首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The residual effect of 2-year-old swards of clover-ryegrass mixture and ryegrass in monoculture on yield and N uptake in a subsequent winter wheat crop was investigated by use of the 15N dilution method and by mathematical modelling. The amount of N in the wheat crop, derived from clover-ryegrass residues was 25–43% greater than that derived from residues of ryegrass which had been growing in monoculture. Expressed in absolute values, the N uptake in the subsequent winter wheat crop was 23–28 kg N ha −1 greater after clover-ryegrass mixture than after ryegrass in monoculture. Up to about 54 kg N ha−1 of the N mineralised from the clover-ryegrass crop was calculated to be leached, whereas only 11 kg N ha−1 was leached following ryegrass in monoculture.  相似文献   

2.
Information about the effect of the cropping history on the seed yield of oil-seed rape is extremely scarce. In 1992/93 and 1994/95, the effects of different preceding crop combinations (winter barley and winter wheat as preceding crops, oil-seed rape and wheat as pre-preceding crops) on the yield of six double low oil-seed rape cultivars were examined in a field trial at Hohenschulen Experimental Farm, north-west Germany. In addition, eight nitrogen treatments (different amounts and distribution patterns) were tested for their potential to reduce negative effects of the preceding crops. Following the cropping sequence of oil-seed rape then wheat, oil-seed rape yielded only 3.12 t ha−1; after oil-seed rape then barley, the yield was 3.43 t ha−1 compared with 3.77 t ha−1 following wheat then barley and 3.71 t ha−1 following wheat then wheat. The number of seeds per m2 showed a similar pattern, whereas the thousand-seed weight partly compensated for the reduced seed number. It was highest if oil-seed rape was grown 2 years previously. The cultivars differed significantly in their yield potential. Express (3.79 t ha−1) yielded 0.6 t ha−1 more than Falcon (3.18 t ha−1). Increasing amounts of fertilizer-N (80–200 kg N ha−1) increased the seed yield from 3.21 t ha−1 to 3.84 t ha−1. Changes in the distribution pattern within one fertilizer amount had no effect on seed yield. In addition, no interactions between preceding crop combination and the different cultivars or N treatments occurred. It is concluded that crop management cannot totally eliminate the negative effects of an unfavourable cropping history on the seed yield of oil-seed rape.  相似文献   

3.
In intensive integrated crop-livestock farming systems, the surplus of N at the farm scale may be large and reflects on the N balance at the field scale. A study was conducted to assess the N fertilizer efficiency in four private farms in intensively cropped areas of NW Italy, and to monitor the effects of agricultural practices on the mineral N concentration of the soil solution, sampled every 2 weeks for 2 years and considered as an indicator of potential leaching. Two cultivation systems were compared in each farm, one involving continuous maize rotation, the other assuring a continuous soil cover (permanent meadow or winter cereal-maize double cropping system). The fertilization level in the arable crops was high (369–509 kg N ha−1 year−1) compared to the crop removals, and resulted in a low efficiency, as indicated by the four examined efficiency indexes (calculated N surplus, N removal-fertilizer ratio, N apparent recovery, N use efficiency). The soil-water-nitrate concentration showed large temporal variations in the range of 1–150 mg l−1 for five out of the eight cropping situations, while concentrations smaller than 10 mg l−1 were always recorded in the meadows and in one of the four soils (Aeric epiaquept). The fertilizer management that characterized each cropping system affected the soil-mineral-nitrate content in shallow arable soils. The longer soil cover duration in double-cropping systems did not result in a reduction of soil N compared to maize as a single crop, not even in winter (the bare-soil intercropping period in maize-based systems). However, the temporal oscillations of the concentration were buffered by the crop cover duration and by the presence of a shallow water table (1 m deep) in the soil profile. The average nitrate content of the soil could be predicted by the N uptake of the crop, the N removal–fertilizer ratio, the soil pH and sand content, however no simple explanatory relationship was found with the experimental factors. Hence, in farm conditions, in the absence of sufficient data for a deterministic model approach, the target of reducing the risk of leaching should be achieved by maximizing the fertilizer efficiency.  相似文献   

4.
From 1990 to 1993 nutrient fluxes were monitored on 38 private arable farms that had adopted farming strategies aiming at reduced nutrient inputs and substitution of mineral fertilizers by organic fertilizers. The nutrient surplus was defined as the difference between inputs (including inputs through deposition, seeds and biological fixation) and outputs in crop products, and amounted to 117 kg nitrogen (N), 14 kg phosphorus (P) and 21 kg potash (K) ha−1 year−1 on average. Potato and sugar beet had relatively high nutrient surpluses resulting both from crop characteristics and the use of organic manure. The surplus varied markedly among farms due to differences in cropping frequency, fertilizer inputs and crop outputs. Averaged over the years, ca. 70% of the participants achieved surpluses below 150 kg N, 20 kg P and 50 kg K ha−1 year−1.

The amounts of residual soil mineral N (RSMN) exceeded those normally found in field experiments except for data collected after the wet summer of 1993. Distinct differences between crops were observed. Only in the case of potato a significant relationship was observed between the effective N input and RSMN. On a whole-farm level, RSMN amounted to more than 70 kg ha−1 N on 77, 74, 87 and 18% of the farms in the consecutive years.  相似文献   


5.
A field experiment was carried out on maize (Zea mays, L.) to study the effects of different fertilizer management on nitrogen status in soil and plant response. Three different fertilizers, mineral (MN), mineral plus buffalo manure (MN + BM) and organo-mineral with peat (OMP), were added at the usual (140, 61 and 116 kg ha−1) and the reduced (70, 31 and 58 kg ha−1) rates of N, P and K. respectively. Soil samples were analyzed for N by both the Kjeldahl method and the electro-ultrafiltration technique (EUF). The soil Kjeldahl-N concentrations were scarcely affected by the different fertilizer treatments, while the EUF-N concentrations were closely correlated with the amounts of N added. The EUF also discriminated between the NO3-N and the sum of the ammonium and the easily extractable organic N forms (EUF-Norg + NH4). The largest proportions of EUF-Norg + NH4 were found in the untreated plots and in the plots treated with buffalo manure. The different fertilizer treatments significantly affected grain yield, which ranged from a minimum of 6.3 t ha−1 from the untreated plots, to a maximum of 11.9 t ha−1 from those supplied with 140 kg N, 61 kg P and 116 kg K ha−1 by OMP fertilizer. The highest agronomic efficiency index for N was exhibited in the OMP treatment at the reduced rate. The grain yield was closely correlated with the total extractable EUF-N, but different relationships were found between the rate of N added, the level of EUF-NO,-N in soil and grain yield for the different fertilizer treatments.  相似文献   

6.
Grain legumes, especially peas, could play a key role in organic cropping systems. They could provide nitrogen (N) to the system via N2 fixation and produce grain rich in protein while improving soil N for the succeeding crop. Thus, maximising N2 fixation and optimising grain N production together with N contribution to soil is a challenging issue for organic pea crops. However, pest, disease and weed infestation are less easy to control in organic systems than in conventional systems. Therefore, the effects of weed infestation and pea weevil (Sitona lineatus L.) attacks on N nutrition and N2 fixation of organic pea crops were examined by on-farm monitoring over two years. The magnitude of the net contribution of the crops to the soil N balance in relation to their productivity was also assessed. In many situations, weed infestation together with pea weevil damage severely limited the nitrogen nutrition and grain yield. Percentage of N derived from fixation (%Ndfa) increased with weed biomass because weeds appeared more competitive than peas for soil N. But %Ndfa decreased with pea weevil leaf damage score. The interaction between these two biotic factors affected N yields and the net contribution of the crops to soil N. This latter ranged from −133 kg N ha−1 to 69 kg N ha−1 depending on %Ndfa and nitrogen harvest index (NHI). Optimising both grain N and net balance would require a reduction in root nodule damage by weevil larvae in order to maximise %Ndfa and a reduction in the NHI through the choice of cultivar and/or suitable crop management.  相似文献   

7.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

8.
The effects of N rates and N timings on yield formation, N uptake at five growth stages and fertilizer N use efficiency of six-row and two-row winter barley were evaluated in field trials conducted from 1990/91 to 1992/93 at the TU Munich's research station Roggenstein.

On average over 3 years the six-row cultivar yielded most at a total rate of 110 kg ha−1 N including an early application of 40 kg ha−1 N up to EC 30 (Zadoks scale). The two-row cultivar achieved maximum yield at a total rate of 140 kg ha−1 N including early applications of 70 kg ha−1 N up to EC 30. The highest yielding N-treatments of six-row barley regularly took up less nitrogen at EC 32 (95 kg ha−1 N on average) than the non-optimally fertilized treatments, whereas full exploitation of the yield potential of two-row barley was associated with higher rates of N-uptake at EC 32 (113 kg ha−1 N on average).

Lodging did not occur in the trials conducted in 1991 and 1992 and no difference was detected between the two cultivars in fertilizer N use efficiency. With six-row barley the N treatment giving maximum yield also led to an optimum fertilizer N use efficiency. Full exploitation of the two-row barley yield potential was associated with suboptimal fertilizer N use efficiencies.  相似文献   


9.
Nitrogen (N) mineralization and soil mineral N contents were measured at 2-week intervals over a 2-year period (June 1994–May 1996) on two different sites in the North West region of Portugal. The experiment was established in fields, which had for many years been under a double-cropping forage system with maize from May to September and a winter crop (mixture of cereals and Italian ryegrass) during the rest of the year. In addition to N fertilizers, dairy-cattle slurry was applied regularly at the sowing of each crop. On this intensive forage system, quantification of N released from slurry, crop residues and soil organic matter becomes important when better N use efficiency and reduced environmental impact from agricultural practices are required. Net N mineralization rates of the 0–10 cm soil layer fluctuated considerably between consecutive incubation periods and ranged from −0.88 to 1.87 mg N kg−1 day−1 with annual average rates of between 0.41 and 0.65 mg N kg−1 day−1. The total N mineralized in the 10 cm depth soil layer reached values between 122 and 224 kg N ha−1 year−1, showing that mineralization was a very important N source for the crops. The amounts of N released during the cold season (November–February) were equivalent to 27–48% of the yearly total. Regression analysis indicated that seasonal variation in N mineralization was only poorly explained by soil moisture and temperature. The changing balance during the year between soil moisture and temperature will contribute to the relatively constant N mineralization rates. Soil mineral N contents during the maize crop were high and exceeded the nutrient requirements for the optimum yield of this crop. Under the climatic conditions of the region and due to the poor development of the winter crop plants at the time, the mineral N left in the soil after the maize crop and released by mineralization during the cold season is particularly vulnerable to nitrate leaching losses.  相似文献   

10.
New high yielding early maturing cultivars of lupins have been introduced in north-west Europe as grain protein crops in crop rotations. This paper reports on a comparative study of lupins with peas and oats, and of their effect on yield of subsequent winter barley crops. These crops were given five levels of N under irrigated and non-irrigated conditions on sand and loam. Under rain fed conditions the grain yield of pea, oat and lupin varied between 24–36, 34–53 and 18–37 hkg DM ha−1, respectively. Supplemental irrigation raised grain yield of oat to 50–60 hkg DM ha−1, while grain yield in pea was not affected and grain yield in lupin in most cases decreased due to gray mould attack and excessive vegetative growth in the indeterminate lupin variety. Under rain fed conditions, the grain nitrogen content of pea, oat and lupin varied between 137–172, 61–80 and 189–226 kg N ha−1, respectively, and was significantly higher in lupin as compared with pea. On sandy soil, similar low-root densities were found for pea, oat and lupin below 30 cm depth. On sand, at final harvest the residual soil-N of lupin and pea, as measured in a subsequent winter barley crop not supplied with N fertilizer, was 15 and 8–10 kg N ha−1 higher than in winter barley following oat, respectively. The nature of the probably more N-root residues of lupin is discussed. On loam, the residual N of lupin and pea was similar, 18–27 kg N ha−1. On sand, under rain fed conditions preceding lupin and pea as compared with oat, increased the barley grain yield at zero N-application 77 and 49%, respectively; the effect of lupin was significantly higher than that of pea until the highest N-level 120 kg N-application ha−1. On loam under rain fed conditions preceding lupin and pea increased the barley grain yield at zero N-application by 36 and 62%, respectively, as compared with oat; at N-application>60 kg N ha−1 the grain yield was similar after all three crops. For both soil types the same level of effect was found under irrigated conditions. Conclusions: Supplemental irrigation might result in lower grain yield in lupin due to gray mould attack and excessive growth if indeterminate lupin varieties are used. Grain nitrogen yield of lupin is significantly higher than that of pea. On sand, the effect of lupin on the subsequent winter barley grain yield is significantly higher than that of pea, probably due to greater N-root nitrogen residues. On loam, lupin and pea have similar effects on the subsequent winter barley crop.  相似文献   

11.
Growing corn mixed with forage crops can be an alternative for pasture and mulch production during relatively dry winters in tropical areas, making no-till feasible in some regions. However, little is known about nutrient dynamics in this cropping system. The objective of the present work was to evaluate K dynamics in a production system in which corn was either grown as a sole crop or mixed with Brachiaria brizantha. In the second year of the experiment, nitrogen rates ranging from 0 to 200 kg ha−1 were applied to the system. Dry matter yields and potassium contents in the soil, as well as residues and plants were determined at corn planting and harvest. Potassium balance in the system was calculated. Corn grain yield in mixed crop responded up to 200 kg ha−1 N. The introduction of brachiaria in the system resulted in higher amounts of straw on the soil surface and higher K recycling. Soil exchangeable K balance showed an excess K for both N rates only in the mixed system; however, when non-exchangeable K was also included in calculations, excess K was found in both mixed and sole corn systems. Large amounts of non-exchangeable K were taken up in the system involving brachiaria, which showed a considerable capacity in recycling K, increasing its contents in the surface soil layer.  相似文献   

12.
The long-term effects of undersowing a ryegrass catch crop in cereals was analysed with the FASSET simulation model. The model was tested on a 28-year field experiment with ryegrass catch crops in spring barley. The experiment included treatments with nitrogen (N) fertiliser rates, catch crop use and timing of tillage. The modelled effects of these treatments generally agreed with observations on crop production, soil carbon, soil nitrogen and nitrate leaching. Both the observations and the simulations predicted a yield increase of 7 kg N ha−1 and an increase in nitrate leaching of 13 kg N ha−1 due to a prehistory of 24 years with continuous use of catch crops compared to a prehistory without catch crops.

A range of scenarios was constructed to evaluate the fate of the reduced nitrate leaching on crop N uptake, N leaching, gaseous emissions and change in soil organic N, and how this fate interacts with soils and climate and management. These scenarios showed that 22–30% of the reduced nitrate leaching was subsequently leached during the following decades after termination of catch crop use. Between 35 and 40% of the reduced nitrate leaching was harvested in cereals. The exact distribution depended primarily on the soil texture. The scenarios showed that effects of catch crops should be evaluated on the long-term rather than consider short-term effects only.  相似文献   


13.
Nitrogen (N) and carbon (C) surplus can be used as indicators of an agroecosystems’ ability to maintain soil fertility. Maize is the key crop of intensive forage systems in northern Italy, and large amounts of manure are often supplied to this crop. Different maize-based cropping systems and manure managements were compared in this paper. The following were assessed, using the results of an 11-year experiment: crop production and N uptakes; C and N surpluses; soil C and N contents. The treatments were maize for silage (Ms), maize for grain (Mg), double annual crop rotation maize–Italian ryegrass (Mr), and rotation maize–grass ley (Ml). Five fertilization management systems were adopted: 0N control, and bovine slurry and farmyard manure supplied at two levels, ranging from 215 to 385 kg ha−1 of total N.

The dry-matter production of Mr was significantly higher than those of the other systems. The response of maize to fertilization was similar in all the cropping systems, except for Mr, for which the crop showed a high reactivity to N input at both fertilizer levels. Soil reserves were rapidly consumed in the unfertilized treatment of Mr, whereas the high productivity potential of this cropping system was exerted in fertilized plots. The introduction of a ley in rotation with maize reduced the system's DM production, due to the low yield potential of grass compared to that of maize, reduced the system response to fertilization, and diminished the exploitation of organic N at high fertilization rates. Cumulated N surplus caused an enrichment of the soil N pool size: 43% of excess N was retained by the soil. The relationship between the cumulated C surplus and the soil C pool size indicated that 26–27% was retained by the soil. Crop residues of the Mg system were less effective in building up the soil C pool than other C sources. Both slurry and farmyard manure exerted a positive effect on the soil C and N retention. When farmyard manure was used, 18% of C and 45% of surplus N were incorporated into the soil organic matter (SOM). Slurry also built up the SOM content, resulting in 9% of C and 24% of N surplus.  相似文献   


14.
Maize (Zea mays L.) is a very important crop in many of the irrigated areas of the Ebro Valley (NE Spain). Intensive pig (Sus scrofa domesticus) production is also an important economic activity in these areas, and the use of pig slurry (PS) as a fertiliser for maize is a common practise. From 2002 to 2005, we conducted a field trial with maize in which we compared the application of 0, 30 and 60 m3 ha−1 of PS combined with 0, 100 and 200 kg ha−1 of mineral N at sidedress. Yield, biomass and other related yield parameters differed from year to year and all of them were greatly influenced by soil NO3-N content before planting and by N (organic and/or mineral) fertilisation. All years average grain yield and biomass at maturity ranged from 9.3 and 18.9 Mg ha−1 (0 PS, 0 mineral N) to 14.4 and 29.6 Mg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. Grain and total N biomass uptake average of the studied period ranged from 101 and 155 kg ha−1 (0 PS, 0 mineral N) to 180 and 308 kg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. All years average soil NO3-N content before planting and after harvest were very high, and ranged from 138 and 75 kg ha−1 (0 PS, 0 mineral N) to 367 and 457 kg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. The optimal N (organic and/or mineral) rate varied depending on the year and was influenced by the soil NO3-N content before planting. For this reason, soil NO3-N content before planting should be taken into account in order to improve N fertilisation recommendations. Moreover, the annual optimal N rates also gave the lowest soil NO3-N contents after harvest and the lowest N losses, as a consequence they also could be considered as the most environmentally friendly N rates.  相似文献   

15.
Results reported in the literature with regard to productivity of intercropping systems in comparison to sole cropping are very inconsistent. A field experiment was therefore conducted in the northern part of the Guinea Savanna in Ghana to compare the productivity of maize/cowpea mixed cropping, maize/cowpea relay intercropping with maize/cowpea rotation and maize monocropping over a 4-year period. The treatments included two levels of nitrogen (0 and 80 kg of N ha−1 y −1 as urea) and two levels of phosphorus application (0 and 60 kg of P ha−1 y−1 as Volta phosphate rock). At all levels of N and P application, maize yields of the intercropping systems, especially of maize/cowpea mixed cropping, were significantly lower than in sole cropping. Highest maize yields were obtained in maize/cowpea rotation, which in contrast to the other cropping systems did not show any reductions in yields over years. Cowpea yields were generally less affected by the cropping system, but were notably depressed when cowpea was relay-intercropped with maize. In treatments without fertilizer application (N and P) Land Equivalent Ratios (LER) and Area x Time Equivalency Ratios (ATER) generally indicated lower productivity of the intercropping systems as compared to sole cropping, with the maize/cowpea rotation showing the highest productivity. Conversely, fertilizer application resulted in higher productivity of the intercropping systems over the 4-year period. Productivity on the basis of ATER was generally lowest in maize/cowpea relay-intercropping as a consequence of the long time of land occupation. All of the parameters indicate low productivity of maize monocropping, clearly demonstrating that crop sequence as well as fertilizer application must be considered as important for maintaining high production levels at this site.  相似文献   

16.
任慧  丁磊  赵财 《中国农学通报》2021,37(35):57-64
风蚀是干旱区农田生态系统中土壤质量降低的关键因素,冬季作物覆盖可有效减少农田的土壤风蚀。通过探究河西灌区不同冬季覆盖作物轮作复种绿肥对农田土壤碳氮影响,以期为构建合理的周年覆盖轮作模式提供理论依据。本研究在热量一熟有余两熟不足的河西灌区春小麦种植区把冬小麦、冬油菜两种冬季覆盖作物和绿肥还田处理嵌套种植形成:(1)春小麦—冬油菜—箭筈豌豆(WCP)、(2)春小麦—冬小麦—箭筈豌豆(WWP)、(3)春小麦—箭筈豌豆(WP)、(4)春小麦—春小麦(W,CK)不同种植模式,在360 kg/hm2 (N2)、270 kg/hm2 (N1)、0 kg/hm2 (N0) 3个施氮水平下,研究不同轮作模式对农田土壤碳、氮含量的提升效应。结果表明:在同一种植模式下土壤有机碳、土壤可溶性有机碳、热提取态有机碳、硝态氮、氨态氮、微生物量碳氮含量随施氮量的增加而增加,但在氮肥减量(N1)的条件下,与常规施氮(N2)相比较WCP轮作模式土壤有机碳、土壤可溶性有机碳、热提取态有机碳含量及微生物量氮无显著降低。相同施氮条件下,轮作模式间差异不显著,但与CK间差异显著;其中,0~10 cm土层,WCP轮作模式土壤有机碳、土壤可溶性有机碳、土壤热提取态有机碳、硝态氮、氨态氮、微生物量碳氮含量平均较CK提高5.42%、9.78%、10.96%、20.51%、15.76%、18.94%;10~30 cm土层,提高9.54%、7.06%、12.99%、20.12%、16.51%、18.16%。因此,春小麦轮作冬油菜复种绿肥模式在氮肥减量条件下仍对农田土壤碳氮有明显的提升效应,为河西灌区良好的周年覆盖作物轮作模式。  相似文献   

17.
This paper describes a methodology for analysing management strategies to find best agronomic practices using a crop simulation model (CERES-Wheat). The study area is the estate of Imperial College at Wye, in the Stour Catchment, Kent, UK, an area highly suited to winter wheat production. The model is validated using historic crop performance data. Yield responses to differing sowing rates (range 200–450 seeds m−2), sowing dates and rates of nitrogen application (between 100 and 220 kg ha−1) with soil types of medium to heavy texture were simulated under water-limited conditions using historical daily weather data. In model validation, observed yields ranged between 6.9 and 7.4 t ha−1, while simulated ranges were between 6.9 and 7.8 ha−1. The RSMD of the difference was small (0.24 t ha−1) and non-significant. Optimum management practices (in terms of planting date, seed density and nitrogen application) were thereby defined. Also, simulations of potential yield (i.e. yield with no water and nutrient stress) were run for comparison. Results of this study reveal that the calibrated and validated CERES-Wheat model can be successfully used for the prediction of wheat growth and yield under conditions appropriate to Western Europe.  相似文献   

18.
Four types of cattle manure were prepared by mixing faeces with different ratios of urine + straw, one manure being faeces without straw and urine. Following 3 to 6 months of storage, the manures were applied in spring or autumn to a sandy loam and a coarse sand in amounts corresponding to 120 kg N ha−1. Spring barley (Hordeum vulgare L.) undersown with perennial ryegrass (Lolium perenne L.) were used as test crops. Barley was harvested at maturity and the wintering ryegrass was cut three times in the second year. Additional mineral N in the form of 15N-labelled mineral fertilizer (50 kg N ha−1) was added to all barley plots at planting in spring. Non-manured plots receiving only the 15N-labelled mineral fertilizer were included. Faeces without urine + straw contained more NH4-N than the other manures and spring incorporation of this manure gave the highest dry matter yield and N uptake of the barley. When faeces without urine + straw was applied in autumn, the yield and N uptake were increased only on the sandy loam. On the coarse sand, the NH4-N was probably leached as NO3-N during the winter. The three manures with urine + straw did not affect barley grain yield or total N uptake. Thus these manures did not mineralize nor immobilize measurable quantities of N in the first growth period. On the sandy loam, the patterns of N uptake in ryegrass indicated an increased availability of manure N during the second growth period. The availability of N from the 15NH415NO3 was similar in all plots when manures were applied in spring. Less 15N was taken up by the spring barley when manure was added in autumn compared with crops given 15NH415NO3 only. Thus short-term effects of N in cattle faeces stored with or without straw + urine are low. For soils low in mineral N such manures may potentially reduce crop N uptake.  相似文献   

19.
Wheat and barley yields from three farms in the Ebro river valley are shown to be strongly dependent on seasonal rainfall, particularly that during November-January and March-May of the cropping season. In the driest farm, in Monegrillo, Zaragoza province (seasonal rainfall, 251 mm), yields increased by c. 5.9 (wheat) and 9.4 (barley) kg ha−1 per mm of extra rain during the entire cropping season, taken as October-May inclusive. The other farms, at El Canós and Selvanera in Lleida province, had seasonal rainfalls of 364 and 334 mm, and yields of barley increased by 4.3 and 9.0 kg ha−1, respectively, per mm of extra rain in the cropping season, taken as September to May inclusive.

In Monegrillo, cereals are grown in a cereal-fallow rotation. Normal fallowing (duration 17 months) compared to minimum fallowing (5 months) increased the calculated water content of the top 100 cm of the dominant soils by 19 mm. This extra water was estimated to benefit yield by 7.0% (wheat) and 6.2% (barley), raising the average yields of crops greater than 300 kg ha−1 to 1222 and 1522 kg ha−1, respectively. Agronomic practices in Monegrillo during the fallow should focus on means of increasing the proportion of the rain stored in the profile during the fallow. At all three locations, decreasing water evaporation from the soil during the cropping season would likely benefit yield.  相似文献   


20.
In order to evaluate the possibility of reducing energy input in giant reed (Arundo donax L.) as a perennial biomass crop, a field experiment was carried out from 1996 to 2001 in central Italy. Crop yield response to fertilisation (200–80–200 kg ha−1 N–P–K), harvest time (autumn and winter) and plant density (20,000 and 40,000 plants per ha) was evaluated. The energy balance was assessed considering the energy costs of production inputs and the energy output obtained by the transformation of the final product. The crop yield increased by +50% from the establishment period to the 2nd year of growth when it achieved the highest dry matter yield. The mature crop displayed on average annual production rates of 3 kg dry matter m−2, with maximum values obtained in fertilised plot and during winter harvest time.

Fertilisation mainly enhanced dry matter yield in the initial period (+0.7 kg dry matter m−2 as years 1–6 mean value). The biomass water content was affected by harvest time, decreasing by about 10% from autumn to winter. With regard to plant density, higher dry matter yields were achieved with 20,000 plants per ha (+0.3 kg dry matter m−2 as years 1–6 mean value).

The total energy input decreased from fertilised (18 GJ ha−1) to not fertilised crops (4 GJ ha−1). The higher energetic input was represented by fertilisation which involved 14 GJ ha−1 (fertilisers plus their distribution) of total energy costs. This value represents 78% of total energy inputs for fertilised crops.

Giant reed biomass calorific mean value (i.e., the calorific value obtained from combustion of biomass sample in an adiabatic system) was about 17 MJ kg−1 dry matter and it was not affected by fertilisation, or by plant density or harvest time. Fertilisation enhanced crop biomass yield from 23 to 27 dry tonnes per ha (years 1–6 mean value). This 15% increase was possible with an energy consumption of 70% of the overall energy cost. Maximum energy yield output was 496 GJ ha−1, obtained with 20,000 plants per ha and fertilisation. From the establishment period to 2nd–6th year of growth the energy production efficiency (as ratio between energy output and energy input per ha) and the net energy yield (as difference between energy output and energy input per ha) increased due to the low crop dry biomass yield and the high energy costs for crop planting. The energy production efficiency and net energy yield were also affected by fertilisation and plant density. In the mature crop the energy efficiency was highest without fertilisation both with 20,000 (131 GJ ha−1) and 40,000 plants per ha (119 GJ ha−1).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号