首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 390 毫秒
1.
巴西橡胶树HbSIP1基因启动子的克隆和序列分析   总被引:1,自引:1,他引:0  
为研究橡胶焦磷酸酶基因的表达特征及其在天然橡胶生物合成中调控机理,根据巴西橡胶树焦磷酸酶基因HbSIP1序列,利用GenomeWalker方法对HbSIP1基因启动子序列进行了分离,对其序列进行了生物信息学分析,并构建了含有该序列的植物表达载体pSIP1-1381Z。结果表明:分离获得了1198 bp的HbSIP1基因启动子序列,该序列具有真核生物典型启动子结构特征,并含有众多应答激素和胁迫信号的调控元件。对HbSIP1的启动子区的克隆和分析,为进一步研究HbSIP1的功能和表达调控机制奠定基础。  相似文献   

2.
水稻稻瘟病抗性新基因OsAAA1是一种诱导型的广谱抗病基因,但OsAAA1的表达模式及调控机理未知。为了研究OsAAA1的表达模式及调控机理,通过对OsAAA1启动子序列的生物信息学分析,克隆了3个OsAAA1启动子区域的缺失体,将上述缺失体转入植物双元表达载体DX2181G中。通过菌落PCR、质粒PCR检测和质粒DNA酶切鉴定并测序确认,结果表明以上3个启动子系列缺失载体构建成功。为进一步研究OsAAA1启动子的表达模式及该基因的调控机理提供了参考依据。  相似文献   

3.
旨在克隆和分析猪STAB2基因启动子及其转录活性。利用基因克隆、双荧光素酶报告基因系统以及生物信息学分析等方法,克隆得到了STAB2基因转录起始位点上游1 997 bp的候选启动子序列并对其序列特征进行了分析,同时,构建了不同长度的5'端缺失的重组载体并利用双荧光素酶报告基因系统分析了其荧光素酶活性,进而确定了STAB2基因的核心启动子区域及关键调控区域,并对关键调控区域内的转录因子及其结合位点进行了分析。结果表明:STAB2基因的候选启动子区域内包含4个核心启动子和1个Cp G岛;-309--39 bp为STAB2基因的关键调控区域,-1 045--309 bp可能存在一个正向调控元件,而-1 506--1 045 bp可能存在一个负向调控元件; STAB2基因的关键调控区域内包含72个转录因子结合位点,部分转录因子在这一区域具有多个结合位点,如Arnt∶∶Ahr、ZNF354C、Klf4和KLF5,并且,转录因子结合位点之间也存在重合区。为进一步研究猪STAB2基因的表达调控机制以及其在调控猪抗病和肌肉品质中的功能提供了理论依据。  相似文献   

4.
为了进一步了解启动子在甘蓝型油菜FIL基因(BnaFIL)表达调控中的作用,根据甘蓝型油菜基因组数据,以甘蓝型油菜叶片提取的DNA为模板,对甘蓝型油菜BnaFIL基因的启动子序列pBnaFIL进行克隆,长度为1 326 bp。采用PlantCARE在线分析软件对该启动子序列进行生物信息学序列分析,结果表明,该序列含有参与光反应的部分保守DNA模块以及CAAT-box和TATA-box等核心启动子必备元件,与分生组织表达有关的顺式作用的调控元件CAT-box以及光敏反应元件。通过该启动子序列替换pBI121植物表达载体上的CaMV35S启动子,使该启动子与GUS基因融合获得pBnaFIL-GUS表达载体,将载体通过农杆菌花序浸染的方法转入拟南芥中,获得了早花启动子重组质粒阳性转基因株系和晚花启动子重组质粒阳性转基因株系。之后对转基因拟南芥植株进行GUS染色分析,对启动子的表达效果进行了检测,最终在不同的转基因拟南芥植株中均发现了GUS基因的表达。结果表明,早花材料与晚花材料中启动子表达强弱存在差异,早花材料启动子的驱动基因表达效果比晚花材料启动子的驱动效果要好,由此推断,启动子的驱动效果...  相似文献   

5.
研究植物种子特异启动子具有重要的理论和实际意义。本文研究了棉花α球蛋白A基因启动子,该启动子序列全长为1640 bp,作用元件分析表明该区域除了具有核心调控序列外,还含有多个与组织特异性相关的顺式作用元件。设计其5'端构建4个不同长度的缺失、融合GUS基因的表达载体,并通过蘸花法分别转化拟南芥。转基因拟南芥GUS表达分析结果表明,该启动子能驱动GUS基因在胚、露白的种子、子叶期的幼苗中表达,而二叶期的幼苗、根、茎、莲座叶、茎生叶和花苞组织则没有表达,说明棉花α球蛋白A基因启动子是一个种子特异性启动子。208 bp长度的启动子足以维持其种子特异表达功能,而且在启动子的-684和-208区域之间可能存在负调控元件或负调控区域。分析棉花α球蛋白A基因启动子是一个种子特异性启动子,其基本启动子区域不长于208 bp。  相似文献   

6.
为了利用PCR技术得到甘蓝型油菜A7-FT基因启动子序列,根据甘蓝型油菜全基因组序列,利用启动子在线预测软件预测其功能与结构,根据其预测的顺式元件的分布,从5′端开始缺失的方式获得5个不同片段长度的启动子序列。构建含不同片段长度启动子的GUS基因表达载体,利用农杆菌介导拟南芥,得到T_2幼苗,经过GUS染色与脱色,探讨A7-FT基因启动子的功能,为研究甘蓝型油菜开花调控机制提供理论基础。通过PCR技术从甘蓝型油菜湘油15号基因DNA中获得A7-FT基因启动子序列。利用PLACE和PlantCARE在线工具对该段序列进行预测,发现A7-FT基因启动子除了存在启动子核心元件CAATbox和TATAbox,还有光应答元件、激素应答元件、胚乳表达应答元件、抗逆性应答元件、生理控制相关的顺式作用元件。基于预测的顺式作用元件的分布情况,设计特异性引物,克隆不同片段长度启动子,与pCAMBIA1303载体构建5′端缺失载体,分别命名为M1、M2、M3、M4、M5。通过农杆菌介导拟南芥,GUS染色与脱色结果显示,在-1 549~-238可能存在一些负调控元件的结合位点,而-238~+1区域是该启动子的核心区段。  相似文献   

7.
克隆获得柽柳GRAS 转录因子基因启动子序列,并对其表达模式进行分析,从而初步探究GRAS转录因子基因的表达特征和功能。CTAB法提取刚毛柽柳基因组DNA,按照Genome Walking Kit 说明克隆GRAS 转录因子基因启动子序列,将克隆获得的GRAS 转录因子基因启动子序列定向替换pCAMB1301 载体上的35S启动子序列,构建融合表达载体,以驱动GUS 基因表达,瞬时侵染拟南芥后进行GUS 基因的染色。成功克隆获得刚毛柽柳936 bp 的GRAS 转录因子基因启动子序列。PLACE 和PlantCARE 数据库分析结果表明该启动子不仅包含启动子区的核心元件CAAT-box 和TATA-box,还含有多个与逆境应答有关的顺式调控元件。成功将GRAS 基因启动子序列定向置换pCAMBIA1301 的35S 启动子,构建重组载体PGRAS::GUS。瞬时转化拟南芥后GUS 染色,结果显示转基因拟南芥叶片被染色而根部着色较浅。初步表明克隆获得的GRAS 基因启动子具有启动子表达活性,其可能参与了柽柳的抗逆应答,为进一步分析该基因的抗逆功能和抗逆机制奠定了基础。  相似文献   

8.
旨在初步分析猪EIF2S3基因的启动子活性以及转录调控元件。利用生物信息学分析、PCR扩增、基因克隆、细胞转染、双荧光素酶活性分析等方法,获得了EIF2S3基因启动子区域的序列特征,构建了不同片段长度的EIF2S3基因启动子区的双荧光素酶报告基因载体并分析了其荧光素酶活性,进而确定了EIF2S3基因的核心启动子区域以及关键的调控区域,最后还预测了关键调控区域的转录因子及其结合位点。结果表明,EIF2S3基因候选启动子区包含3个核心启动子以及2个Cp G岛;-706~+200 bp为EIF2S3基因的核心启动子区域,-706~-253 bp为EIF2S3基因启动子的关键调控区域,且发挥正向调节作用,而-1 563~-706 bp不存在任何对EIF2S3基因启动子活性有影响的调控元件; EIF2S3基因启动子的关键调控区域包含440个转录因子结合位点,且多个转录因子在此区域均有多个结合位点,如SP1、KLF4、Myo D1、Myo G、NFKB1。为进一步研究猪EIF2S3基因的表达机制奠定了基础。  相似文献   

9.
花生Δ~9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析   总被引:1,自引:0,他引:1  
Δ~9-硬脂酰-ACP脱氢酶(SAD)是决定植物体内饱和脂肪酸与不饱和脂肪酸比值的关键酶。以花生品种豫花9326基因组DNA为模板,通过基因组步移技术,克隆到花生Δ~9-硬脂酰-ACP脱氢酶基因(Ah SAD)起始密码子ATG上游720 bp片段,利用5'RACE方法获得了该基因的5'UTR序列,通过序列比对确定720 bp片段为Ah SAD启动子区域。PLACE在线启动子预测分析表明,该序列具有真核生物启动子必需的核心元件TATA-box和CAAT-box,含有多个与光诱导和激素响应相关顺式序列元件。将Ah SAD启动子片段替换pBI121质粒中的CaMV35S启动子驱动下游GUS基因表达,构建植物表达载体pBI-PAh SAD。通过农杆菌介导法转化拟南芥和在花生不同组织中瞬时表达,利用GUS组织化学染色研究其表达特性。表明在拟南芥和花生受体中,AhSAD启动子主要调控下游基因在根、茎、叶片和子叶中表达,在花生的果针中也检测到GUS活性;拟南芥的茎生叶只有叶脉中具有GUS活性,而花生整个叶片中都具有GUS活性。  相似文献   

10.
CPSF(cleavage and polyadenylation specificity factor),真核细胞mRNA3'端前体加工中起主导作用的蛋白因子。然而迄今对植物和水稻CPSF家族基因及其表达调控元件的克隆和功能的研究还不多。本研究克隆了水稻中一个未知功能基因OsCPSF7的上游2 330 bp启动子区域,构建植物融合表达载体pOsCPSF7:GUS,并获得了转基因水稻植株。组织化学染色结果表明,OsCPSF7基因启动子具有表达活性,可驱动GUS报告基因,在转基因水稻植株不同发育时期的叶枕、叶舌、茎间、小穗及种子柱头基部、胚和胚乳的连接部位均有强烈的表达。结果表明OsCPSF7基因启动子可能参与调控信号转导、逆境应答以及水稻生长和发育。该研究结果为进一步研究水稻OsCPSF7基因启动子的功能及其相关调控机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号