首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
G. Galiba  J. Sutka 《Plant Breeding》1988,101(2):132-136
The genetic control of frost resistance was studied in callus cultures using some of the chromosome substitution lines of the variety ‘Cheyenne’ into ‘Chinese Spring’. The survival of the calli derived from immature embryos was studied with triphenyltet-razolium chloride (TTC) and fluorescein diacetate (5DA) methods after hardening and freezing at a temperatures of -7 °C, -9 °C, -11 °C, -13 °C, and –15 °C. The donor ‘Cheyenne’ and the substitution lines 5A and 5D proved to be more frost resistant than the recipient ‘Chinese Spring1. These results are well correlated with the previously published studies when seedlings were tested under controlled conditions. Based on these results the tissue culture technique seems to be useful for testing varieties and lines for different levels of frost resistance and even for mutant selection.  相似文献   

2.
J.U. Chun  X.M. Yu  M. Griffith 《Euphytica》1998,102(2):219-226
Antifreeze proteins (AFPs) accumulate in the leaves of winter cereals during cold acclimation, where they may inhibit ice recrystallization during freezing and thawing cycles and provide nonspecific disease resistance. In this study, 21 wheat chromosome substitution lines and the parental lines Chinese Spring and Cheyenne wheat were used to determine the heritability of AFPs and the relationship between the accumulation of AFPs and winter survival. In cold-acclimated lines, antifreeze activity in leaf apoplastic extracts ranged from 1 (low) to 5 (high) with an average value of 3.2, and the accumulation of apoplastic proteins ranged from 30 μg (g FW)-1 to 115 μg (g FW)-1 with a mean value of 70 μ (g FW)-1. Examination of the individual lines revealed that Cheyenne chromosomes 5B and 5D carry major regulatory genes that increase both antifreeze activity and the accumulation of antifreeze proteins in plants grown at low temperature. Substitution lines carrying Cheyenne chromosomes 2A, 3A, 6B, and 7A exhibited lower freezing tolerance and also showed a marked decrease in the accumulation of specific AFPs during cold acclimation. Antifreeze activity and apoplastic protein content were not correlated with freezing tolerance (defined as % survival at -11 °C), but they were both significantly and positively correlated with winter field survival rates. Antifreeze activity (positively correlated) and total leaf fresh weight (negatively correlated) together accounted for about 55% of the variation in winter survival, indicating that high antifreeze activity and slow vegetative growth at low temperature are both important quantitative traits for winter survival. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Investigations were carried out under phytotronic conditions to study the effect of daylength on the frost resistance of a ‘Chinese Spring’/‘Cheyenne’ chromosome substitution series. The frost resistance of the 5A, 7A, 4B, 5B, 1D and 5D lines was significantly better when raised and hardened with long-day (16 h) rather than short-day (8h) illumination. The frost resistance-increasing effect of daylength could be demonstrated after freezing lines 5A and 5D at both - 10°C and -12°C. An increase in the duration of illumination in the course of preliminary growth and hardening promoted the development of a higher level of frost resistance. This positive effect was most pronounced for chromosome substitution lines, where the frost resistance was significantly better than that of ‘Chinese Spring’ even with normal daylengths.  相似文献   

4.
G. Ganeva    T. Petrova    C. N. Law    S. Landjeva    L. Sayers 《Plant Breeding》2008,127(2):121-124
The effect of individual chromosomes of the wheat variety ‘Bezostaya 1’ on plant resistance to low temperatures was studied using the available set of intervarietal ‘Cappelle Desprez’ (‘Bezostaya 1’) chromosome substitution lines. The number of plants surviving after freezing at ?12, ?15 and ?17°C was determined for both parents and lines in trials in 2004/2005 and 2005/2006. Significant differences between the three temperature treatments and between lines were found, implying that two factors, the level of temperature stress and chromosome substitutions, were influencing plant survival. Improved frost resistance in both trials was associated with genes located on five chromosomes: 5A, 2D, 4A, 5D and 6A. An increase in the plant frost resistance because of the effects of 7A and 1A chromosomes was also observed in the 2005/2006 trial, when the overall autumn and winter (January) temperatures were lower than in 2004/2005.  相似文献   

5.
W. D. Bovill    W. Ma    K. Ritter    B. C. Y. Collard    M. Davis    G. B. Wildermuth    M. W. Sutherland 《Plant Breeding》2006,125(6):538-543
Crown rot (causal agent Fusarium pseudograminearum) is a fungal disease of major significance to wheat cultivation in Australia. A doubled haploid wheat population was produced from a cross between line ‘W21MMT70’, which displays partial seedling and adult plant (field) resistance to crown rot, and ‘Mendos’, which is moderately susceptible in seedling tests but partially resistant in field trials. Bulked segregant analysis (BSA) based on seedling trial data did not reveal markers for crown rot resistance. A framework map was produced consisting of 128 microsatellite markers, four phenotypic markers, and one sequence tagged site marker. To this map 331 previously screened AFLP markers were then added. Three quantitative trait loci (QTL) were identified with composite interval mapping across all of the three seedling trials conducted. These QTL are located on chromosomes 2B, 2D and 5D. The 2D and 5D QTL are inherited from the line ‘W21MMT70’, whereas the 2B QTL is inherited from ‘Mendos’. These loci are different from those associated with crown rot resistance in other wheat populations that have been examined, and may represent an opportunity for pyramiding QTL to provide more durable resistance to crown rot.  相似文献   

6.
Substitution Analysis of Plant Regeneration from Callus Culture in Wheat   总被引:1,自引:0,他引:1  
G. Galiba    G. Kovacs  J. Sutka 《Plant Breeding》1986,97(3):261-263
The genetic determination of the plant regeneration ability of tissue cultures arising from immature embryos was studied using a ‘Chinese Spring’/‘Cheyenne’ substitution series. Plant regeneration proved to be polygenically determined. In tile current experiment the chromosomes 7B, 7D and ID were found to be effective, although the possibility of other chromosome effects cannot be excluded.  相似文献   

7.
Role of chromosome 3A in stomatal resistance of winter wheat   总被引:2,自引:0,他引:2  
Summary Leaf stomatal resistance, through transpiration and photosynthesis control, constitutes a major factor of productivity and adaptation in wheat. The aim of the investigations reported here was to identify chromosomal effects on the expression of the maximum stomatal resistance, determined under optimum conditions of irradiance and water supply. Leaf stomatal resistance was measured, on wheat grown in pots under natural and well-watered conditions, using a LI-COR LI-6200 portable photosynthesis system under a saturating light>1400 mol m-1 s-2. Reciprocal sets of chromosome substitution lines between two hard red winter wheat cultivars, Wichita and Cheyenne, were used to identify the chromosomes involved in the expression of this trait. The two parental cultivars were significantly different for the parameter investigated. Chromosome 3A appeared to be involved in the expression of the stomatal resistance value under optimum conditions. Taking into account the relationships previously established between this parameter and some agronomic traits, chromosome 3A might be involved directly in productivity-determining processes or in the adaptation to water conditions, in wheat.  相似文献   

8.
This study used cytogenetic stocks to investigate the chromosomal location of genes responsible for polyphenol oxidase (PPO) activity in common and durum wheat seeds. Substitution lines of chromosome 2A of hexaploid varieties ‘Cheyenne’, ‘Thatcher’ and ‘Timstein’ in ‘Chinese Spring’ showed significantly higher PPO activity than all other substitution lines of the same variety, with the exception of substitutions of ‘Cheyenne’ chromosome 3A and ‘Thatcher’ chromosome 4B. Substitution lines of chromosome 2A of Triticum turgidum var. dicoccoides and of chromosome 2D of ‘Chinese Spring’ into the tetraploid variety ‘Langdon’ showed a significant increase in PPO activity relative to all other substitution lines in Langdon. The gene(s) responsible for high PPO activity in chromosome 2D from ‘Chinese Spring’ was mapped on the long arm within a deletion that represents 24% of the distal part of the arm. This study shows that genes located in homoeologous group 2 play a major role in the activity of PPO in wheat.  相似文献   

9.
To identify homoeologous group-3 chromosomes that carry genes for vernalization, day-length responses, and earliness per se, a series of aneuploid lines (mono-somics and tetrasomics) and chromosome-substitution lines in ‘Chinese Spring’ (CS) were surveyed under different vernalization and day-length regimes in controlled environments. The results indicated that genes on all three chromosomes of group 3 can have striking effects on ear-emergence time. The replacement of CS 3B by its homologues in ‘Lutescens 62’ and ‘Cheyenne’ produced an increased insensitivity to vernalization, while 3B homologues from ‘Ceska Presivka’ gave CS a remarkable sensitivity to vernalization. This provided evidence for multiple allelism at a new Vrn locus on chromosome 3B. A negative association between gene dosage and day-length response was found in CS 3D which was thought to carry a gene for promoting insensitivity to day-length. The behaviour of CS monosomic 3A and CS (Timstein 3A), in reducing numbers of days to heading independently of environmental stimuli, suggested the presence of earliness per se genes on this chromosome.  相似文献   

10.
为给安徽淮北地区小麦安全生产提供指导,以当地主栽品种为材料,研究不同播期条件下小麦植株对低温胁迫的响应,结合自然低温下田间冻害情况及产量表现等,对主栽品种的抗寒性进行初步评价。结果表明,返青期-12℃以下时品种的抗寒性急剧下降;播期间小麦植株的抗寒性表现为:晚播>适播>早播;电解质渗出率均随温度的降低逐渐增大;地域间抗寒性差异明显;不同区域育成品种抗寒性强弱表现为山东省>河南省>安徽省;筛选出一批抗寒高产品种,如‘良星66’、‘山农20’、‘济麦22’、‘烟农19’等,可作为安徽淮北地区早播条件下种植的理想品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号