叶片最大光合速率(LFMAX)、种子填充棉铃的持续时间(SFDUR),它们的全局敏感性指数分别为0.35、0.15、0.17、0.50。18个品种参数中对生物量敏感的有临界光周期(CSDL)、出苗到初花期的光热时间(EM-FL)、初花期到第1个棉铃产生的光热时间(FL-SH)、初花期到第1个籽粒产生的光热时间(FL-SD)、第1个籽粒产生到生理成熟的光热时间(SD-PM)、最适合条件下叶片最大光合速率(LFMAX)、籽粒最大质量(WTPSD),它们对应的全局敏感性指数分别为0.46、0.25、0.18、0.18、0.73、0.72、0.11。CROPGRO_Cotton...  相似文献   

9.
蒸散作为陆地生态系统能量平衡和水分循环的一个关键环节,其改变会影响区域气候的变化。森林蒸散模拟研究在评价森林在区域水分循环中的作用具有重要的意义。本文采用Penman-Monteith(P-M)模型和Shuttleworth-Wallace(S-W)模型模拟了太行山南麓栓皮栎-侧柏-刺槐人工混交林的蒸散(ET),对模型模拟的ET与涡度相关法所得的ET进行了比较,评价了P-M模型和S-W模型模拟人工混交林ET的适用性,讨论了这两种模型对各阻力的敏感性。研究结果表明,P-M模型和S-W模型模拟所得的ET的季节变化和日变化类似。S-W模型和P-M模型模拟的ET均低于实测的ET,S-W模型模拟的ET比实测的ET偏低6%,P-M模型模拟的ET比实测值偏低21%,因此,P-M模型模拟的ET偏低更明显。与P-M模型相比,S-W模型模拟的ET与实测值的相关系数、一致性指数(IA)、均方根误差(RMSE)、相对误差(RE)较小。与P-M模型相比,S-W模型模拟的ET与实测值的拟合直线更加趋近1:1线。S-W模型模拟ET的效果优于P-M模型,S-W模型更适合于本研究区人工混交林蒸散的模拟。P-M模型模拟的2009年生长季的ET偏低更明显,将S-W模型模拟的ET分为蒸腾(T)和土壤蒸发(E),其中土壤E与ET比值为11.3%。土壤E约占ET的10%左右。P-M模型模拟ET偏低的原因可能与P-M模型中未考虑土壤表面阻力有关。S-W模型模拟的ET和T对冠层阻力(rsc)最敏感,其次为植物冠层高度至参考高度间的空气动力学阻力(raa),对土壤表面至冠层高度间的空气动力学阻力(ras)相对不敏感;土壤E对土壤表面阻力(rss)最敏感,对rsc最不敏感。P-M模型模拟的ET对rsc最敏感,对空气动力学阻力(ra)敏感性较弱。   相似文献   

10.
在对新作物模拟的过程中,需要对品种参数重新进行率定,但是很多参数难以测量和校正,所以需要确定参数的取值范围。目前,参数的取值范围大部分通过2种方式得到:(1)实测数据和前人文献;(2)参数初始默认值的某个百分比上下变动。前者因为很多实测数据和率定后的参数未公布,所以选择后者确定参数取值范围。在5个参数取值范围(10%、20%、30%、40%、50%)下,通过Simlab软件,采取扩展傅里叶幅度敏感性检验(EFAST)法,对不同参数取值范围的输出变量进行敏感性和不确定性分析可知,30%的参数取值范围能很好地模拟作物生长。敏感性分析与不确定性分析标明其输出变量成熟期(MDAP)、产量(HWAM)、生物量(CWAM)的一致性检验系数(TDCC)分别为0.86、0.9、0.88,P值(显著性分析)均小于0.05,具有显著一致性,开花期(ADAP)的TDCC较小,为0.66,这因为只有参数EM-FL为敏感性参数,其余参数均不敏感。模型的输出结果中ADAP、MDAP、HWAM的实测值均处于95%置信区间内,CWAM略差。本研究可帮助CROPGRO-cotton模型在南疆地区的应用提升模拟精度和模拟...  相似文献   

11.
【目的】分析不同基因型小麦冠层的温度参数相关信息,探寻快速高效筛选冬小麦抗旱品种的指标和方法,给冬小麦抗旱品种筛选提供参考依据。【方法】本研究以小麦为研究对象,获取干旱胁迫下10个抗旱性存在差异的小麦品种冠层热红外图像,采用温度频率直方图等分析方法提取冠层温度特征参数,明确温度特征参数与抗旱指数之间定量关系,分析冠层温度特征参数对筛选冬小麦抗旱品种的有效性。【结果】基于产量抗旱指数(DRI)的分级标准将测定小麦品种分为4种抗旱类别,其抗旱性越强,最大光化学效率(Fv/Fm),植株含水量(PWC),气孔导度(Gs),蒸腾速率(Tr)和籽粒产量越稳定。基于热红外图像提取冠层温度特征参数,小麦抗旱性越强,冠层温度的差异性越小,冠层温度的离散程度也较小。产量抗旱指数(DRI)与拔节期、孕穗期和开花期的作物冠层温度与环境温度的偏差(CTD)均呈现极显著的正相关关系,相关系数r为0.79—0.84,而与冠层温度标准差(CTSD)、变异系数(CTCV)、水分胁迫指数(CWSI)和冠层相对温差(CRTD)呈显著负相关(r=-0.56—-0.78)。基于单一生育时期冠层温度特征参数建立了产量抗旱指数(DRI)回归模型,估算精度为r2=0.73—0.87,其中以拔节期预测模型精度最高。而基于3个生育时期的相关冠层温度参数CTD、CTCV、CTSD CWSI组合构建产量抗旱指数(DRI)预测模型,较基于单一生育时期预测精度显著提升(r2=0.95)。【结论】利用热红外图像可进行小麦品种抗旱性的早期鉴定与快速评价,这对促进作物高效节水生产具有重要意义。  相似文献   

12.
基于本体的作物系统模拟框架构建研究   总被引:4,自引:0,他引:4  
 【目的】研究作物系统模拟框架(CSSF)可以为构建作物生长模型及设计可重用的作物系统模拟软件提供基础框架。【方法】将本体技术应用于作物模拟模型领域,以作物生长的基础生理生态过程为主线,基于仿真本体和作物模拟本体,综合分析与提炼稻麦棉油等作物的建模流程、生长模拟模型算法及模型参数中的共性概念及概念之间的相互关系,构建了CSSF。【结果】CSSF包括作物建模外部知识框架(CMOKF)和作物模型内部知识框架(CMIKF),其中CMOKF提炼了作物系统受时间、空间和自然环境共同驱动的共享特征,CMIKF描述了生育期、生物量积累、干物质分配与产量形成、器官建成、作物-土壤水分动态和养分平衡等作物模型组分与模型算法的共性特征。【结论】CSSF实现了作物建模概念、流程、结构和方法的知识级共享,对设计可重用的作物模型软件体系结构具有指导作用。  相似文献   

13.
基于AquaCrop模型的大豆灌溉制度优化研究   总被引:1,自引:0,他引:1  
王巧娟  何虹  李亮  张超  蔡焕杰 《中国农业科学》2022,55(17):3365-3379
【目的】 探究AquaCrop模型在关中地区的适用性,寻求大豆在不同降水年型下最适宜的灌溉制度。【方法】 用田间试验实测数据对该模型进行校正,并用校准后的模型模拟1961—2019年内所有3种不同降水年型14种灌溉制度下的大豆产量和水分利用效率。【结果】 AquaCrop模型模拟田间产量最高处理的冠层覆盖度的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.96、7.15%、11.03%和0.94;模拟值与实测值生物量的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.99、526.04 kg·hm-2、14.45%和0.97;最终产量模拟的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.97、49.98 kg·hm-2、1.74%和0.82,各处理的冠层覆盖度和生物量实测值与模拟值的R 2均大于0.95,说明AquaCrop模型可以较好地模拟关中地区大豆的生长发育动态与产量。结合模型模拟结果可知,大豆作物需水量平均值为398.2 mm,各个生育时期的需水量差异较大,分枝期需水量为127.8 mm,开花-结荚期需水量为212.6 mm,鼓粒期的需水量为57.7 mm。结合对3种不同降水年型进行不同灌溉制度模拟后发现,大豆开花-结荚期为需水关键期,该生育时期水分供应情况影响大豆的最终产量。在湿润年可以不灌水;平水年和干旱年仅在开花-结荚期分别灌溉45和70 mm可实现最高产量(2 699、2 486 kg·hm-2)和最大水分利用效率(0.74、0.7 kg·m-3)。【结论】 该地区大豆灌溉制度,应以不同降水年型分布情况为基础对大豆灌溉制度进行选择,可保证大豆具有较高的产量和水分利用效率,可作为关中地区大豆灌溉制度的参考依据。  相似文献   

14.
赵丽雯  吉喜斌 《中国农业科学》2010,43(19):4016-4026
【目的】确定中国西北干旱区黑河流域中游绿洲农田蒸散量并区分作物蒸腾和土壤蒸发,为制定合理的作物灌溉制度和提高区域水资源利用效率提供依据。【方法】本文利用中科院临泽内陆河流域研究站绿洲内部大田玉米地2009年的小气候和土壤蒸发等综合观测试验数据,运用FAO-56和ASCE推荐的两种时间步长的四种不同形式的Penman-Monteith模型估算了甘肃临泽绿洲玉米农田2009年参考蒸散量,并结合FAO-56双作物系数法估算了其实际蒸散量。【结果】4种P-M模型FAO-56-PM 24h、ASCE-PM 24h、FAO-56-PM 0.5h及ASCE-PM 0.5h和双作物系数法估算的实际蒸散量依次为672.1、766.2、991.2和805.6 mm。【结论】利用涡动相关数据及小型蒸渗仪实测数据对其进行了检验,结果表明,使用FAO-56-PM 24h模型估算参考作物蒸散量的参考作物蒸散-双作物系数法能够较好估算研究区的蒸散量并有效地区分农田作物蒸腾和土壤蒸发。2009年研究区域农田制种玉米的耗水量大约为671.2 mm,日均蒸散量为4.1 mm,其中作物蒸腾累积量为498.5 mm,土壤蒸发累积量为172.7 mm,分别占蒸散量的74.2%和25.8%。  相似文献   

15.
介绍了AquaCrop模型的原理及基本参数,从模型的校验与应用两方面阐述了该模型的研究进展。指出目前仍缺乏实测数据验证AquaCrop模型对蒸发及蒸腾的模拟效果;AquaCrop模型在严重水分及盐分胁迫下模拟结果精度较差;已开展的模拟研究地域范围窄;由于缺少更复杂的生理子模块,AquaCrop模型不能很好解释水分胁迫对光合产物向籽粒运输分配过程的影响。为了提高模型的模拟精度并进一步延伸模型的应用范围,应完善模型水分及盐胁迫模块,并在较广范围内获取丰富的实测数据对模型开展进一步的校验研究。  相似文献   

16.
自然降雨条件下夏玉米冠层截留特征及影响因素   总被引:1,自引:0,他引:1  
韩雪  王力  王艳萍 《中国农业科学》2014,47(8):1541-1549
【目的】冠层截留特征和机理研究一直是生态水文的前沿和热点,针对作物冠层截留这一不可忽视的水分通量,以夏玉米为研究对象,研究在自然降雨条件下玉米冠层降雨截留特征和分布规律,分析作物冠层截留量的影响因素,以期更加合理的评价夏玉米对自然降水的水分利用效率,为科学密植、提高旱作农业区作物产量以及防止农耕地土壤侵蚀提供理论依据。【方法】运用水量平衡原理对夏玉米冠层截留量、穿透雨量、茎秆流量及降雨量的田间观测结果进行分析。其中采用玉米行间随机放置承雨槽收集穿透雨,以测量穿透雨量;采用在茎秆基部包裹喇叭口状聚乙烯集水装置收集茎秆流,并在装置底部引出一导管,将收集到的茎秆流转移到另外塑料桶中,以测量茎秆流量;降雨量采用自动气象站实时观测,并采用人工观测进行校正。【结果】夏玉米在不同降雨量级(0.1-4.9,5.0-14.9和15.0-29.9 mm)下,冠层截留量分别为1.1、2.6和13.0 mm,平均值为1.7 mm;冠层截留率分别为12.3%、12.1%、15.3%,平均值为13.3%。通过监测数据,建立了夏玉米冠层截留率与玉米叶面积指数和植株株高的回归方程,相关性显著;分别建立了各气象因子与夏玉米冠层截留量的回归方程,其中降雨历时和水汽压差分别与冠层截留量呈极显著幂函数相关关系;降雨量与冠层截留量呈极显著指数函数相关关系。同时,考虑所有影响因素的综合效应,建立了冠层截留量与影响因素的复合关系模型,相关系数R2=0.946。【结论】本研究中,自然降雨条件下,夏玉米的冠层截留量不可忽略,并且受到多种因素的交互影响,单一因素不能完全解释。夏玉米种植密度、形态指标(株高、叶面积)和气象因子(降雨量、风速、水汽压差、降雨历时)均对夏玉米冠层截留量有影响。建立冠层截留量与多种影响因素的复合关系模型,可为作物的科学密植、提高旱作农业区作物水分利用效率提供更充分理论基础。  相似文献   

17.
【目的】为实现干旱胁迫下玉米冠层吐丝动态的模拟,建立开花—吐丝间隔(anthesis-silking interval,ASI)和吐丝百分率与单位面积籽粒数的关系,改善干旱胁迫条件下玉米籽粒数的模拟效果。【方法】本研究基于锦州农业气象试验站干旱胁迫控制试验,测定了不同水分处理下玉米开花前后植株平均生长速率(PGR)、玉米冠层逐日吐丝百分率动态、ASI、开花后果穗生物量累积和株籽粒数等指标,利用上述数据确定了玉米冠层吐丝动态模型参数;进行了模拟吐丝百分率对植株生长速率平均值(PGRAVE)和标准差(PGRSD)两个输入参数的敏感性分析;基于果穗生物量累积过程,考虑干旱胁迫条件下冠层内植株个体间PGR的差异,开展开花前后不同干旱胁迫条件下冠层吐丝动态过程模拟;建立ASI与株结实率(株籽粒数占株最大潜在籽粒数的百分比)的定量关系;基于冠层吐丝动态模型模拟的开花后吐丝植株百分率、单株最大潜在籽粒数和株结实率,构建了基于冠层吐丝动态的籽粒数模型,进行了干旱胁迫下的籽粒数模拟与检验。【结果】冠层吐丝动态模型对PGRAVE和PGRSD的敏感性分析结果显示,与PGRSD变化相比,PGRAVE变化对吐丝百分率影响更大,PGRAVE越大,PGRSD越小,植株达到50%吐丝的时间越短。玉米冠层吐丝动态模型可以较准确地模拟开花后逐日吐丝百分率,花期干旱胁迫下观测值与模拟值的决定系数R 2为0.88—0.98,均方根误差RMSE为4%—12%,归一化均方根误差NRMSE为8%—27%;耦合冠层吐丝动态模拟结果,构建了基于冠层吐丝动态的籽粒数模型,该模型可以较准确地模拟干旱胁迫下玉米单位面积籽粒数,观测值与模拟值的R 2为0.85,RMSE为185粒/m2,NRMSE为10%。【结论】通过引入冠层吐丝动态模型,构建基于冠层吐丝动态的籽粒数模型,实现了干旱胁迫下玉米关键物候期(吐丝时间、开花—吐丝间隔和吐丝百分率)的模拟和籽粒数模拟,为实现干旱胁迫下基于冠层吐丝动态的产量模拟奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号