首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese deficiency symptoms are more often observed in crops at early stages of growth since Mn2+ can be easily mobilized from the surface soil. The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn2+ levels and to determine the critical tissue concentration for Mn2+ deficiency during early stages of growth. Indicator plants of sunflower (Helianthus annuus L.) were grown with NPKCaMg-fertilization induced of 0.0425–0.0700 g kg−1; of tobacco (Nicotiana tabacum L.) 0.0237–0.0337 g kg−1; of triticale (x Triticosecale W.) 0.0103–0.0327 g NH4-acetate + EDTA extractable soil Mn2+ kg−1; and were grown for 73, 50, and 191 days. The minimum Mn2+ concentration required in soil nutrient contents was 0.0425 g kg−1 for sunflower, 0.0243 g kg−1 for tobacco, and 0.0103 g kg−1 for triticale. Sunflower, tobacco and triticale achieved optimum growth from 0.048 to 0.065 g Mn2+ kg−1, from 0.0249 to 0.0321 g Mn2+ kg−1, and from 0.0287 to 0.0296 g Mn2+ kg−1, respectively. Critical ABP's dry weight Mn2+ concentration at early stages of growth was 0.0536 g kg−1 in sunflower, 0.458 g kg−1 in tobacco, and 0.1938 g kg−1 in triticale. Our results demonstrate that the tolerance to low external Mn2+ (triticale <0.0302 g kg−1; sunflower <0.0562 g kg−1; tobacco <0.0693 g kg−1) and the critical tissue Mn2+ levels for deficiency varied significantly among crop species tested.  相似文献   

2.
A study was conducted in controlled environment glasshouses to investigate the effects of soil moisture on resource capture and conversion of three landraces (DipC, S19-3 and UN from Botswana, Namibia and Swaziland, respectively) of bambara groundnut (Vigna subterranea (L.) Verdc.). The study was conducted under two soil moisture treatments: an irrigated control and a drought treatment where irrigation was withheld from approximately flowering to final harvest. Drought reduced the mean fractional intercepted radiation (f) from 0.8 to less than 0.7 across landraces. The mean light extinction coefficient (=0.46) was not affected either by landrace or watering regime, while cumulative intercepted radiation (Sci) reduced under drought because of the reduction in f. Drought reduced total transpiration (Ec) only in DipC while it had no effect on the other two landraces. Crops under irrigation extracted most of the water from the top 50 cm of the profile while those under drought extracted water down to 90 cm. The conversion coefficient for intercepted radiation (s; g MJ−1) was reduced by 32%, from 1.51 to 1.02 g MJ−1. Similarly, drought reduced the dry matter/transpired water ratio (εw; g kg−1) by 20% from 2.05 to 1.65 g kg−1.  相似文献   

3.
The growth and production of sweet sorghum [Sorghum bicolor (L.) Moench] crops under semi-arid conditions in the Mediterranean environment of southern Italy are constrained by water stress. The effects of temporary water stress on growth and productivity of sweet sorghum were studied during three seasons at Rutigliano (Bari, Italy). The aim of this research was to evaluate the sensitivity of phenological stages subjected to the same water deficit. In a preliminary study it was observed that stomata closed when pre-dawn leaf water potential (Ψb) became lower than −0.4 MPa. This criterion was used in monitoring plant water status in three different plots: one never stressed and two stressed at different phenological stages (‘leaf’ and ‘stem’) when mainly leaves or stems were growing, respectively. An evaluation of the sensitivity of phenological stages subjected to identical water stress was obtained by comparing the above-ground biomass and WUE of drought crops with those of the well-irrigated crop (up to 32.5 t ha−1 of dry matter and 5.7 g kg−1). The sensitivity was greatest at the early stage (‘leaf’), when a temporary soil water stress reduced the biomass production by up to 30% with respect to the control and WUE was 4.8 g kg−1 (average of three seasons). These results help quantify the effects of water constraints on sweet sorghum productivity. An irrigation strategy based on phenological stage sensitivity is suggested.  相似文献   

4.
Two field experiments were conducted during] 994-95 to study the effect of spray of 10−5 M GA3 at 40 days after sowing on mustard ( Brassica juncea (L.) Czern & Coss.) cv. Varuna grown with basally applied 0, 40, 80 and 120 kg N ha−1 (Expt. 1) and 0,15, 30 and 45 kg P ha−1 (Expt. 2) on pod number per plant, seeds per pod, 1000 seed weight, seed yield, biological yield, harvest index and fatty acid composition of oil. No significant difference between water and GA3 spray was found when basally applied nitrogen was 0 or 40 kg N ha−1. N80 proved to be the best for yield characteristics. In another experiment on phosphorus, GA3 and 30 kg P ha−1 individually enhanced the yield, but interaction of GA3 and P remained non-significant. The fatty acid composition of oil in both experiments was significantly affected only by nitrogen and phosphorus treatments for oleic acid and erucic acid. It was found that return in the form of yield was more for every kg applied fertilizer under GA, spray treatment. The response was more for N fertilizer in comparison to P. GA3 at a low level of fertilization significantly increased the return from fertilization.  相似文献   

5.
Volunteer plants of oilseed rape (Brassica napus L.) from persistent seeds in soil can affect subsequent crops. Apart from the agricultural disadvantages, the environment and the marketing of the seeds may also be affected, particularly if plants with special ingredients or genetically modified (gm) plants are grown. In order to investigate the influence of soil cultivation and genotype on seed persistence and gene flow via volunteers, a field experiment was set up testing four tillage treatments and two cultivars in a split-plot design. The cultivars tested were near-isogenic to two gm cultivars. To simulate harvesting losses, 10 000 seeds m−2 were broadcast on a soil in July. The subsequent tillage treatments were combinations of immediate or delayed stubble tillage by a rotary tiller, primary tillage with plough or cultivator, or zero tillage. Over the following year, the fate of the seeds was determined. Immediate stubble tillage with following cultivator or plough resulted in 586 resp. 246 seeds m−2 in the soil seed bank. After delayed stubble tillage with following plough, 76 seeds m−2 were found, and no soil seed bank was built up in the zero tillage treatment. Nevertheless, in the zero tillage treatment, several robust volunteer plants survived the herbicide application before the direct drilling in autumn until following spring. In the zero tillage treatment and in the cultivator treatment, 0.19 volunteers m−2 resp. 0.06 volunteers m−2 flowered simultaneously to ordinarily sown oilseed rape in the following crop of winter wheat and produced 73 resp. 18 seeds m−2. Delayed stubble tillage reduced the risk of gene escape via the soil seed bank, while zero tillage resulted in the highest risk of gene escape by pollen and by production of a new generation of seeds. In terms of a labelling threshold for gm food this number of seeds would be below the threshold of 0.9% of transgenic parts in conventially bred food or feed.  相似文献   

6.
Response of sunflower ( Helianthus annuus L.) to sulphur applied ca. 0, 30, 90 and 150 mg kg-1 and nitrogen applied ca. 0, 100 and 200 mg kg-1 soil were studied on a Typic Camborthids in greenhouse. Nitrogen and S application had a significant (P < 0.01) main and interactive effect on seed yield and dry weight of leaves and stem. Cumulative N and S contents of sunflower seeds, stem and leaves were significantly (P < 0.01) affected by N and S application. Sulphur transport and accumulation in sunflower seeds was increased with S application. There were significant (P < 0.01) correlations between seed yield and N and S content of sunflower plants. Critical S concentration (%) in 60 days old plants was 0.36 for 95 % relative yield of the maximum. Application of 90 mg S kg-1 with 200 mg N kg-1 resulted in the highest seed yield and maximum total S and N contents in sunflower leaves, stem and seeds. Relative increase in sunflower seeds yield at higher levels of N and S was more than that of dry weight of stem and leaves.  相似文献   

7.
The effect of six doses of beet vinasse (0, 3, 6, 10, 20 and 40 t ha−1, respectively) on wheat (Triticum aestivum cv. Cajeme) yield in dryland conditions (Guadalquivir Valley, Andalusia, Spain) for 3 years on a Typic Xerofluvent was studied. The results showed that at low doses, beet vinasse is of agricultural interest due mainly to its organic matter concentration. The application of this byproduct to the soil increased soil microbial biomass and mineralization of its organic matter increased NO3–N concentrations in soil. This caused an increase in grain yield in the three seasons. When the vinasse was applied with high doses, NO3–N concentrations in soil, soil microbial biomass, soil structure, bulk density, electric conductivity, nutrient uptake, crop yield and grain quality were negatively affected. We assume that the high amounts of monovalent cations, particularly Na+, and of fulvic acids, which had been transported into the soil by the vinasse, destabilized the soil structure. This may have led to anaerobic soil conditions being presumably responsible for restricted N mineralization or even for denitrification. This explains the lower N supply to the crops reflected by the low N concentrations in the leaves of treatments A4 and A5.  相似文献   

8.
The influence of aqueous 1-methylcyclopropene (1-MCP) concentration, immersion duration, and solution longevity on the ripening of early ripening-stage tomato (Solanum lycopersicum L.) has been investigated. Tomato fruit at the breaker-turning stage were fully immersed in aqueous 1-MCP at 50, 200, 400 and 600 μg L−1 for 1 min, quickly dried, and then stored at 20 °C. Ethylene production, respiration, surface color development, and rate of accumulation of lycopene and polygalacturonase (PG) activity were suppressed and/or delayed in fruit exposed to aqueous 1-MCP. Suppression of ripening was concentration dependent, with maximum inhibition in response to 1 min immersion occurring at concentrations of 400 and 600 μg L−1. Climacteric ethylene peaks were delayed approximately 6, 7, and 9 d and respiration was strongly suppressed in fruit treated with aqueous 1-MCP at 200, 400, and 600 μg L−1, respectively, compared with control fruit. Fruit firmness, lycopene content, PG activity, and surface hue of fruit treated at the three higher levels remained strongly suppressed compared with control. Skin hue values and pericarp lycopene content in response to treatment at the subthreshold 50 μg L−1 provided evidence for differential ripening suppression in external versus internal tissues. Maximum delay of softening and surface color development in response to 50 μg L−1 aqueous 1-MCP occurred following immersion periods of between 6 and 12 min. Factors affecting fruit penetration by aqueous 1-MCP and mechanisms contributing to recovery from 1-MCP-induced ripening inhibition are discussed.  相似文献   

9.
Accumulation of sludge-borne copper (Cu) by field-grown maize and its distribution between the different plant organs was studied in detail in a long-term sewage sludge field trial. Since 1974, field plots on a coarse sandy soil have been amended each year with farmyard manure (FYM) at a rate of 10 t dry matter (DM) ha−1 year−1 and with sewage sludge at the two levels of 10 t DM ha−1 year−1 (SS 10) and 100 t DM ha−1 per 2 years (SS 100). All field plots have been cropped annually with maize. In 1993, five replicate plants per treatment were examined at six different growth stages from seedling to grain maturity. Each plant was separated into at least 12 different parts and the Cu content of each was determined. Regarding growth parameters, no visible deleterious effects on plant development due to the different soil treatments could be observed, although the dry matter yield of roots and stalks of SS 100-treated plants was significantly reduced. Significantly increased Cu concentrations of up to 60 mg Cu kg−1 DM in the roots of young SS 100-grown maize plants and of up to 20 mg Cu kg−1 DM in the upper leaves at silage stage were found. No critical Cu amounts were reached in the grains until harvest.  相似文献   

10.
The effect of drought on the growth and development of bambara groundnut (Vigna subterranea (L.) Verdc.) was studied in controlled-environment glasshouses in the UK. There were three landraces (S19-3, DipC and UN from Namibia, Botswana and Swaziland, respectively) and two watering regimes; a control that was irrigated weekly to 90% field capacity and a drought treatment with no irrigation from 49 days after sowing (DAS) until final harvest (147 DAS). Bambara groundnut responded to drought by reducing the rate of leaf area expansion, final canopy size and total dry matter (TDM) during vegetative growth. Drought also caused significant reductions in pod dry matter (PDM), pod number, seed weight and harvest index (HI), leading to a decrease in final pod yield that was different between landraces. Across landraces, drought reduced mean pod yield from 298 g m−2 to 165 g m−2, representing 45% yield loss. Despite the reduction in all landraces, the mean pod yield across the droughted treatments that had received no water for almost 100 days indicated the resilience of the species to drought. The three landraces differed in their phenology; S19-3 exhibited a reduced phenology while UN maintained the longest life cycle. The different responses of the landraces reflect their adaptation to their local climates where mean annual rainfall ranges between 365 mm (Namibia) and 1390 mm (Swaziland). We discuss the significance of these results for future breeding programmes on bambara groundnut.  相似文献   

11.
Information about the effect of the cropping history on the seed yield of oil-seed rape is extremely scarce. In 1992/93 and 1994/95, the effects of different preceding crop combinations (winter barley and winter wheat as preceding crops, oil-seed rape and wheat as pre-preceding crops) on the yield of six double low oil-seed rape cultivars were examined in a field trial at Hohenschulen Experimental Farm, north-west Germany. In addition, eight nitrogen treatments (different amounts and distribution patterns) were tested for their potential to reduce negative effects of the preceding crops. Following the cropping sequence of oil-seed rape then wheat, oil-seed rape yielded only 3.12 t ha−1; after oil-seed rape then barley, the yield was 3.43 t ha−1 compared with 3.77 t ha−1 following wheat then barley and 3.71 t ha−1 following wheat then wheat. The number of seeds per m2 showed a similar pattern, whereas the thousand-seed weight partly compensated for the reduced seed number. It was highest if oil-seed rape was grown 2 years previously. The cultivars differed significantly in their yield potential. Express (3.79 t ha−1) yielded 0.6 t ha−1 more than Falcon (3.18 t ha−1). Increasing amounts of fertilizer-N (80–200 kg N ha−1) increased the seed yield from 3.21 t ha−1 to 3.84 t ha−1. Changes in the distribution pattern within one fertilizer amount had no effect on seed yield. In addition, no interactions between preceding crop combination and the different cultivars or N treatments occurred. It is concluded that crop management cannot totally eliminate the negative effects of an unfavourable cropping history on the seed yield of oil-seed rape.  相似文献   

12.
In rape (Brassica napus L., cv. Global) seed growth mainly depends on husk CO2 assimilation. In irrigated plants, the net photosynthetic rate (Amax) was 10–13 μmol CO2 m−2 s−1 in non-maturing pods and correlated with nitrogen content. The stomatal conductance of water vapour (gH2O) was 0.3 mol m−2 s−1 in non-maturing pods. The photosynthetic nitrogen use efficiency (NUE) was 8.3 μmol CO2g−1 N s−1, about one-third of that in leaves. The photosynthetic water use efficiency (WUE; AmaxgH2O−1) was similar in pods and leaves. In severely droughted plants, the photosynthetic rate was reduced to 38%. The seed growth rate, however, was not influenced by intermittent periods of water stress, indicating translocation of assimilates to the seeds. The drought resistant character of the pods was due to low specific area, succulence, low stomatal conductance causing a small decrease of ΔΨ day−1 during soil drying and maintenance of high relative water content during severe drought. A mathematical formulation of the pod water release curve was undertaken. © (1997) Elsevier Science B.V.  相似文献   

13.
Brasisca Juncea , cv. Pusa Bold, and B. campestris , cv. Pusa Kalyani, were raised under field conditions with varying levels of N supply from 0–120 kg ha-1. The production profile of branches and pods thereon was measured, per unit area basis, throughout the crop ontogeny. At maturity, data on the yield contributing characters, viz. pod dry weight, pod number, seed number per pod, 1000 seed weight, seed wall ratio and seed yield in different order branches, was recorded.
The branching pattern and the number of pods produced on different order branches, in the two species, was favourably modified by the increasing levels of N supply. Primary and secondary branches contributed to the seed yield to an extent of 80 % of the total yield. Nitrogen treatment had no significant effect on 1000 seed weight. B. juncea exhibited significantly higher yield over B. campestris. N supply up to 120 kg ha -1 linearly increased seed yield in both the species. However, it exerted a negative effect too partitioning of assimilates from pod wall to seed. The study indicated that rapeseed-mustard, grown under short winter-season environment with adequate soil moisture, has the potential for higher N-fertilizer optima exceeding 120 kg ha -1.  相似文献   

14.
In order to evaluate the possibility of reducing energy input in giant reed (Arundo donax L.) as a perennial biomass crop, a field experiment was carried out from 1996 to 2001 in central Italy. Crop yield response to fertilisation (200–80–200 kg ha−1 N–P–K), harvest time (autumn and winter) and plant density (20,000 and 40,000 plants per ha) was evaluated. The energy balance was assessed considering the energy costs of production inputs and the energy output obtained by the transformation of the final product. The crop yield increased by +50% from the establishment period to the 2nd year of growth when it achieved the highest dry matter yield. The mature crop displayed on average annual production rates of 3 kg dry matter m−2, with maximum values obtained in fertilised plot and during winter harvest time.

Fertilisation mainly enhanced dry matter yield in the initial period (+0.7 kg dry matter m−2 as years 1–6 mean value). The biomass water content was affected by harvest time, decreasing by about 10% from autumn to winter. With regard to plant density, higher dry matter yields were achieved with 20,000 plants per ha (+0.3 kg dry matter m−2 as years 1–6 mean value).

The total energy input decreased from fertilised (18 GJ ha−1) to not fertilised crops (4 GJ ha−1). The higher energetic input was represented by fertilisation which involved 14 GJ ha−1 (fertilisers plus their distribution) of total energy costs. This value represents 78% of total energy inputs for fertilised crops.

Giant reed biomass calorific mean value (i.e., the calorific value obtained from combustion of biomass sample in an adiabatic system) was about 17 MJ kg−1 dry matter and it was not affected by fertilisation, or by plant density or harvest time. Fertilisation enhanced crop biomass yield from 23 to 27 dry tonnes per ha (years 1–6 mean value). This 15% increase was possible with an energy consumption of 70% of the overall energy cost. Maximum energy yield output was 496 GJ ha−1, obtained with 20,000 plants per ha and fertilisation. From the establishment period to 2nd–6th year of growth the energy production efficiency (as ratio between energy output and energy input per ha) and the net energy yield (as difference between energy output and energy input per ha) increased due to the low crop dry biomass yield and the high energy costs for crop planting. The energy production efficiency and net energy yield were also affected by fertilisation and plant density. In the mature crop the energy efficiency was highest without fertilisation both with 20,000 (131 GJ ha−1) and 40,000 plants per ha (119 GJ ha−1).  相似文献   


15.
The wide variability and complexity of olive orchards makes it difficult to provide solutions to the numerous management questions using a pure experimental approach. In this paper we calibrate and validate a simple model of olive orchard productivity based on the Radiation-Use Efficiency (RUE) concept of Monteith. A calibration experiment was performed in Cordoba from 1998 to 2001 with drip-irrigated olive trees cv. ‘Arbequina’. Destructive samples of 18 trees and non-destructive measurements on 80 trees were used to determine RUE and dry matter partitioning coefficients. Validation experiments were performed in 18 drip-irrigated orchards of seven locations in Southern Spain, including two cultivars (‘Arbequina’ and ‘Picual’). Average RUE was 0.86 g dry matter (MJ PAR)−1 which is equivalent to 1.56 g glucose (MJ PAR)−1. Aboveground accumulated biomass was allocated equally to fruits and vegetative growth, which in turn was partitioned into 30% for leaves and 70% for stems, branches and trunk. The fraction of oil in fruits was 0.38 which implies that the average ratio oil yield/intercepted PAR, which is an equivalent RUE for oil production (o), is 0.17 g oil (MJ PAR)−1. The prediction of oil yield as the product of 0.17 and total intercepted PAR was tested successfully in the validation experiments (relative RMSE = 0.26). Errors of this simple model were partly due to alternate bearing and partly to a decrease in o as canopy size increases, which deserves further research. The concept of o may be also useful for the evaluation of alternate bearing in olive trees.

Estimated potential carbon sequestration by intensive irrigated olive orchards in Southern Spain was 7 t CO2 ha−1 year−1 which is much higher than that of other agricultural systems in Europe.

The simple model of growth and yield presented herein is the core of a complete model of olive growth and yield and may be useful not only for evaluating productivity at different scales but also for solving different management problems (nutrient requirements, plant protection, etc.)  相似文献   


16.
Maize (Zea mays L.) is a very important crop in many of the irrigated areas of the Ebro Valley (NE Spain). Intensive pig (Sus scrofa domesticus) production is also an important economic activity in these areas, and the use of pig slurry (PS) as a fertiliser for maize is a common practise. From 2002 to 2005, we conducted a field trial with maize in which we compared the application of 0, 30 and 60 m3 ha−1 of PS combined with 0, 100 and 200 kg ha−1 of mineral N at sidedress. Yield, biomass and other related yield parameters differed from year to year and all of them were greatly influenced by soil NO3-N content before planting and by N (organic and/or mineral) fertilisation. All years average grain yield and biomass at maturity ranged from 9.3 and 18.9 Mg ha−1 (0 PS, 0 mineral N) to 14.4 and 29.6 Mg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. Grain and total N biomass uptake average of the studied period ranged from 101 and 155 kg ha−1 (0 PS, 0 mineral N) to 180 and 308 kg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. All years average soil NO3-N content before planting and after harvest were very high, and ranged from 138 and 75 kg ha−1 (0 PS, 0 mineral N) to 367 and 457 kg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. The optimal N (organic and/or mineral) rate varied depending on the year and was influenced by the soil NO3-N content before planting. For this reason, soil NO3-N content before planting should be taken into account in order to improve N fertilisation recommendations. Moreover, the annual optimal N rates also gave the lowest soil NO3-N contents after harvest and the lowest N losses, as a consequence they also could be considered as the most environmentally friendly N rates.  相似文献   

17.
In a field trial conducted during 1992–93 and 1993–94, the effect of basal (B) nitrogen (N) (45 and 60 kg N ha−1) and foliar application (F) of water (W) or 10 kg N ha−1 and 400 or 600 ppm ethrel (E) (2-Chloro ethyl phosphonic acid) at 70 days after sowing was studied on leaf area index and dry mass at 90 days and pod number per plant, seeds per pod, 1000 seed weight, seed yield, oil content and oil vield at harvest of mustard ( Brassica juncea L. Czern & Coss.) cv. T-59. Recommended basal (B) application of 90 kg N ha (BN90) was used as control. On the basis of 2 year data it was found that basal application of 60 kg N and foliar spray of 10 kg N ha −1 and 600 ppm ethrel gave higher values for growth and yield characteristics and enhanced seed yield and oil yield by 12.5 and 14.8%, respectively over control BN90.  相似文献   

18.
The effects of six seeding rates (50-300 seeds m−2:) on some morphological traits with hay and seed yield were evaluated in common vetch ( Vicia sativa L.) under fall and spring sowing conditions. The mutual correlations among yield and yield components were also determined.
The sowing seasons and seeding rates significantly affected hay and seed yield, and most of the yield components. Fall sowings resulted in significantly higher hay and seed yield than spring sowings at all seeding rates, and the highest seed and hay yield was achieved in densities of 250 and 300 seeds m−2. In spring sowings there was a positive response in hay yield up to 250 seeds m−2 while no further increase in seed yield at the seeding rates higher than 150 seeds m−2. Average protein content of hay and seed was found to be higher in spring sown crops than fall. The highest protein yields of hay and seed were obtained at 250 seeds m−2 in fall sowings, and 150 seeds m−2 in spring sowings.
Most of the correlations between both hay and seed yields with the yield components were not consistent and differed with the sowing time. Only the correlations between number of the plants per unit area with hay yield, and number of the pods and seeds per unit area with seed yield were statistically significant in both sowing seasons. Close positive associations were obtained between hay and seed yield.  相似文献   

19.
There are large agricultural areas in the world where wheat yields are limited by low phosphorus (P) availability. Breeding for P uptake and P utilization efficiency may reduce this problem. This study was conducted to determine the contribution of P uptake and utilization efficiency to grain yield of selected spring wheat genotypes in different environments. Thirty-eight semidwarf spring bread wheat (Triticum aestivum) genotypes were grown in two experiments in Mexico, each on an acid Andisol under rainfed conditions and on a calcareous Aridisol with irrigation, without (−P) and with 35 kg P per ha fertilized (+P). Without P fertilization, grain yield ranged from 0.8 to 4.6 t ha−1 in the acid soil and from 2.4 to 5.2 t ha−1 in the calcareous soil. With P fertilization, this range was even larger. Under conditions of P deficiency, i.e. in the acid soil at −P and +P (high P adsorption) and calcareous soil at −P (P-depleted soil), P uptake explained 71–100% of the variation in grain yield, and was highly correlated with grain yield (r=0.79–0.95). In contrast, at +P in the calcareous soil, P utilization efficiency explained 60–63% of the variation in grain yield. Here, low grain P concentration was related to high grain yield (r=−0.40 to −0.59). In the calcareous soil, the harvest index was correlated with grain yield, irrespective of the P level. In the acid soil, post-anthesis P accumulation was important. It was positively correlated with grain yield, whereas in the calcareous soil, no post-anthesis-P accumulation occurred. Here, grain P accumulation at maturity was completely determined by translocation of pre-anthesis shoot P. We conclude that the combination of improved P uptake and P utilization efficiency in the same genotypes requires selection under both high and low-P conditions.  相似文献   

20.
Field experiments were conducted in two successive seasons at the Agricultural Research Centre, Giza, Egypt (on a clay loam soil), to determine the effects of N fertilization (added at rates of 107 and 161 kg N ha–1) and foliar application of plant growth retardants (Pix, Cycocel and Alar; each applied once at 300 p.p.m., 75 days after planting) and zinc (applied at 0.0 and 50 p.p.m., two times, 80 and 95 days after planting) on cottonseed, protein and oil yields and oil properties of the Egyptian cotton cultivar Giza 75. The higher N rate, as well as the application of all growth retardants and zinc, resulted in an increase in cottonseed yield ha–1, seed index, seed protein content, oil and protein yields ha–1, seed oil refractive index, unsaponifiable matter and total unsaturated fatty acid content (oleic and linoleic). However, those treatments decreased the oil acid value, saponification value, and total saturated fatty acid content. The seed oil content tended to decrease when the high N rate was applied, but tended to increase with the application of all growth retardants and zinc. There were some differences between Pix, Cycocel and Alar regarding their effects on the studied characters. The highest increase in seed yield ha–1, seed index, and oil and protein yields ha–1 was found with Pix, followed by Cycocel. The Cycocel treatment gave the lowest total saturated fatty acid oil content, followed by Alar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号