首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously found an accession of Lycopersicon pimpinellifolium (Jusl.) Mill. (`TO-937') that appeared to resist attack by the two-spotted spider mite (Tetranychus urticae Koch). L. pimpinellifolium is a very close relative of the cultivated tomato (Lycopersicon esculentum Mill.) and thereby a potential source of desirable traits that could be introgressed to the crop species. The objective of this study was to investigate the genetics of the resistance present in `TO-937'. Resistance to infestation by the spider mite was quantified in 24-plant plots of L. pimpinellifolium accessions `TO-937' and `PE-10', L. pennellii accession `PE-45', L. esculentum cultivars `Moneymaker', `Roma' and `Kalohi' (reported to be partially resistant: Stoner & Stringfellow, 1967), and the interspecific F1 cross, L. esculentum `Moneymaker' × L. pimpinellifolium `TO-937'. Only `TO-937', the F1, and`PE-45' were found to be resistant. Resistance of `TO-937' was complete when evaluated in two small greenhouses completely planted with `TO-937' so as to simulate the genotypic homogeneity usual in commercial crops. Generations (P1, P2, F1, F2, BC1P1, and BC1P2) of a P1 (susceptible) × P2 (resistant) cross (`Moneymaker' × `TO-937') were studied for resistance in a single-plant per plot design. Resistance of `TO-937' was inherited with complete dominance and appeared to be controlled by either two or four genes according to whether segregation in the F2 or the BC1P1, respectively, were considered. However, calculation of the number of genes involved in the resistance was complicated by negative interplot interference due to the high frequency of resistant genotypes within most of the generations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The use of resistant cultivars is one of the best methods for nematode control and reduction of economic losses caused by these pathogens. Studies of inheritance of nematode resistance in common bean (Phaseolus vulgaris L.) are nonetheless scarce. The present paper reports on the estimation of genetic parameters associated with resistance to the root nematode Meloidogyne incognita race 1 in common beans. Two contrasting bean lines, ‘Aporé’ (P1 = nematode resistant) e ‘Macarr?o Rasteiro Conquista’ (P2 = susceptible), and the generations F1 (P1 × P2), F2 (P1 × P2), BC1(P1) = (F1 × P1) and BC1(P2) = (F1 × P2), were assessed 45 days after nematode inoculation, through a scale related to the number of eggs per gram of root tissue. Dominant genetic effects were inferior in magnitude to additive effects, indicating incomplete dominance of nematode resistance. Dominance was in the direction of increased nematode resistance (i.e., lower number of eggs per g root). Resistance to Meloidogyne incognita race 1 in common bean is under control of a single gene locus, with incomplete dominance of the resistance allele present in ‘Aporé’, but modifier genes affecting its expression appear to be present in the susceptible parent ‘Macarr?o Rasteiro Conquista’.  相似文献   

3.
M.A. Rahman  M.S. Saad 《Euphytica》2000,114(1):61-66
Inheritance of yield and yield contributing characters were investigated using generation mean analysis, utilising the means of six basic populations viz., P1, P2, F1, F2, BC1P1 and BC1P2 in four crosses of Vigna sesquipedalis. The analysis reiterated that the importance of dominance (h) gene effects for pod yield/plant and pods/plant as compared to additive (d) gene effects. However, significant and positive additive effects were noticed for pod yield/plant, pods/plant, pod weight and seed weight in different crosses. The three types of gene interactions (additive, dominance and epistasis) were significantly involved for pods/plant in cross KU 7 ×KU 8. Among the digenic epistatic interactions, both additive ×additive (i) and dominance × dominance (l) contributed more for pod yield/plant and pods/plant, however, it varied among the crosses. Populations having earliness can be developed as indicated by reducing dominance effects. Pedigree selection and heterosis breeding is suggested to exploit the fixable and non fixable components of variation respectively in Vigna sesquipedalis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
J. E. Zalapa    J. E. Staub    J. D. McCreight   《Plant Breeding》2006,125(5):482-487
Unique architectural phenotypes have the potential for increasing yield in commercial melon (Cucumis melo L.). Therefore, a generation means analysis was conducted to investigate the inheritance of architectural traits (days to anthesis, primary branch number, fruit number and weight, and average weight per fruit). Progeny (F1, F2, BC1P1 and BC1P2) from a cross between US Department of Agriculture (USDA) line, USDA 846‐1 (P1) and ‘TopMark’ (P2) were evaluated at Arlington (AR) and Hancock (HCK), Wisconsin in 2001. Significant (P ≤ 0.05) environment effects and genotype × environment interactions (G × E) analyses necessitated analysis by location. Significant differences (P ≤ 0.05) among parents and generations were observed for all traits, and the two parental lines differed significantly for primary branch number, fruit number and average weight per fruit. Additive gene effects were most important in governing primary branch number and fruit number per plant, while dominance and epistatic genetic effects mainly controlled days to anthesis, fruit weight per plant and average weight per fruit. Narrow‐sense heritabilities were 0.62 (AR) for days to anthesis, 0.71 (AR) and 0.76 (HCK) for primary branch number, 0.68 (AR) and 0.70 (HCK) for fruit weight per plant, 0.33 (AR) and 0.45 (HCK) for fruit weight per plant, and 0.06 (AR) and 0.79 (HCK) for average weight per fruit. Estimations of the least number of effective factors for primary branch number were relatively consistent at both AR (approx. 4) and HCK (approx. 2). Results suggest that introgression of yield‐related genes from highly branched melon types (e.g. USDA 846‐1) into US Western Shipping germplasm may aid in the development of high‐yielding cultivars with concentrated fruit set suitable for machine and/or hand‐harvesting operations.  相似文献   

5.
Hailu Tefera  W.E. Peat 《Euphytica》1997,96(2):185-191
Quantitative genetics of grain yield and other agronomic characters of t'ef (Eragrostis tef) were studied using the F1, F2, BC1, and BC2 of the cross Fesho × Kay Murri. The study was carried out to estimate gene effects controlling the inheritance of grain yield and related agronomic characters. Significant additive [d] and dominance × dominance [l] interaction effects were detected for grain yield. The variations of yield per panicle and panicle weight were explained in terms of [d], dominance [h], and additive × additive [i] interactions. Non-allelic gene interactions were also detected for kernel weight, harvest index, tiller number, plant height, days to heading and days to maturity. The simple additive-dominance model explained the variation for panicle length, culm diameter and plant weight, allowing unbiased estimates of additive (D) and dominance (H) variance components. Large dominance variances (H) were estimated for grain yield, yield per panicle, and panicle weight. The additive variances for plant height, panicle length, days to heading and days to maturity were higher than the respective dominance variances. High narrow-sense heritability (h2) values (> 0.50) were estimated for plant height, panicle length, days to heading and days to maturity. The lowest h2 (0.09) was obtained for kernel weight for which there was little variability. Since grain yield and several important agronomic characters of t'ef are influenced by non-allelic gene interaction, it is advisable to delay selection for yield to later generations with increased homozygosity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Parental, F1, F2, BC1, BC2, BC11, BC12, BC21, BC22, BC1 self and BC2 selfed generations of three crosses involving six cultivars of durum wheat (Triticum durum Desf.) were studied for grains per spike under normal and late sown environments to analyze the nature of gene effects. A 10-parameter model did not fully account for the differences among the generation means. In two cases more complex interactions or linkage were involved in the inheritance of grains per spike in durum. Both digenic and trigenic epistatic interactions had a role in controlling the inheritance of grains per spike, however, trigenic interactions contributed more than digenic interactions. Non-fixable gene effects were many times higher than fixable ones in all three crosses and in both sowing environments indicating a major role of non-additive gene effects in the inheritance of this trait. Duplicate epistasis between sets of three genes under both environments was recorded for the cross Raj 911 × DWL 5002. Epistatic interactions, particularly the trigenic ones, contributed the maximum significant heterosis. Epistatic interactions involving dominance in the F2 generations caused significant inbreeding depression. Selective diallel mating and/or biparental mating could be used for amelioration of grains per spike in durum wheat.  相似文献   

7.
W. Sodkiewicz 《Plant Breeding》1992,109(4):287-295
Four hexaploid triticale lines were crossed as females with a T. monococcum×S. cereale amphiploid (AmAmRR), with the aim of introducing the genetic material of diploid wheat. F1-plants (AmABRR)were back-crossed with a parental form of 6×-triticale as male and progenies were subjected to four different types of pollination with the aim of finding the optimal one in respect to gradual stabilization of introgressive hexaploid karyotypes. Beginning with BC1-plants, a strong tendency to decrease the somatic chromosome number was observed. In subsequent generations this was accompanied by the decrease of seed germination and plant fertility. Both of these characters showed statistically significant dependence on somatic chromosome number variation which was analyzed in BC1/F2 and BC2 populations. Based on spike fertility, an effective selection pressure was applied to restitute the hexaploid chromosome number. In the BC1/F4 generation, the first morphologically uniform secondary hexaploid lines were selected. 11.4% of the lines showed a non-waxy spike — a morphological marker transmitted from T. monococcum.  相似文献   

8.
J. W. Scott  J. P. Jones 《Euphytica》1989,40(1-2):49-53
Summary Resistance to fusarium wilt, incited by Fusarium oxysporum (Schlecht.) f. sp. lycopersici (Sacc.) Snyder & Hansen race 3 in tomato (Lycopersicon esculentum Mill.) was discovered in LA 716, a L. pennellii accession. A resistant BC1F3 breeding line, E427, was developed from LA 716. E427 was crossed with the susceptible cv. Suncoast and F1, BCP1, BCP2 (to Fla 7155, a susceptible parent) F2, F3, and BCP2S1 seeds were obtained. Segregation for resistance following root dip inoculation over three experiments indicated a single dominant gene controlled resistance. Five of the 12 BCP1S1's segregated more susceptible plants, whereas one of the 12 segregated more resistant plants than expected (P<0.05). Three of 23 F3 lines segregated more susceptible plants than expected while 1 of the 23 had more resistant plants than expected (P<0.05). Segregation in all other lines fit expected ratios. Five of the 23 F3's were homozygous resistant which was an acceptable fit to expectations (P=0.1–0.5). The gene symbol I 3 is proposed for resistance to race 3 of the wilt pathogen. Deviations from expected ratios in data reported here and for other breeding lines indicate an effect of modifier genes and/or incomplete penetrance. Plant age at inoculation and seed dormancy did not affect results.Florida Agricultural Experiment Station Journal Series No. 8101.  相似文献   

9.
Understanding of mungbean yellow mosaic disease resistance is crucial to develop resistant varieties to combat worldwide threat of the disease epidemics. This study was aimed to determine nature of disease resistance in terms of number of genes governing it and genetics of related traits. Experimental site was located on 31.43°N and 73.06°E with an elevation of 186 m, and evaluation trials were conducted during spring season due to high disease epidemics in this season. Two contrasting genotypes, that is, NM 6‐68‐2 (resistant) and NM 1‐32‐1 (highly susceptible), were crossed to raise six populations, that is, P1, P2, F1, F2, BC1 and BC2 for evaluation under protected and unprotected field conditions using chi‐square test and generation mean and variance analysis. It was discovered that disease resistance was governed by two major genes with additive effects. Disease resistance can easily be incorporated through backcrossing and direct selection following hybridization. Direct selection should be practised at earlier generation for plant height, chlorophyll contents and number of seeds per pod due to preponderance of additive effects whereas at later generations for seed yield per plant, 100 seed weight, harvest index, number of pods per plant and pod length due to involvement of duplicate epistasis.  相似文献   

10.
Most traits of agronomic importance in rice are quantitative in nature and are controlled by polygenes, called quantitative trait loci (QTL). Understanding the nature and effect of QTLs are important for rice breeding to achieve higher yield and stability. Single segment substitution lines (SSSLs or 3-S Lines) were developed through simple sequence repeats (SSR) marker-facilitated backcrossing methods for Hua-Jing-Xian 74 (HJX74) with the donor segment from six elite germplasm and was characterized. Complete genome survey was carried out with 258 polymorphic SSR markers. Polymorphism of the donors with the recurrent parent varied between 32.98 and 60.73% with an average of 47.81%. Japonica donors were more polymorphic than indica donors. Number of substitution segments per plant decreased with the advancement of backcross generations. In BC2F1, BC3F1, BC3F2 and BC3F3 the average number of substitution segment per plant were 12.5, 5.98, 1.69 and 1.46, respectively. Average size of substitution segments also decreased with the number of times plants were backcrossed and selfed. In BC2F1, BC3F1, BC3F2 and BC3F3, average size of the segments was 25.43, 22.38, 20.78 and 18.15 cM, respectively. The rate of reduction of segment size was more in backcross (11.99%) than selfing (7.15%) generations. Percent recovery of recurrent parent genome in BC2F1, BC3F1, BC3F2 and BC3F3 was 82.24, 92.55, 98.04 and 98.52%, respectively. A total of 111 SSSLs comprising of 43 unique types were developed in BC3F2 and BC3F3. The estimated length of the segments in SSSLs ranged from 2.00 to 64.80 cM with an average of 21.75 cM, and 6.05 to 48.90 cM with an average of 20.95 cM in BC3F2 and BC3F3, respectively. Total length of all substitution segments was 2367.5 cM that covered 704.50 cM (39.25%) of the entire rice genome. Effective development and successful utilization of 3-S Lines for analysis of QTLs and mapping of genes established the suitability of the SSR marker facilitated backcross breeding approach for 3-S Lines development and its utilization.  相似文献   

11.
G.-L. Jiang    R. W. Ward 《Plant Breeding》2006,125(5):417-423
Fusarium head blight (FHB or scab) caused by Fusarium graminearum is a worldwide serious disease in wheat. Exploitation and genetic studies of elite resistance sources can speed up the development of resistant cultivars. To characterize the inheritance of host plant resistance in two new lines, ‘CJ 9306’ and ‘CJ 9403’, developed from a recurrent selection programme in China, six generations P1, P2, F1, F2, B1 and B2 of four crosses and 137 F6 : 7 recombinant inbred lines (RILs) from one cross were evaluated in the greenhouse for scab resistance using single‐floret inoculation. The data of area under disease progress curve (AUDPC) in F2, backcross (BC) and RIL populations exhibited mono‐modal distributions without clear‐cut demarcations and skewing towards resistance. An additive–dominance model was well‐fitted, additive effects played a predominating role, and dominance effects were also significant. Continuous distributions with two major peaks and one minor peak for the number or percentage of scabby spikelets (NSS or PSS) in segregating populations implied the existence of major genes or quantitative trait loci (QTL) for resistance. The estimates of broad‐sense and narrow‐sense heritabilities based on the six‐generation experiment were 56–76% and 26–67% respectively. The estimates of broad‐sense heritabilities based on anova with RILs were 89–90%. These two improved lines with excellent scab resistance and good agronomic traits are of interest for wheat breeding and production.  相似文献   

12.
Prolificacy assumes significance for development of high‐yielding baby corn hybrids. “Sikkim Primitive” is a native landrace of North‐Eastern Himalaya, and is the highest prolific maize germplasm. So far, the genetics of prolificacy in “Sikkim Primitive” has not been deciphered. Here, a prolific inbred (MGU‐SP‐101) developed from “Sikkim Primitive” was crossed with four non‐prolific inbreds viz., LM13, BML7, HKI161 and HKI1128. Six generations (P1, P2, F1, F2, BC1P1 and BC1P2) of the crosses were evaluated at two locations during rainy season 2018. MGU‐SP‐101 possessed 2.50–3.78 ears per plant compared to 1.06–1.86 among non‐prolific inbreds. The variation for ears was the highest in F2s (1–8), followed by BC1P1 (1–7) and BC1P2 (1–5). The quantitative inheritance pattern of prolificacy with prevalence of non‐allelic interactions of duplicate epistasis type has been observed. Dominance × dominance effect was predominant over additive × additive and additive × dominance effects. Total number of major gene blocks ranged from 0.41 to 2.86, thereby suggesting the involvement of at least one major gene/QTL governing the prolificacy. This is the first report of genetic dissection of prolificacy in “Sikkim Primitive”.  相似文献   

13.
Growth of full-sib families of an F1 interspecific hybrid between Trifolium ambiguum M.Bieb and T. repens L, and two generations of backcross hybrids (BC1F2 and BC2F1) with T. repens as the recurrent parent, were compared to their parental species. Plants were grown in a N-free medium and inoculated with Rhizobium leguminosarum biovar trifolii rhizobia effective on T. ambiguum or T. repens. Hybridisation produced progeny that nodulated with rhizobia from either T. ambiguum or T. repens, but plant growth varied. Mean weights of T. repens and hybrids, particularly F1 and BC1F2, were higher when inoculated with a mixture of strains isolated from field grown T. repens than with the New Zealand inoculant strain for T. repens. When inoculated with the mix of rhizobia from T. repens, mean weights were 242, 189, 132, 125, and 100 mg/plant for T. repens, BC2F1, BC1F2, F1 and T. ambiguum, respectively. However, although the mean weight of BC2F1 lines was significantly less than T. repens, there was considerable variation in individual full-sib families indicating the potential to select within BC2F1 hybrids for high plant growth/symbiotic nitrogen fixation. The weight of T. ambiguumplants inoculated with the New Zealand inoculant strain for hexaploid T. ambiguum was similar to T. repens inoculated with the mix of rhizobia from T. repens (253 and 242 mg/plant, respectively). Mean fresh weights of F1 hybrid plants were similar when inoculated with rhizobia for T. ambiguum or T. repens (125 and 130 mg/plant, respectively). However, weight of T. repens, BC1F2 and BC2F1 hybrids inoculated with rhizobia for T. ambiguum were all less than 90 mg/plant. There was a significant relationship between plant fresh weight and ethylene production. The results indicate that measuring weights of inoculated plants growing in N-free media is a rapid initial method of screening a range of plant germplasm for plant growth/symbiotic nitrogen fixation rates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Striga hermonthica can cause as high as 100% yield loss in maize depending on soil fertility level, type of genotype, severity of infestation and climatic conditions. Understanding the mode of inheritance of Striga resistance in maize is crucial for introgression of resistance genes into tropical germplasm and deployment of resistant varieties. This study examined the mode of inheritance of resistance to Striga in early‐maturing inbred line, TZdEI 352 containing resistance genes from Zea diploperennis. Six generations, P1, P2, F1, F2, BC1P1 and BC1P2 derived from a cross between resistant line, TZdEI 352 and susceptible line, TZdEI 425 were screened under artificial Striga infestation at Mokwa and Abuja, Nigeria, 2015. Additive‐dominance model was adequate in describing observed variations in the number of emerged Striga plants among the population; hence, digenic epistatic model was adopted for Striga damage. Dominance effects were higher than the additive effects for the number of emerged Striga plants at both locations signifying that non‐additive gene action conditioned inheritance of Striga resistance. Inbred TZdEI 352 could serve as invaluable parent for hybrid development in Striga endemic agro‐ecologies of sub‐Saharan Africa.  相似文献   

15.
Introgression of yellow mosaic disease (YMD) resistance and effect of recurrent parent genome (RPG) on grain yield was studied in 84 soybean genotypes from four populations namely, F2:7, BC1F6, BC2F5 and BC3F4 derived from cross JS335 x SL525. It was observed that in F2:7, BC1F6, BC2F5 and BC3F4 derived lines, RPG contribution was 42.5%, 54.9%, 66.4% and 77.6%, respectively, which is significantly less than expected values. Linkage drag from donor parent with YMD resistance gene may be a possible reason for such deviations. Average grain yield per plant in F2:7, BC1F6, BC2F5 and BC3F4 generations was observed as 13.0, 14.3, 14.9 and 16.1 g, respectively. It was observed that genotypes with more than 80% RPG observed to have both YMD resistance and good yield potential. Graphical genotyping (GGT) analysis revealed that maximum RPG was recovered in chromosomes 8 and 10 and maximum introgression occurred in chromosomes 6 and 19. Our results demonstrated that RPG was positively associated with yield as evident from yield increase with increase in RPG.  相似文献   

16.
M. R. Simón 《Euphytica》1994,76(3):235-238
Summary Gene action and heritability for photosynthetic activity were estimated from generation means in two wheat crosses during two stages (5 th leaf and flag leaf between 2 and 5 days after anthesis). Six generations were available for each cross: parents (P1 and P2), F1, F2 and backcrosses (BC1 and BC2).Correlations between some morphophysiological characters and photosynthetic activity of the flag leaf was also determined. The joint scaling test described by Mather & Jinks was used to determine the gene action. It showed that them; [d]; [h]; [i], [l] (mean, additivity, dominance, additive x additive interallelic interaction effects, dominance x dominance interallelic interaction effects) model fits the two crosses at both measurement times. All the model genetic components were significant for the flag leaf, however for the 5 th leaf only [h]; [i] and [l] were significant. The presence of additive and additive x additive effects suggested the possibility of selecting for this character using the flag leaf so as to obtain pure inbred lines. Dominance effects [h] were negative and dominance x dominance effects [l] were positive. Broad sense heritability values were medium to low. There were no correlations between the studied morphophysiological characters and the photosynthetic activity.  相似文献   

17.
Inheritance of black leaf mold resistance in tomato   总被引:1,自引:0,他引:1  
Summary Inheritance of black leaf mold (BLM) (caused by Pseudocercospora fuligena) resistance was studied in four crosses involving two resistant Lycopersicon accessions (PI134417, L. hirsutum and PI254655, L. esculentum) and four susceptible Asian Vegetable Research and Development Center tomato lines (CLN657BC1F2-267-0-3-12-7, CL143-0-10-3-0-1-10, CLN698BC1F2-358-4-13 and CL5915-93D4-1-0-3). For each cross, six generations, i.e. P1, P2, F1, F2, BC1F1 and BC1F2 were evaluated following inoculations with isolate Pf-2 of P. fuligena. Chi-square analyses of the data based on the ratio of resistant to susceptible plants in the F2 in three of four crosses gave a good fit to a segregation ratio of 1 R : 15 S, and BC1F2 data in three of four crosses gave an acceptable fit to the segregation ratio of 1 R : 63 S. The results indicate that resistance to BLM may be conditioned by two recessive genes acting epistatically in both PI134417 and PI254655.  相似文献   

18.
Summary Sorghum [Sorghum bicolor (L.) Moench] backcross populations containing 3 to 50% wild germplasm were evaluated in south central India for grain yield and nine related traits. No individual BC0F2- to BC2F2-derived lines were high transgressive segregates for grain yield. Only 1.5% of all BC3F2- or BC4F2-derived lines were transgressive segragates, with 26% higher mean grain yield than their respective recurrent parents. The ten highest-yielding BC2F2- to BC4F2-derived lines per mating having parent CK60B yielded an average of 14% more than CK60B, which was, at the 5% level, a statistically significant difference. However, the increased yield was associated with increased plant height. The highest-yilding lines from RS/R/A2725 x virgatum and RS/R/A2725 x verticilliflorum were an average of 13.5% higher-yielding than RS/R/A2725 (a significant difference) and were equal in plant height. Selection increased BC2 mean grain yields by 6 to 27%. Population mean yield, mean yield of selected lines, and frequency of high-yielding lines were highest in the BC4.Journal paper no. 380, ICRISAT, Patancheru, India; Journal paper no. J-11114, Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, USA.  相似文献   

19.
为探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,以SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3和BC1F1代的变异类型最丰富。  相似文献   

20.
This study investigated the inheritance of resistance to Fusarium oxysporum f.sp. tracheiphilum (Fot) in cowpea lines. Resistant and susceptible cowpea lines were crossed to develop F1, F2 and backcross populations. Reaction to Fot was evaluated in 2015 and 2016 using seed soak and modified root‐dip inoculation methods. The expression of resistance reaction in the F1 and segregation in F2 generations indicated the role of dominant gene controlling Fot in cowpea. These results were further supported by the result of backcross (BC1P1F1 and BC1P2F1) progeny tests. The backcross of F1 with the resistant parent produced progeny that were uniformly resistant, whereas backcross of F1 with the susceptible parent produced progeny that segregated into 1:1 ratio. The F2 segregation ratio in the reciprocal cross showed no evidence of maternal effect in the inheritance of the resistance. Allelism test suggests that the gene for resistance in TVu 134 was the same in TVu 410 and TVu 109‐1. We also identified an SSR marker, C13‐16, that cosegregated with the gene conferring resistance to Fot in cowpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号