首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protocol was developed for an efficient Agrobactertium-mediated transformation of black pepper plants through somatic embryogenesis. Embryogenic mass derived from primary somatic embryos that were obtained from the micropylar region of mature germinating seeds of black pepper was found to be the ideal target tissue for transformation. Genetic fidelity test of embryogenic mass-derived plantlets by RAPD using 23 random primers revealed no genetic variation among the progenies and the parent plant. Among the antibiotics used for selection of transformants, cefotaxime at 100 μg mL−1 was found to be optimum to control Agrobacterium besides its ability to promote somatic embryo proliferation. In the case of kanamycin, a step-wise increase in concentration from 25 to 50 and then to 100 μg mL−1 were found to be optimum. Embryogenic mass co-cultivated with Agrobacterium carrying the β-glucuronidase (GUS) reporter gene were cultured on plant growth regulator-free Schenk and Hildebrandt (SH) medium and transformants were selected in selection medium containing cefotaxime and step-wise increase in kanamycin concentration. The transient GUS gene expression was determined histochemically. Transformants that survived in the selection medium were hardened in the greenhouse. An average of nine hardened putative plantlets was obtained per gram of embryogenic mass. The presence of transgene in these plantlets was assayed by PCR, dot blot, and Southern blot hybridization. Results presented demonstrated for the first time an efficient transformation and regeneration of black pepper without the use of growth regulators. This simple efficient procedure would allow transformation of black pepper with genes of desirable characters.  相似文献   

2.
An Agrobacterium-mediated transformation procedure for soybean [Glycine max L. Merrill] proliferating somatic embryos is here described. The Agrobacterium tumefaciens LBA4404 strain harboring pTOK233, pCAMBIA1390-olp or pH7WG2Dwrky plasmids was used to mediate gene transfer into the plant genome. Prior to Agrobacterium inoculation, proliferative soybean embryogenic clusters were microwounded by DNA-free tungsten particle bombardment. Three independent transformation experiments were performed. In Experiment I, 26 transgenic plants were obtained from a unique clone of cv Bragg, while 580 plants were recovered from 105 clones of cv IAS5. In Experiment II, a single hygromycin-resistant clone of cv BRSMG68 Vencedora was recovered and gave rise to five plants. In Experiment III, 19 plants of cv Bragg and 48 plants of IAS5 were recovered, representing five and 14 independent transformation events, respectively. PCR and Southern analyses confirmed the transgenes’ integration into plant genomes. Transgenic plants were fertile. They flowered, set pods and seeds. Transgene segregation in two T1 progenies fits the Mendelian pattern (3:1 transgenic:non-transgenic plants). This is the first report of transgenic fertile soybean plants obtained from somatic embryogenic tissues transformed by the system that combines DNA-free particle bombardment and Agrobacterium.  相似文献   

3.
Embryogenic callus of Phalaenopsis amabilis derived from leaf tissue was cocultivated with Agrobacterium tumefaciens strain LBA4404 harboring a plant cloning vector. The vector carried the lipid transfer protein (LTP) encoding gene cloned from cold tolerant Brazilian upland rice cv. IAPAR 9. The highest transformation efficiency (12.16%) was obtained when 1–2 mm calli were infected and cocultivated with 0.4 (OD600) A. tumefaciens for 20 min. Transgene integration of kan-resistant plants was confirmed through polymerase chain reaction analysis and Southern hybridization. Four hundred seventy transgenic plants, each derived from an independent protocorm-like body, were obtained. The expression of rice cold-inducible LTP gene in transgenic P. amabilis improved its adaptive responses to cold stress. The examination of transgenic plants revealed that enhanced cold tolerance was most likely due to the increased accumulation of several compatible solutes such as total soluble sugars, proline, antioxidant superoxide dismutase, decreased accumulation of malondialdehyde, and maintained electrolytes within the membrane compared with controls.  相似文献   

4.
Agrobacterium tumefaciens mediated in planta transformation protocol was developed for castor, Ricinus communis. Two-day-old seedlings were infected with Agrobacterium strain EHA105/pBinBt8 harboring cry1AcF and established in the greenhouse. Screening the T1 generation seedlings on 300 mg L−1 kanamycin identified the putative transformants. Molecular and expression analysis confirmed the transgenic nature and identified high-expressing plants. Western blot analysis confirmed the co-integration of the nptII gene in the selected transgenic plants. Bioassay against Spodoptera litura corroborated with high expression and identified five promising effective lines. Analysis of the T2 generation plants proved the stability of the transgene indicating the feasibility of the method.  相似文献   

5.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot.  相似文献   

6.
The rice leaffolder (RLF), Cnaphalocrocis medinalis is an important pest of rice that causes severe damage in many areas of the world. The plants were transformed with fully modified (plant codon optimized) synthetic Cry1C coding sequences as well as with the hpt and gus genes, coding for hygromycin phosphotransferase and β-glucuronidase, respectively. Cry1C sequences placed under the control of doubled 35S promoter plus the AMV leader sequence, and hpt and gus genes driven by cauliflower mosaic virus 35S promoter, were used in this study. Embryogenic calli after cocultivation with Agrobacterium were selected on the medium containing hygromycin B. A total of 67 hygromycin-resistant plants were regenerated. PCR and Southern blot analyses of primary transformants revealed the stable integration of Cry1C coding sequences into the rice genome with predominant single copy integration. R1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. These transgenic lines were highly resistant to rice leaffolder (RLF), Cnaphalocrocis medinalis as revealed by insect bioassay.  相似文献   

7.
In plant breeding, androgenic doubled haploids represent powerful tools to save time and resources for pure line generation. While in many species efficient protocols are known, in tomato (Solanum lycopersicum), the knowledge on the induction of androgenesis is still very scarce, and little is known about the particularities of this highly recalcitrant species. The only known method capable of yielding haploid/doubled haploid tomato plants is anther culture. However, this method has important limitations, including low efficiency of haploid induction and a low proportion of spontaneously doubled haploids. To understand these limitations better, we have analyzed the process of callus formation in anthers of tomato lines carrying the ms10 35 gene for male-sterility, using light and electron microscopy, flow cytometry and genetic analysis with morphological and molecular markers. Our results demonstrate that haploid, doubled haploid and diploid calli occur in tomato anthers, although at different frequencies. Diploid calli derived either from somatic cells or from the fusion of two genetically different haploid nuclei account for more than 90% of the total of calli produced. Somatic calli are derived from the stubs of connective tissue present in the interlocular septa of anthers. This growth is markedly increased in the ms10 35 mutants, which explains their higher callogenic rates than standard tomato lines. Together, our results reveal serious drawbacks that explain the low efficiency of anther-derived, doubled haploid production in tomato, and stress the need for alternatives towards doubled haploidy.  相似文献   

8.
Agrobacterium-mediated genetic transformation was performed using embryonic axes explants of pigeon pea. Both legume pod borer resistant gene (cry1Ac) and plant selectable marker neomycine phosphor transferase (nptII) genes under the constitutive expression of the cauliflower mosaic virus 35S promoter (CaMV35S) assembled in pPZP211 binary vector were used for the experiments. An optimum average of 44.61% successfully hardened dot blot Southern hybridization positive plants were obtained on co-cultivation media supplemented with 200 μM acetosyringone without L-cysteine. The increased transformation efficiency from a baseline of 11.53% without acetosyringone to 44.61% with acetosyringone was further declined with the addition of different concentrations of L-cysteine to co-cultivation media. Transgenic shoots were selected on 50 and 75 mg L−1 kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 20 g L−1 sucrose and 0.5 mg L−1 indole butyric acid in the absence of kanamycin. Furthermore, 100% seed setting was found among all the transgenic events. The plants obtained were subjected to multi- and nochoice tests to determine the behavioral responses and mortality through Helicoverpa armigera bioassays on the leaf and relate their relationship with the expression of cry1Ac protein which was found to be less in leaf as compared to the floral buds, anther, pod, and seed.  相似文献   

9.
A phytase gene (phyA), isolated from Aspergillus ficuum (AF537344), was introduced into cotton (Gossypium hirsutum L.) by Agrobacterium-mediated transformation to increase the phosphorus (P) acquisition efficiency of cotton. Southern and Northern blot analyses showed that the phyA was successfully incorporated into the cotton genome and expressed in transgenic lines. After growing for 45 days with phytate (Po) as the only P source, the shoot and root dry weights of the transgenic plants all increased by nearly 2.0-fold relative to those of wild-type plants, but were similar to those of transgenic plants supplied with inorganic phosphorus. The phytase activities of root extracts prepared from transgenic plants were 2.4- to 3.6-fold higher than those from wild-type plants, and the extracellular phytase activities of transgenic plants were also 4.2- to 6.3-fold higher. Furthermore, the expressed phytase was secreted into the rhizospheres as demonstrated by enzyme activity staining. The transgenic plants accumulated much higher contents of total P (up to 2.1-fold after 30 days of growth) than the wild-type plants when supplied with Po. These findings clearly showed that cotton plant transformed with a fungal phytase gene was able to secret the enzyme from the root, which markedly improved the plant’s ability to utilize P from phytate. This may serve as a promising step toward the development of new cotton cultivars with improved phosphorus acquisition.  相似文献   

10.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

11.
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids: firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid) to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm). A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment.  相似文献   

12.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.  相似文献   

13.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

14.
The influence of iso-osmotic (−0.7 MPa) NaCl and PEG stress on growth, osmotic adjustment and antioxidant defense mechanisms was investigated in the in vitro cultures of Sesuvium portulacastrum (L.) L. The decreased relative growth rate (RGR) and water content of PEG-stressed calli in comparison to NaCl was found to be correlated with differences observed in the energy expenditure for the maintenance of osmotic balance. Osmotic adjustment in the NaCl-stressed calli favored higher accumulation of saline ions and soluble sugars, whereas PEG-stressed calli confirmed increased levels of organic osmolytes (proline, glycine betaine and soluble sugars). Permeability of Na+ ions across the membrane revealed increased relative electrolytic leakage (REL) in NaCl-stressed calli, however non-penetrating and highly viscous solution of PEG amplified the peroxidation of membrane lipids. Increased activities of superoxide dismutase and catalase displayed efficient removal of toxic reactive oxygen species in comparison to ascorbate peroxidase in the calli exposed to iso-osmotic stress. These findings suggest that differential tolerance potential to iso-osmotic NaCl and PEG stress in terms of osmotic adjustment appears to be the prime defense mechanism of Sesuvium for its survival under iso-osmotic stress conditions at the expense of reduced growth and water content.  相似文献   

15.
The expression of a microbial phytase in transgenic plants may create a new biochemical pathway that mobilizes its endogenous phytate and release inorganic phosphate from it, so that more phosphorus is available for plant growth. In this study, transgenic soybean plants were generated via both Agrobacterium transformation and pollen tube pathway with the PhyA gene of Aspergillus ficuum. The optimal concentrations of plant hormones including N6-benzylaminopurine (BAP), gibberellin (GA3) and indole-3-butyric acid (IBA) were tested based on their effectiveness on promoting the growth of transgenic explants. Genomic PCR results and Southern blot hybridization analysis showed that transgenic soybean plants selected for resistance to kanamycin contained the phyA transgene. The transgenic soybean plants with phyA gene integrated in their genome exhibited lower amount of phytate in different soybean tissues including leaf, stem and root, which indicated that engineering crop plants with a higher expression level of heterologous phytase could improve the degradation of phytate and potentially in turn mobilize more inorganic phosphate from phytate and thus reduce phosphate load on agricultural ecosystems.  相似文献   

16.
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted selection in cotton breeding program.  相似文献   

17.
Interspecific hybrids Buddleja davidii × Buddleja weyeriana, Buddleja weyeriana × Buddleja davidii and Buddleja davidii × Buddleja lindleyana were generated using in vitro embryo rescue 10–11 weeks after manual pollination. The morphological variation within the F1 populations was limited. The F1 progeny of B. davidii × B. lindleyana was almost sterile and no F2 generation was obtained. From the other hybrids, F2 generations were made by self pollinations and back crosses. Hybrid nature of all F1 and F2 seedlings was confirmed by AFLP. Chromosome counting and genome size measurement for B. weyeriana (F2 selection of (diploid) B. globosa × (tetraploid) B. davidii) revealed a higher chromosome number (76 chromosomes) and genome size than expected, indicating 2n-gametes formation occurred during meiosis of B. globosa. The F1 hybrids B. weyeriana × B. davidii (76 chromosomes) had an intermediate genome size compared with the genome size of the parent plants, proving their hybrid nature. However, the F1 and F2 hybrids of B. davidii × B. weyeriana all had 76 chromosomes but had a lower genome size than expected, suggesting the occurrence of chromosome rearrangements in the genome of the hybrids. B. lindleyana had 38 chromosomes, while the F1 hybrids of B. davidii × B. lindleyana had 76 chromosomes. Also genome size measurements revealed that the F1 seedlings B. davidii × B. lindleyana had higher genome sizes than expected. Both the results of chromosome counting and genome size measurement indicate that 2n-gametes formation took place during meiosis of B. lindleyana.  相似文献   

18.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively.  相似文献   

19.
The aim of this study is to introduce the suitable protocol for indirect regeneration from seedling-derived leaf segment of Ficus religiosa. The leaf explant successfully produced callus on MS medium containing various concentrations of auxin in combination with BAP. The maximum callus induction (100%) was achieved in MS medium containing 0.5 mg/l 2,4-D plus 0.05 mg/l BAP and MS medium containing 1.5 mg/l NAA plus 0.15 mg/l BAP as well. MS medium consisting of 2,4-D produced yellow-brownish and friable callus (type I) while the yellowish and compact calli (type II) were obtained in MS medium consisting of NAA. On the other hand, MS medium supplemented with IBA formed greenish and compact calli (type Ш). The regeneration rate in type II callus was less than the type I, and there was no shoot induction observed on type Ш calli. MS medium supplemented with 1.5 mg/l BAP in combination with 0.15 mg/l IBA had the highest regeneration frequency (100%) and maximum shoot numbers (5.16) as well as shoot length (2.56 cm) in type I callus. A maximum of 93.33% root induction was observed in MS medium supplemented with 2.0 mg/l IBA plus 0.1mg/l NAA. The plantlets were successfully transferred to the greenhouse. This system could be utilized for large-scale multiplication of Ficus religiosa.  相似文献   

20.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号