首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.  相似文献   

2.
Vivek Maize Hybrid 9‐ a popular single‐cross hybrid developed by crossing CM 212 and CM 145 was released for commercial cultivation in India. The parental lines, being deficient in lysine and tryptophan, were selected for introgression of opaque‐2 allele using CML 180 and CML 170 as donor lines through marker‐assisted backcross breeding. The opaque‐2 homozygous recessive genotypes with >90% recovery of the recurrent parent genome were selected in BC2F2, and the seeds with <25% opaqueness in BC2F3 were forwarded for seed multiplication. Vivek Quality Protein Maize (QPM) 9, the improved QPM hybrid, showed 41% increase in tryptophan and 30% increase in lysine over the original hybrid. The grain yield of the improved hybrid was on par with the original hybrid. The newly improved QPM maize hybrid released in 2008 will help in reducing the protein malnutrition because its biological value is superior over the normal maize hybrids. This short duration QPM maize hybrid has been adopted in several hill states of North Western and North Eastern Himalayan regions.  相似文献   

3.
G. W. Wang    H. Y. Cai    Y. Xu    S. H. Yang    Y. Q. He 《Plant Breeding》2009,128(5):451-457
Wide‐compatibility varieties are a special class of rice germplasm that is able to produce fertile hybrids when crossed to either indica or japonica subspecies. Previous studies determined the f5 allele from ‘Dular’ (f5‐Du), f6 allele from ‘Dular’ (f6‐Du) and S5 allele from ‘02428’ (S5‐08) as neutral alleles conferring wide‐compatibility. However, the possible extent of the effect of the three neutral alleles has not been fully characterized because of the narrow range of the tester varieties used and the highly complex differentiation in Asian cultivated rice. In this study, we further developed the five near‐isogenic lines with higher recovery rates of the recurrent parent genome, and testcrossed to 14 japonica varieties, which have been widely used in rice breeding programmes in China. The results clearly revealed that all three neutral alleles exhibited substantial effects on spikelet fertility in most of the indicajaponica testcrosses, which indicated that these hybrid sterility loci have been extensively differentiated between indica and japonica varieties. The magnitudes of effects on spikelet fertility averaged over various crosses seem to be similar among the three neutral alleles, with f5‐Du, f6‐Du and S5‐08 alleles increasing spikelet fertility by 15.09%, 13.99% and 14.25%, respectively. The testcrosses involving f5‐Du allele generally showed much smaller variation in pollen fertility than others. The pyramiding lines with two neutral alleles showed a wider spectrum and a higher level of wide compatibility than others, whereas most of the increases in hybrid fertility couldn’t be simply explained by additive effects, suggesting the very complexity of wide compatibility and hybrid sterility. The indicajaponica hybrids involving restorer lines as one of their parents showed much higher pollen fertility (almost normal) and also higher spikelet fertility. The implications of the findings in rice breeding programmes are also discussed.  相似文献   

4.
Direct seeding of rice is increasingly being practiced in both rainfed and irrigated areas because of labor shortage for transplanting and opportunities for crop intensification. However, poor crop establishment remains a major obstacle facing its large-scale adoption in areas prone to flooding. Screening of over 8,000 gene bank accessions and breeding lines identified a few tolerant genotypes. One of these, Khao Hlan On, was selected for mapping QTLs associated with tolerance using a backcross population with IR64 as a recurrent parent. Survival of BC2F2 lines varied from 0 to 68%, and averaged about 28%. A linkage map of 1475.7 cM with an average interval of 11.9 cM was constructed using 135 polymorphic SSRs and 1 indel marker. Five putative QTLs were detected, on chromosomes 1 (qAG-1-2), 3 (qAG-3-1), 7 (qAG-7-2), and 9 (qAG-9-1 and qAG-9-2), explaining 17.9 to 33.5% of the phenotypic variation, and with LOD scores of 5.69–20.34. Khao Hlan On alleles increased tolerance of flooding during germination for all the QTLs. Graphical genotyping of the lines with highest and lowest survival verified the detected QTLs that control tolerance and some QTLs co-localize with previously identified QTLs for traits relevant to tolerance, which warrant further studies.  相似文献   

5.
T. Komori  N. Nitta 《Plant Breeding》2004,123(6):549-553
Cytoplasmic male sterility (CMS) by the cms‐bo cytoplasm and its restoration by the nuclear restorer gene, Rf‐1, are used for seed production of japonica hybrid rice varieties. To produce pure hybrid seeds, a prerequisite is to properly manage the seed purity of parental lines, especially CMS lines. In this study, three dominant polymerase chain reaction (PCR)‐based markers (M1, M2 and M3) were developed to detect mutual contamination in seed batches of CMS lines, maintainer lines, restorer lines and hybrids. M1 detected the mitochondrial sequence that was present in the cytoplasm of common japonica varieties and absent in the cms‐bo cytoplasm. M2 and M3 detected the chromosomal sequence related to the Rf‐1 allele in restorer lines and the rf‐1 allele in common japonica varieties, respectively. By the strategic use of these markers, japonica hybrids and their parental lines could be efficiently distinguished from each other. Furthermore, sensitivity tests for the three markers with a series of crude DNA samples prepared from polished grains demonstrated that these markers could detect one contaminating grain among 500 or 1000 grains. Therefore, the bulk PCR analyses with the markers developed here probably make it possible to control the seed purity of japonica hybrids properly by selecting appropriate seed batches of their parental lines quickly and efficiently.  相似文献   

6.
Hybrid rice based on wild‐abortive cytoplasmic male sterility (WA‐CMS) is important in boosting rice production, which requires diverse parents to harness heterosis. For this, exploiting the diversity of japonica through tropical japonica (TRJ) lines is an excellent route. In this study, 310 TRJ‐based new plant type (NPT) lines were developed and evaluated for Rf3 and Rf4 genes. Gene‐based (DRRM‐Rf3‐5 and DRRM‐Rf3‐10) and functional marker (RMS‐SF21‐5) targeted Rf3 locus, while gene‐linked (RM6100) and functional marker (RMS‐PPR9‐1) targeted the Rf4 locus. The frequency of the restorer allele of Rf3 gene was lower when compared to that of Rf4. Combined phenotypic and molecular screening using gene‐based and functional markers identified 42 lines that carried Rf3 and/or Rf4 genes. All the selected lines produced fertile F1s when crossed to a WA‐CMS line, “Pusa 6A”, but with varying levels of spikelet fertility. This is the first report of a marker‐cum‐phenotype‐based restorer selection using TRJ‐derived lines. Multilocation evaluation of these lines at three locations indicated better adaptation for grain yield in some of the lines.  相似文献   

7.
As one of the main rice establishment methods, direct seeding has the advantages of saving labour and reducing costs for farmers. However, the expansion of direct seeding has been constrained by poorly levelled fields, heavy rainfall and poor drainage after sowing. The development of cultivars with anaerobic germination tolerance could improve or overcome these shortcomings of most rice under flooding conditions. In this study, a japonica-type rice with anaerobic germination tolerance was suggested as a new genetic source and QTL analysis was carried out to improve adaptation to direct seeding. Three QTLs, qAG1, qAG3 and qAG11, were identified, explaining 13.44%, 6.71% and 14.52% of the phenotypic variance, respectively. In an evaluation of the most effective QTL combination, two QTL combinations (qAG1NP + qAG3PBR + qAG11PBR and qAG1NP + qAG11PBR) showed stable survival rates under submergence of filed condition. Based on the results, we will characterize the candidate genes within the detected target regions in further research, and the lines with advantageous alleles will be used to develop reliable cultivars to support the wide adoption of direct-seeding practices in japonica rice.  相似文献   

8.
Direct seeding of rice as a method of crop establishment is increasingly being adopted by farmers as a means of saving labor and reducing costs. However, the method often results in a poor environment for germination as excessive water levels after seeding can cause poor seedling establishment and a concomitant reduction in yield potential, especially in submergence-prone areas. In this study, we discovered QTLs associated with tolerance of anaerobic germination (AG) in new genetic accessions using genotypic data derived from the Illumina 6K SNP chip. The mapping population developed for QTL analysis comprised 285 F2:3 plants derived from a cross between Tai Nguyen and Anda. In order to evaluate AG tolerance within the mapping population, phenotyping was carried out under anaerobic conditions for 21 days. Three QTLs associated with AG tolerance were identified in the population, qAG1a and qAG1b on chromosome 1 and qAG8 on chromosome 8 using composite interval mapping (CIM). The percentage of variance explained by these QTLs ranged from 5.49 to 14.14%. The lines with three QTLs (qAG1b?+?qAG1a?+?qAG8) demonstrated an approximate 50% survival rate under anaerobic conditions, while lines with two QTLs including qAG1b demonstrated survival rates of 36 and 32% after the treatment, respectively. The QTLs detected in this study may be used to improve AG tolerance during germination and may be combined with other QTLs for anaerobic germination to enhance adaptation to direct seeding and to broaden the understanding of the genetic control of tolerance of germination under anaerobic conditions.  相似文献   

9.
Basmati rice is highly susceptible to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae. Transfer of BB resistance genes from non‐Basmati sources to Basmati through cross‐hybridization requires strict monitoring for recovery of the desirable Basmati quality traits in the recombinants, which show complex inheritance pattern. We integrated background analysis using mapped microsatellite markers with foreground selection to identify superior lines that combine useful genes from a non‐Basmati BB resistance donor line IRBB55 with grain and cooking quality characteristics of the popular Basmati rice variety ‘Pusa Basmati 1’ (PB 1) employing backcross pedigree strategy. Foreground selection using linked markers ensured presence of two genes, xa13 and Xa21 for BB resistance from IRBB55, and the recurrent parent PB 1 allele for the waxy locus giving intermediate amylose content and maintainer allele at fertility restorer locus in the BC1F5 recombinants. Background analysis enabled selection of recombinants with recurrent parent genome to the extent of 86.3% along with the quality traits. The extent of introgression of non‐Basmati donor chromosome segments in the superior selections was estimated to be < 7.8 Mb and < 6.7 Mb in the xa13 and Xa21 linked genomic regions, respectively. Association mapping identified three quantitative trait loci, one each for 1000‐grain weight, fertile grains/panicle and cooked kernel length. The backcross‐pedigree breeding strategy facilitated recovery of additional desirable characteristics from the donor in some of the selections. The elite selection Pusa 1460‐01‐32‐6‐7‐67 with maximum genomic background and quality characteristics of the recurrent Basmati parent gave resistance reaction against BB, similar to that of the non‐Basmati resistant check variety and recorded an yield advantage of 11.9% over the best check in the multiplication agronomic trial in the Basmati growing region of India. This line, which has been released as a new variety in the name of ‘Improved Pusa Basmati 1’ for commercial cultivation in India, is an example of successful application of marker assisted selection to variety development.  相似文献   

10.
Maize is an important food and feed crop worldwide. Phytic acid (PA), in maize kernel, is an antinutritional factor. PA chelates mineral cations and causes mineral deficiency in humans and phosphorous deficiency in animals. The undigested PA excreted by monogastric animals causes phosphorous eutrophication. Therefore, development of low‐phytate maize is indispensable. The low‐phytate locus (lpa2 allele) has been transferred from low‐phytate mutant line ‘EC 659418’ into an elite inbred UMI 395 through marker‐assisted backcross breeding (MABB). The MABB involved three backcrosses followed by two selfing steps, including ‘foreground selection’, that is, selecting lines with lpa2 allele with the help of a codominant SSR marker ‘umc2230’ and ‘background selection’, that is, selecting plants having genetic background similar to that of the recurrent parent using 50 codominant SSR markers. Two low‐phytate lpa2 lines with genome similar (>90% similarity) to that of recurrent parent have been identified. These lines can be used as parent in future hybridization programmes for obtaining low‐phytate high‐yielding maize hybrids.  相似文献   

11.
IR 58025A is a very popular wild‐abortive cytoplasmic male sterile (WA‐CMS) line of rice and is extensively used for hybrid rice breeding. However, IR 58025A and many hybrids derived from it possess mild aroma (undesirable in some parts of India) and are highly susceptible to bacterial blight (BB) and blast diseases. To improve IR 58025A for BB and blast resistance, we have introgressed a major dominant gene conferring resistance against BB (i.e. Xa21) and blast (i.e. Pi54) into IR 58025B, the maintainer line of IR 58025A. An introgression line of Samba Mahsuri (i.e. SM2154) possessing Xa21 and Pi54 genes in homozygous condition and fine‐grain type was used as donor parent, and backcross breeding strategy was adopted for targeted introgression of the resistance genes. PCR‐based molecular markers tightly linked to Xa21 and Pi54 were used for selection of BB‐ and blast‐resistant lines, while closely linked markers were used for identification of backcross‐derived plants devoid of Rf4 and aroma. At BC2F5, four backcross‐derived lines possessing resistance against BB and blast, devoid of aroma, high yield, short plant stature, long‐slender grain type and with recurrent parent genome recovery ranging from 88.8% to 98.6% were selected and advanced for further evaluation. The improved versions of IR 58025B, viz. SB54‐11‐143‐9‐44‐5, SB54‐11‐143‐9‐44‐98, SB54‐11‐143‐9‐44‐111 and SB54‐11‐143‐9‐44‐171, behaved as perfect maintainers when test‐crossed with WA‐CMS lines. Agronomically superior lines of improved IR 58025B are being converted to CMS line through backcrossing for developing high‐yielding and biotic stress‐resistant rice hybrids.  相似文献   

12.
Generation of novel genetic diversity for maximization of heterosis in hybrid production is a significant goal in winter oilseed rape breeding. Here, we demonstrate that doubled haploid (DH) production using microspore cultivation can simultaneously introgress favourable alleles for double‐low seed quality (low erucic acid and low‐glucosinolate content) into a genetically diverse Brassica napus genetic background. The DH lines were derived from a cross between a double‐low quality winter rapeseed variety and a genetically diverse semisynthetic B. napus line with high erucic acid and high glucosinolates (++ quality). Twenty‐three low‐glucosinolate lines were identified with a genome component of 50–67% derived from the ++ parent. Four of these lines, with a genome component of 50–55% derived from the ++ parent, also contained low erucic acid. Heterosis for seed yield was confirmed in test‐crosses using these genetically diverse lines as pollinator. The results demonstrate the potential of marker‐assisted identification of novel genetic pools for breeding of double‐low quality winter oilseed rape hybrids.  相似文献   

13.
American cotton [Gossypium hirsutum (L.)] grown in India belongs to the race Latifolium. It is prone to bollworms [Helicoverpa armigera (Hubner), Erias vitella (Fabricius), Pectinophora gossypiella (Saunders)] infestation which causes considerable crop loss. Two breeding lines ‘Bikaneri (BN)‐arboreum (ARB)‐16’ and ‘BN‐tomentosum (TOM)‐277’ are cytoplasmic diverse genetic stocks. They were developed by crossing experimental lines ‘Delta Branch Experiment Station (DES)‐ARB16’ and ‘DES‐TOM277’ (non‐recurrent parents) with G. hirsutum‘BN’ (recurrent parent). Compared with BN these stocks possessed higher amount of gossypol, flavonol and phenol contents in leaves, stem and square. Plants were tolerant to bollworms and inherited comparable agronomic properties (yield, boll weight, plant height, number of monopods and sympods and fibre quality). Cotton breeders can use these lines for breeding cotton resistant to bollworm.  相似文献   

14.
Introgression libraries can be used to localize genomic regions carrying quantitative trait loci (QTL). We used this approach to detect QTL regions affecting the per se performance of agronomic and quality traits with two rye (Secale cereale L.) introgression libraries. Our objectives were to detect candidate introgression lines (pre‐ILs) that have a different per se performance than the recurrent parent and to identify the underlying QTL regions. The introgression libraries containing 40 BC2S3 lines each were established with marker‐assisted backcrossing from crosses of the heterozygous Iranian primitive rye accession Altevogt 14160 and the elite inbred line L2053‐N. To assess the phenotypic effect of the donor chromosome segments (DCS) the pre‐ILs were evaluated for grain yield, plant height, thousand‐kernel weight, test weight, falling number and protein content in replicated field trials at five locations in Germany over 2 years. In total, 58 significant (P < 0.05) differences between pre‐ILs and L2053‐N were observed in each introgression library. The DCS in pre‐ILs differing from the recurrent parent possess most likely the responsible QTL. Genomic regions carrying favourable QTL alleles were detected for test weight, thousand‐kernel weight and protein content. We conclude that Altevogt 14160 can not only be used to enrich the genetic variation of the restricted hybrid rye gene pools but will also allow the breeder to efficiently detect favourable QTL for marker‐assisted selection.  相似文献   

15.
Summary Although wild oats (Avena fatua L.) have been considered a potential source of genes for cultivated oat (Avena sativa L.) improvement, most progenies of A. sativa/A. fatua crosses have weak straw and are very susceptible to crown rust (Puccinia coronata CDA. var. avenae Fraser and Led.). Backcrossing to A. sativa has been suggested as a method of improving progeny lines while introducing new genes from wild oats to cultivated oats. In this study, A. sativa/A. fatua F1 hybrids were backcrossed twice to A. sativa, and lines from three backcross populations were selected on the basis of agronomic performance in segregating generations. The A. sativa recurrent parents were Dal (tall and late) and Stout (short and early).Backcross lines and recurrent parents were evaluated in five performance trails from 1983 through 1985. There was significant variation among backcross lines for most traits, but most backcross lines did not produce higher grain and straw yields than their A. sativa parent. Several backcross lines were higher than their recurrent parent in test weight and groat percentage. A line derived from Stout, 175BC2-6, was considered the most promising backcross line in the study. This line produced more grain, had heavier kernels, and headed 3.3 days earlier than Stout. Although 175BC2-6 does not have sufficient straw strength and crown rust resistance to be released as a cultivar, it is considered to be a new source of high grain yield, high test weight and earliness for oat breeding.  相似文献   

16.
U. Hohmann    G. Jacobs  C. Jung 《Plant Breeding》2005,124(4):317-321
An annual sugar beet line homozygous for the dominant gene for early bolting (B) has been mutagenized with different doses of ethylmeth‐anesulfonate (EMS). Approximately 15 000 M1 seeds were treated with EMS doses between 0.5 and 1% for 4, 6, 8, 12 and 14 h. Among 10 066 M1s, plants with chlorophyll defects and other abnormalities were found. Germination rates ranged between 30 and 100%, whereas the fertility of M1s dropped to 36%. A dose of 1% EMS applied for 8 h was found to yield an acceptable rate of M2 sterility (16%). Exactly 0.5% of the M2 families contained plants with altered bolting behaviour. After selfing these M2 plants, five non‐bolting M3 lines were selected. These plants do not exhibit shoot elongation even after cultivation under long‐day conditions. Thus, they are homozygous for new mutagenized, recessive non‐bolting alleles. Moreover, four M3 lines showed delayed bolting which was clearly different from the early bolting parent. This demonstrates varying activities of the bolting gene due to different mutational events.  相似文献   

17.
The main goal of this work was to introduce resistance genes for rust, caused by Uromyces appendiculatus, and anthracnose, caused by Colletotrichum lindemuthianum, in an adapted common bean cultivar through marker-assisted backcrossing. DNA fingerprinting was used to select plants genetically closer to the recurrent parent which were also resistant to rust and to race 89 of C. lindemuthianum. DNA samples extracted from the resistant parent (cv. Ouro Negro), the recurrent parent (cv. Rudá), and from BC1, BC2 and BC3 resistant plants were amplified by the RAPD technique. The relative genetic distances in relation to the recurrent parent varied between 9 and 59% for BC1, 7 and 33% for BC2, and 0 and 7% for BC3 resistant plants. After only three backcrosses, five lines resistant to rust and anthracnose with, approximately, 0% genetic distance in relation to the recurrent parent were obtained. These lines underwent field yield tests in two consecutive growing seasons and three of them presented a good yield performance, surpassing in that sense their parents and most of the reference cultivars tested.  相似文献   

18.
L.-H. Linh    N.-T. Hang    F.-X. Jin    K.-H. Kang    Y.-T. Lee    S.-J. Kwon    S.-N. Ahn 《Plant Breeding》2008,127(3):262-267
A new QTL for spikelets per panicle (SPP) was detected on the long arm of chromosome 7 in an F2 population derived from a cross between the japonica cultivar Hwaseongbyeo and WH29001. WH29001, an advanced backcross line was developed by introgressing chromosomal segments from an accession of O. minuta (2n = 48, BBCC, Acc. no. 101141 ) into the O. sativa subsp. japonica cv. Hwaseongbyeo. The O. minuta allele increased SPP in the Hwaseongbyeo background despite the fact that O. minuta was the small panicle parent. Using F3 and F4 progenies, spp7 was validated and mapped to a 2.3 Mb region in the interval between the SSR markers RM445 and RM21615 based on the japonica genome sequence. A yield trial using F4 lines indicated that the lines carrying an O. minuta chromosome segment across the entire spp7 target region out‐yielded its sister lines containing Hwaseongbyeo chromosome in the target region and Hwaseongbyeo by 14.3% and 15.9%, respectively. Increase in SPP in WH29001 was mainly because of the increase in primary branches per panicle. The locus, spp7 is of particular interest because of its independence from undesirable height and flowering time. SSR markers tightly linked to the spp7 will facilitate cloning of the gene underlying this QTL as well as marker‐assisted selection for variation in SPP in an applied breeding program.  相似文献   

19.
N. Mutlu    P. Miklas    J. Reiser  D. Coyne 《Plant Breeding》2005,124(3):282-287
Common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli reduces common bean (Phaseolus vulgaris L.) yield and quality worldwide. Genetic resistance provides effective disease control; however. a high level of resistance is difficult to attain and does not exist in pinto bean, the most important dry bean market class in North America. Our objective was to determine if a backcross breeding approach with the aid of molecular markers linked to quantitative trait loci (QTL) for resistance to CBB in a donor parent could be used to attain higher levels of resistance to CBB in pinto bean. QTL conditioning CBB resistance from the donor parent XAN 159 were introgressed into the recurrent parent‘Chase’using classical backcross breeding and intermittent marker‐assisted selection.‘Chase’pinto bean is moderately resistant and the breeding line XAN 159 is highly resistant to Xanthomonas campestris. Marker assays confirmed the presence of independent QTL from GN no. 1 Sel 27 and XAN 159 in advanced backcross‐derived pinto bean lines with improved CBB resistance. Agronomic characteristics of‘Chase’were fully recovered in the backcross‐derived lines. An important QTL for CBB resistance from XAN 159 on linkage group B6 was not introgressed because tight linkage between this QTL and the dominant V allele that causes an unacceptable black‐mottled seed coat colour pattern in pinto bean could not be broken.  相似文献   

20.
A breeding programme was developed to obtain barley yellow dwarf virus (BYDV)-resistant winter genotypes using the Yd2 gene. The aim was to incorporate the Yd2 allele into the new high-yielding genotypes to release cultivars that allow barley cultivation in areas where BYDV is endemic. The resistant lines were developed using pedigree selection. An ICARDA resistant line (83RCBB130) carrying the Yd2 gene was crossed with three susceptible, high-yielding winter varieties and their F1 lines were either selfed or backcrossed to the matching susceptible parent. The best lines selected from subsequent selfing generations were evaluated in replicated trials in the presence or absence of BYDV, starting from F6 and BC1F5 to F8 and BC1F7 generations. Four genotypes with superior agronomic traits and BYDV resistance were selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号