首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the low‐rainfall region of south‐eastern Australia, distinctive soil types reflecting the typical landscape of higher elevated dunes and swale zones at the bottom can be found within one field. Different soil characteristics cause consequently large variability in cropping productivity between soils and across seasons. To assess the possibilities for zone‐specific management, five farmer fields were zoned into a dune, mid‐slope and swale zone. For each site, zone yields were mapped over 2 years and soil properties were surveyed. This information was used to parameterize and validate the APSIM model for each zone. Field‐measured PAWC increased from the dune to the swale zone. On‐farm results and simulation analysis showed distinctive yield performance of the three designed zones. However, yield is not related to PAWC, it is rather a complex relationship between soil type, fertility and rainfall. While in high‐rainfall years, the swale zones yielded higher due to higher soil organic carbon content and less drainage losses, the dune zones performed better in the low‐rainfall years due to lower evaporation losses. This study emphasizes that in this specific environment where soil variation in texture and subsoil constraints strongly influence crop performance, mechanistic crop models and long‐term field observations are necessary for better understanding of zone‐specific performance, and simple linear relationships across years or sites are not useful.  相似文献   

2.
Insufficient phosphorus (P) availability decreases the yield of Zea mays, particularly for sweet corn crops grown in cool environments. This research examined the mechanisms of yield reductions with initial emphasis on canopy expansion processes that affect the interception of solar radiation. Experiments in two consecutive seasons (2001/2002 and 2002/2003) were grown at a low P site (Olsen P = 6 μg ml−1) at Lincoln, New Zealand. Each experiment contained five rates of P application. In 2001/2002 rates of 0, 50, 100, 150, or 200 kg P ha−1 were applied. In 2002/2003 an additional 0, 0, 10, 20 or 40 kg P ha−1 was applied to the same plots producing total P treatments of 0, 50, 110, 170 or 240 kg P ha−1 summed over the two seasons.When P availability was limited (0 or 50 kg P ha−1) the rates of leaf tip and fully expanded leaf appearance were slower in both seasons. Phyllochrons (°Cd leaf tip−1) were 5 °Cd longer in crops that received 0 kg P ha−1 than those fertilised with ≥100 kg P ha−1. The area of individual leaves was also reduced by low P inputs but the ranking of leaf area by main stem leaf position was conservative. The leaf area of the largest leaf of the unfertilised crops was at least 22% less than the maximum measured leaf area in both seasons. In contrast, P fertiliser application had no effect on leaf senescence.The rate of leaf appearance per plant, individual leaf area and plant population were integrated to calculate green leaf area index (GLAI) and to estimate accumulated radiation interception (RIcum) for these crops. The total RIcum throughout the season in the unfertilised crops was 12–28% less than for those crops that received ≥100 kg P ha−1 in both seasons. This difference partly explained the differences in crop biomass production in response to P availability. A sensitivity analysis showed that RIcum was equally sensitive to changes of the rate of leaf appearance and the area of individual leaves in response to P supply. Both processes need to be incorporated in mechanistic models of P effects on Z. mays which can be used to design efficient P fertiliser strategies.  相似文献   

3.
Efficient N management is essential to optimize yields and reduce degradation of the environment, but requires knowledge of deficit irrigation effects on crop yields and crop N outputs. This study assessed the N content and N-use efficiency of cotton over the 2008 and 2009 growing seasons in a single field site of the Thessaly Plain (central Greece). The experiment consisted of nine treatments with three fertilizer rates (60, 110 and 160 kg N ha−1) split into three irrigation levels (approx. 1.0, 0.7 and 0.4 of the amount applied by the producer). Reduced water supply induced a shift in the distribution of N within the plant with seeds becoming an N sink under conditions of water stress. Total crop N increased linearly with irrigation level and reached a maximum average of 261 and 192 kg N ha−1 in 2008 and 2009, respectively. Fertilizer application did not trigger a crop N or yield response and indicated that N inputs were in excess of crop needs. Variation in weather patterns appeared to explain annual differences of nitrate-N in the top soil and N uptake by the crop.The index of lint production efficiency (iNUE) detected crop responses caused by irrigation and annual effects, but failed to account for excessive N inputs due to mineral fertilizer applications. A maximum average iNUE of 9.6 was obtained under deficit irrigation, whereas an iNUE of 8.1 was obtained under 40 cm irrigation when crop N uptake was not excessive (192 kg ha−1 in 2009). In contrast, NUE, as an estimator of N recovery efficiency, identified excessive fertilizer inputs as N losses to the environment and indicated that 60 kg N ha−1 was a rate of high N removal efficiency and long-term N balance. However, NUE failed to account for crop N responses to irrigation and weather/management patterns. In this case study, neither index was able to detect all the factors influencing the N mass balance and both were required in order to provide a comprehensive evaluation of the environmental performance of our cropping system.  相似文献   

4.
The effects of soil tillage and straw management systems on the grain yield and nitrogen use efficiency of winter wheat (Triticum aestivum L. em. Thell.) were evaluated in a cool Atlantic climate, in central Ireland between 2009 and 2011. Two tillage systems, conventional tillage (CT) and reduced tillage (RT) each with and without incorporation of the straw of the preceding crop, were compared at five levels of fertiliser N (0, 140, 180, 220 and 260 kg N ha−1).CT had a significantly higher mean grain yield over the three years but the effect of tillage varied between years. Yields did not differ in 2009 (Year 1), while CT produced significantly higher grain yields in 2010 (Year 2), while RT produced the highest yields in 2011 (Year 3). Straw incorporation had no significant effect in any year.Nitrogen application significantly increased the grain yields of all establishment treatment combinations. Nitrogen use efficiency (NUE) ranged from 14.6 to 62.4 kg grain (85% DM) kg N ha−1 and decreased as N fertiliser rate was increased.The CT system had a significantly higher mean NUE over the three years but the effect of tillage varied with years. While there was no tillage effect in years 1 and 3, CT had a significantly higher NUE than RT in year 2. Straw management system had minimal effect on NUE in any year.The effect of tillage and N rate on soil mineral N content also varied between years. While there was no tillage effect in years 1 and 3, RT had significantly larger soil N contents than CT in the spring before N application, and post-harvest in year 2. N application rates had no effect on soil N in year 1, increased residual N content in year 2 and had an inconsistent effect in year 3. Straw management had no significant effect on soil mineral N content.These results indicate that RT establishment systems can be used to produce similar winter wheat yields to CT systems in a cool Atlantic climate, providing weather conditions at establishment are favourable. The response to nitrogen is similar with both tillage systems where the crop is successfully established. Straw management system has very little effect on crop performance or nitrogen uptake.  相似文献   

5.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

6.
Blending fertilizers with nitrification inhibitors (NI) is a technology to reduce nitrogen (N) losses. The application of NI could increase the soil N supply capacity over time and contribute to an enhancement of N use efficiency (NUE) in some cropping systems. The objectives were to determine in a field experiment located in Central Spain (i) the effect of NI-fertilizers applied to maize (Zea mays L.) during two seasons on yield, N content and NUE compared to conventional fertilizers, (ii) the soil residual effect of NI-fertilizers in a non-fertilized sunflower (Helianthus annuus L.) planted during a third season, and (iii) the possible sources of residual N via laboratory determinations. The maize was fertilized with ammonium sulfate nitrate (ASN) and DMPP (3,4-dimethylpyrazole phosphate) blended ASN (ENTEC®) at two levels (130 and 170 kg N ha−1). A control treatment with no added N fertilizer was included to calculate NUE. The second year, DMPP application allowed a 23% reduction of the fertilizer rate without decreasing crop yield or grain quality. In addition, the sunflower planted after the maize scavenged more N in treatments previously treated with ENTEC® than with traditional fertilizers, increasing NUE in the cropping systems. After DMPP application, N was conserved in non-ready soil available forms during at least one year and subsequently released to meet the sunflower crop demand. The potential N mineralization obtained from aerobic incubation under controlled conditions of soil samples collected before sunflower sowing was higher for ENTEC® than ASN or control treatments. A higher δ15N in the soil indicated larger non-exchangeable NH4+ fixation in soils from the plots treated with ENTEC® or ASN-170 than from the ASN-130 or the control. These results open the opportunity to increase NUE by designing crop rotations able to profit from the effect of NI on the soil residual N.  相似文献   

7.
 研究了河南植棉区麦棉两熟施氮量对两季产量和氮肥利用率的影响。结果表明,施氮能显著提高小麦产量、总有效穗数和穗粒数,籽粒千粒重随施氮量增加而降低;商丘和内黄试验点小麦最高产量所需的施氮量分别为201.4 kg·hm-2和187.2 kg·hm-2,经济最佳施氮量分别为163.0 kg·hm-2和134.9 kg·hm-2。施氮也能显著提高棉花产量和单株成铃数;适量施氮可提高铃重;商丘和内黄试验点棉花最高产量所需的施氮量分别为244.4 kg·hm-2和224.2 kg·hm-2,经济最佳施氮量分别为225.9 kg·hm-2和207.0 kg·hm-2。小麦氮肥利用率以施氮量180 kg·hm-2最高。麦棉两季氮肥利用率,商丘试验点随施氮量增加而降低;内黄试验点以施氮量390 kg·hm-2最高。小麦、棉花氮肥偏生产力、农学利用率均随施氮量增加而降低。  相似文献   

8.
The sustainability of growing a maize—winter wheat double crop rotation in the North China Plain (NCP) has been questioned due to its high nitrogen (N) fertiliser use and low N use efficiency. This paper presents field data and evaluation and application of the soil–vegetation–atmosphere transfer model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses to optimise the N fertiliser rate for maize and winter wheat under different field managements including straw incorporation.The model sensitivity analysis indicated that a few measurable crop parameters impact the simulated yield, while most of the studied topsoil parameters affect the simulated nitrate leaching. The model evaluation was overall satisfactory, with root mean squared residuals (RMSR) for simulated aboveground biomass and nitrogen content at harvest, monthly evapotranspiration, annual drainage and nitrate leaching out of the root zone of, respectively, 0.9 Mg ha−1, 20 kg N ha−1, 30 mm, 10 mm and 10 kg N ha−1 for the calibration, and 1.2 Mg ha−1, 26 kg N ha−1, 38 mm, 14 mm and 17 kg N ha−1 for the validation. The values of mean absolute deviation, model efficiency and determination coefficient were also overall satisfactory, except for soil water dynamics, where the model was often found erratic. Re-validation run showed that the calibrated Daisy model was able to simulate long-term dynamics of crop grain yield and topsoil carbon content in a silty loam field in the NCP well, with respective RMSR of 1.7 and 1.6 Mg ha−1. The analyses of the model and the field results showed that quadratic, Mitscherlich and linear-plateau statistical models may estimate different economic optimal N rates, underlining the importance of model choice for response analyses to avoid excess use of N fertiliser. The analyses further showed that an annual fertiliser rate of about 300 kg N ha−1 (100 for maize and 200 for wheat) for the double crop rotation with straw incorporation is the most optimal in balancing crop production and nitrate leaching under the studied conditions, given the soil replenishment with N from straw mineralisation, atmospheric deposition and residual fertiliser.This work provides a sound reference for determining N fertiliser rates that are agro-environmentally optimal for similar and other cropping systems and regions in China and extends the application of the Daisy model to the analyses of complex agro-ecosystems and management practices under semi-arid climate.  相似文献   

9.
Intensive cropping and exhaustive nature of sugarcane–wheat–rice cropping system in the Indo-Gangetic Plains of South Asia have led to the depletion of soil organic carbon content and inherent soil fertility resulting in a serious threat to the sustainability of these production systems. Bioagents like Gluconacetobacter diazotrophicus and Trichoderma viride have great potential to restore soil fertility and promote sugarcane growth. Field experiments, therefore, have been conducted to study the integrated effect of bioagents (G. diazotrophicus and T. viride), Farm Yard Manure (FYM) and fertilizer N on sugarcane rhizosphere, crop yield and N economy for two crop cycles during 2004–2006 and 2005–2007 crop seasons at Lucknow, in the middle Indo-Gangetic plain region. Both bioagents could survive and colonize sugarcane rhizosphere and FYM improved their colonization. Enhanced soil microbial population and microbial carbon (SMC) and nitrogen (SMN) with increasing N level were probably due to more available N in the soil. FYM/bioagents amendment further enhanced the microbial carbon. The uniform increase in the fraction of SMC and SMN of total organic carbon indicated that immobilization/mineralization was being maintained in the soil where enhanced microbial biomass might act later as a source of nutrients.Bioagents ammended FYM enhanced the uptake of N, P and K in sugarcane at all the levels of fertilizer N. It was mainly due to the enhanced nutrient availability in the rhizospheric soil as the soil organic C and available N, P and K content increased with the application of bioagents/FYM. A saving of 76.3 kg N ha−1 was envisaged by the use of G. diazotrophicus inoculated FYM with marginal (2.4 t ha−1) decline in the cane yield. Application of T. viride enriched FYM, however, brought economy in the use of fertilizer N by 45.2 kg ha−1 and also increased the yield by 6.1 t ha−1compared to the control treatment. Overall, strategic planning in terms of an integrated application of these bioagents/manures with fertilizer N will not only sustain soil fertility but will also benefit farmers in terms of reducing their dependence and expenditure on chemical fertilizers.  相似文献   

10.
Biomass productivity, nitrogen recovery fraction and nitrogen utilization efficiency (NUE) of kenaf (Hibiscus cannabinus L.) cultivar Tainung 2 were tested, under three Lens culinaries treatments (incorporated, harvested before the sowing of the energy crop and mono-cropping) and four nitrogen dressings (0, 50, 100 and 150 kg ha−1), in two field experiments carried out on a fertile, clayey to loamy soil, and on a sandy soil of moderate fertility, in central Greece, over the period 2007–2009. The obtained results showed a positive response in L. culinaries cover cropping on kenaf total yield, on both experimental sites. Total dry biomass fluctuated from 16.07 to 21.46 t ha−1 for incorporated plots and from 13.63 to 16.55 t ha−1 for control treatments (relied only on applications of N-fertilization) for sandy soil, and from 14.98 to 19.28 t ha−1 in case of legume incorporation and from 12.34 to 16.69 t ha−1 for control plots, for clayey soil, respectively. The evaluated NUE was 76 kg kg−1, for sandy soil, and 72 kg kg−1, for clay soil. The recovery fraction escalated from 41% in control plots to 70% in plots with previous L. culinaries cultivation for sandy soil, while for clayey soil an increase of 20% was recorded, indicating a prominent effect of legume cover-cropping management.  相似文献   

11.
Farmers obtain high yield when proper crop management is matched with favourable weather. Nitrogen (N) fertilization is an important agronomic management practice because it affects profitability and the environment. In rainfed environments, farmers generally apply uniform rates of N without taking into account the spatial variability of soil available water or nutrient availability. Uniform application of fertilizer can lead to over or under-fertilization, decreasing the efficiency of the fertilizer use. The objective of this study was to evaluate the impact of variable rate nitrogen fertilizer application on spatial and temporal patterns of wheat grain yield. The study was conducted during the 2008/2009 and 2009/10 growing seasons in a 12 ha field near Foggia, Italy. The crop planted each year was durum wheat (Triticum durum, Desf.) cultivar Duilio. The field was subdivided into two management zones High (H), and Average (A). Three N rates were identified using a crop model tested on the same field during a previous growing season. The N rates were: low N (T1: 30 kg N ha−1), average N (T2: 70 kg N ha−1), and high N (T3: 90 kg N ha−1). The ANOVA test showed that there were no effects of the N levels for the first growing season for the H and A zone. For the 2009/10 growing season with higher rainfall there was a significant difference in grain yield for the A zone (2955 kg ha−1), but not in the H zone (3970 kg ha−1). This study demonstrates the optimal amount of N for a given management zone is not fixed but varies with the rainfall amount and distribution during the fallow and growing season.  相似文献   

12.
Legumes used as green manure (GMN) may provide on‐farm sources of N for subsequent crops. In warm‐humid climates on sandy soils, however, there is a need to evaluate effects on growth and yield of subsequent crops when GMN substitutes for chemical N fertilizer. We collected time‐series data for 2 years to evaluate growth and ear yield response of sweet corn (Zea mays L. var. Rugosa) in annual rotation with GMN (summer, winter or summer plus winter GMN) and supplemented with 0, 67 or 133 kg chemical N ha−1. Control treatments receiving 0, 67, 133, 200 or 267 kg chemical N ha−1 were used for comparison. Rotation with summer plus winter GMN resulted in more growth and yield benefit for sweet corn than did the other GMN rotations. Compared with control treatments receiving the same chemical N rates, rotation with summer plus winter GMN increased sweet corn ear yield, leaf area index and total plant dry weight and N content by 15–30 %. Despite these benefits, use of high chemical N rate (267 kg chemical N ha−1) resulted in ear yields at least 20 % greater than sweet corn rotated with any GMN and fertilized with reduced N rates. Largest increases in sweet corn dry weight and N content occurred between 4 and 6 weeks after emergence in all treatments. After this period of rapid growth, sweet corn fertilized with 267 kg chemical N ha−1 showed higher N content than all other treatments. Prior to this period of rapid growth, multiple rainfall events in excess of 30 mm may have resulted in leaching of N from GMN residue. Considering the high rainfall levels, low water and N retention capability of sandy soils and rapid N release from GMN during decomposition, future research of GMN in this environment should evaluate options to better match GMN termination with time of greatest potential N uptake from a subsequent crop.  相似文献   

13.
The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The four-course crop rotation was spring barley undersown with grass/clover – grass/clover – winter wheat or wheat rye – pulse crop. All cuttings of the grass–clover were left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops.Application of 50 kg NH4–N ha?1 in manure increased average wheat grain yield by 0.4–0.9 Mg DM ha?1, whereas the use of catch crops did not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100–600 kg N ha?1 year?1) accumulated in the mulched grass–clover cuttings prior to ploughing and sowing of the winter wheat. This was reflected in grain yield and grain N uptake. Manure application to the cereals in the rotation reduced N accumulation in grass–clover at two of the locations, and this was estimated to have reduced grain yields by 0.1–0.2 Mg DM ha?1 depending on site. Model estimations showed that the average yield reduction from weeds varied from 0.1 to 0.2 Mg DM ha?1. The weed infestation was larger in the manure treatments, and this was estimated to have reduced the yield benefit of manure application by up to 0.1 Mg DM ha?1. Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7–1.1 Mg DM ha?1.The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4–N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated in grass–clover cuttings varied from 14% to 39% with the lowest value on the coarse sandy soil, most likely due to high rates of N leaching at this location. Both NUE and grain yield benefit in the winter cereals declined with increasing amounts of N accumulated in the grass–clover cuttings. The model-estimated benefit of increasing N input in grass–clover from 100 to 500 kg N ha?1 varied from 0.8 to 2.0 Mg DM ha?1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings and applying the material to the cereals in the rotation, possibly after digestion in a biogas reactor.Cereal grain protein content was increased more by the N in the grass–clover than from manure application, probably due to different timing of N availability. Green-manure crops or manures with a relatively wide C:N ratio may therefore be critical for ensuring sufficiently high protein contents in high yielding winter wheat for bread making.  相似文献   

14.
The reduction in crop diversity and specialization of cereal-based cropping systems have led to high dependence on synthetic nitrogen (N) fertilizer in many areas of the globe. This has exacerbated environmental degradation due to the uncoupling of carbon (C) and N cycles in agroecosystems. In this experiment, we assessed impacts of introducing grain legumes and cover crops to innovative cropping systems to reduce N fertilizer application while maintaining wheat yields and grain quality. Six cropping systems resulting from the combination of three 3-year rotations with 0, 1 and 2 grain legumes (GL0, GL1 and GL2, respectively) with (CC) or without (BF, bare fallow) cover crops were compared during six cropping seasons. Durum wheat was included as a common high-value cash crop in all the cropping systems to evaluate the carryover effects of rotation. For each cropping system, the water use efficiency for producing C in aerial biomass and yield were quantified at the crop and rotation scales. Several diagnostic indicators were analyzed for durum wheat, such as (i) grain yield and 1000-grain weight; (ii) aboveground biomass, grain N content and grain protein concentration; (iii) water- and N-use efficiencies for yield; and (iv) N harvest index. Compared to the GL0-BF cropping system, which is most similar to that traditionally used in southwestern France, N fertilizer application decreased by 58%, 49%, 61% and 56% for the GL1-BF, GL1-CC, GL2-BF and GL2-CC cropping systems, respectively. However, the cropping systems without grain legumes (GL0-BF and GL0-CC) had the highest water use efficiency for producing C in aerial biomass and yield. The insertion of cover crops in the cropping systems did not change wheat grain yield, N uptake, or grain protein concentration compared to those of without cover crops, demonstrating a satisfactory adaptation of the entire cropping system to the use of cover crops. Winter pea as a preceding crop for durum wheat increased wheat grain production by 8% (383 kg ha−1) compared to that with sunflower  the traditional preceding crop  with a mean reduction in fertilizer application of 40–49 kg N ha−1 during the six-year experiment. No differences in protein concentration of wheat grain were observed among preceding crops. Our experiment demonstrates that under temperate submediterranean conditions, properly designed cropping systems that simultaneously insert grain legumes and cover crops reduce N requirements and show similar wheat yield and grain quality attributes as those that are cereal-based.  相似文献   

15.
Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split‐split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha?1), and two maize hybrids (three‐way cross 310 and single cross 10) as the main‐plot, split‐plot, and split‐split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha?1 was not statistically different from that at 380 kg N ha?1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha?1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha?1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100‐grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha?1. In order to improve the WUE and grain yield for drip‐irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha?1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated.  相似文献   

16.
This study simulated the economic and environmental performance of three types of wheat sown into soils with three initial N contents and using ten different fertiliser management strategies. The Agricultural Productions Systems Simulator (APSIM) was used to model crop yields for which gross margins were estimated and a Bayesian Network used to estimate environmental risk. Based on economic and environmental considerations, it would appear that for low N soils more than 10 kg N/ha is needed at sowing. For soils with medium to high N, short and medium season wheat varieties need only 10 kg N/ha, while long season varieties require >10 kg N/ha, at sowing. Additional N fertiliser can be applied after sowing to maximise gross margins, taking into account potential crop yield and seasonal conditions. Interestingly, the study suggests that where farmers increase their gross margins they are improving their environmental performance. This is counter intuitive as it implies N fertiliser applications can lessen N exports. This results from the enhanced water uptake by the crop outweighing the adverse effects of increased N availability. It would appear that flexible cropping systems that maximise crop potential with minimum sowing N, maximise both economic and environmental performance.  相似文献   

17.
Irrigation induces processes that may either decrease or increase greenhouse gas emissions from cropping systems. To estimate the net effect of irrigation on the greenhouse gas emissions, it is necessary to consider changes in the crop yields, the content of soil organic carbon and nitrous oxide emissions, as well as in emissions from the use and production of machinery and auxiliary materials. In this study the net greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany were calculated based on a long-term field experiment coupled with two-year N2O flux measurements on selected plots. The cropping system comprised a rotation of potato, winter wheat, winter oil seed rape, winter rye and cocksfoot each under three nitrogen (N) fertilization intensities with and without irrigation. Total greenhouse gas emissions ranged from 452 to 3503 kg CO2-eq ha−1 and 0.09 to 1.81 kg CO2-eq kg−1 yield. Application of an adequate amount of N fertilizer led to a decrease in greenhouse gas emissions compared to zero N fertilization whereas excessive N fertilization did not result in a further decrease. Under N fertilization there were no significant differences between irrigation and non-irrigation. Increases in greenhouse gas emissions from the operation, production and maintenance of irrigation equipment were mainly offset by increases in crop yield and soil organic carbon contents. Thus, on a sandy soil under climatic conditions of north-east Germany it is possible to produce higher yields under irrigation without an increase in the yield-related greenhouse gas emissions.  相似文献   

18.
Soil fertility and climate risks are hampering crop production in the Sahelian region. Because experiments with only a few fertility management options on a limited number of sites and years cannot fully capture the complex and highly non-linear soil–climate–crop interactions, crop growth simulation models may suitably complement experimental research to support decision making regarding soil fertility and water management. By means of a long term (23 years) scenario analysis using the Agricultural Production Systems Simulator (APSIM) model, this study investigates millet response to N in view of establishing N recommendations better adapted to subsistence small-holder millet farming in the Sahel. Prior to this, the APSIM model was tested on a rainfed randomized complete block experiment carried out during the 1994 and 1995 cropping seasons, having contrasting rainfall conditions. The experiment combined, at three levels each, the application of cattle manure (300, 900 and 2700 kg ha?1), millet residue (300, 900 and 2700 kg ha?1) and mineral fertilizer (unfertilized control, 15 kg N ha?1 + 4.4 kg P ha?1 and 45 kg N ha?1 + 13.1 kg P ha?1) at ICRISAT Sahelian Center, Niger. The model suitably predicted plant available water PAW and the simulated water and nitrogen stress were in agreement with measurement (water) and expectation (N) regarding the fertilizer and rainfall conditions of the experiment. APSIM simulations were in satisfactory agreement with the observed crop growth except for the highest crop residue application rates (>900 kg ha?1). For biomass and grain yield, the model performance was relatively good in 1994 but biomass yields were slightly overpredicted in 1995. The model was able to adequately reproduce the average trend of millet grain yield response to N inputs from manure and fertilizer, and to predict the overall observed higher grain yield in 1995 compared to 1994, despite the better rainfall in 1994. The 23-year, long term scenario analysis combining different application rates of cattle manure, millet residue and mineral fertilizer, showed that moderate N application (15 kg N ha?1) improves both the long term average and the minimum yearly guaranteed yield without increasing inter-annual variability compared to no N input. Although it does imply a lower average yield than at 30 kg N ha?1, the application of 15 kg N ha?1 appears more appropriate for small-holder, subsistence farmers than the usual 30 kg N ha?1 recommendation as it guarantees higher minimum yield in worst years, thereby reducing their vulnerability.  相似文献   

19.
Preplant‐applied, urea‐based fertilizer management in high‐residue, no‐till (NT) corn (Zea mays L.) is challenging because of potential N loss due to cool, wet conditions in the spring and dry conditions during the summer months. Field research evaluated the effects of polymer‐coated urea (PCU) application timing, placement and cropping system on urea release for corn and determined corn yield response to PCU on claypan soils following wheat (Triticum aestivum L.) cropping systems [reduced‐till corn following wheat, no‐till corn following wheat with double‐cropped (DC) soybean [Glycine max (L.) Merr.] and no‐till corn following wheat with a frost‐seeded red clover (FSC) (Trifolium pratense L.) cover crop]. Urea release from PCU was <35 % from fall through winter (November–January) and <20 % for early preplant (February–March) applications until 1 April. By 1 August, less urea was released in some instances from surface applications of PCU following FSC or DC soybean, but release was generally greater than in the absence of soil. No‐till corn following DC soybean or FSC had yields that were 1.01–1.32 Mg ha?1 greater when grown with PCU compared to urea at 168 kg N ha?1. Grain yields were similar within no‐till cropping systems with PCU, anhydrous ammonia and sidedressed urea ammonium nitrate (UAN) at 168 kg N ha?1. Farmers should recognize that high yields may not be obtained if PCU rates are reduced by 50 % (84 kg N ha?1) in high‐residue (DC soybean or FSC), no‐till production systems. Several N sources such as PCU, anhydrous ammonia and sidedressed UAN worked similarly in high‐residue, no‐till systems, although no differences between N sources were observed in a reduced‐tillage system.  相似文献   

20.
One approach to decrease the environmental impact of crop production and reduce costs is to optimize agronomic practices and genotypes so that nutrients are used more efficiently. In this study the effects of agronomic practices (rotations, crop protection, fertilization) on yields, nitrogen use efficiency (NUE) and associated parameters were studied in an experiment using two winter wheat genotypes (Cordiale and Scaro) in one season and two potato genotypes (Sarpo Mira and Sante) in two seasons. The wheat showed no varietal differences in yield and NUE; instead the fertilization regime was the main factor affecting yield and NUE with higher values observed when conventional fertilization was used. The exception was for wheat grown after three years grass/clover ley when there was no added yield benefit from conventional fertilization of the organically bred variety (Scaro). This demonstrates the potential for N fixing crops to provide sufficient N to high yielding cereals if grown for long enough prior to planting. The greatest gains in NUE were achieved by combining an N efficient genotype with conventional crop management in an organic rotation. Fertilization and genotypic variation were the main factors affecting potato tuber yield and NUE, with the late maturing Sarpo Mira displaying elevated yields and NUE compared with the early maturing Sante. The use of organic fertility sources resulted in lower NUE, but N release from organic sources may increase NUE of future crops. This highlights the need for long-term nutrient balance and modelling studies to assess NUE at the crop rotation scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号