首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the Andean region, the Preduza project and its partners combined breeding for durable disease resistance using locally adapted cultivars and farmer participatory methods. The approach taken resembles participatory variety selection (PVS). Farmers participated in the selection of advanced materials, rather than finished cultivars. This paper describes this approach and reports experiences with farmers–breeders collaboration. As breeders involved farmers as participants, they learned more about the most important criteria of male and female farmers for preferred cultivars in the marginal environments of Andean cropping systems. This approach encouraged the use of locally adapted cultivars (often landraces), made the breeders less dependent on foreign materials, and has resulted in selection and development of new wheat, barley, common bean, quinoa, potato and maize cultivars. Breeding programmes based on crossing locally adapted cultivars followed by selection by the breeders in the early phases of the breeding programmes and by participatory selection with the farmers in the more advanced stages of the breeding programmes appeared successful. It became clear that breeders must be well acquainted with the farmer preferences such as the requirements for specific agronomic, storage, processing and marketing traits. Over a period of five years the centralized formal breeding approach predominantly based on material produced by the international institutes was replaced by decentralized breeding approaches based largely on local germplasm with extensive farmer participation.  相似文献   

2.
Natural, and in particular, artificial (human) selection may pose a danger to the existing crop genetic diversity. Nevertheless, on-farm breeding systems seem to achieve phenotypic improvements even though preserving variability. Using SSR markers, we analysed several selection cycles, over a 20 years period, of a Portuguese on-farm participatory maize OPV-‘Pigarro’ breeding project. No significant differences in allelic richness (Nar), observed heterozygosity (HO), expected heterozygosity (or gene diversity; HE) or inbreeding coefficient (f) were detected among the selection cycles. 58 out of 107 alleles were common to all the selection cycles studied. The analysis of molecular variance showed that the variation among selection cycles represented only 7% of the total molecular variation. However, the number of private alleles varied among the selection cycles, being the highest detected at the beginning of the selection project. These findings demonstrate that an allele flow took place during the on-farm selection process of ‘Pigarro’ but the level of genetic diversity was not significantly influenced. Since interesting phenotypic improvements were also achieved, on-farm breeding projects, like this one, should be valued as a way to preserve unique Portuguese maize landraces in risk of disappearing.  相似文献   

3.
Heterogeneous environments make it difficult to apply consistent selection pressure because often it is difficult to identify a single or a few superior genotypes across all sets of conditions. However, when the target system is characterized by heterogeneity of environmental stress, varieties developed in high-yielding conditions may fail to satisfy farmers’ needs. Although this type of system is often found in marginal environments of developing countries, heterogeneous environmental conditions are also a feature of organic and low-external-input systems in developed countries. To meet the needs of these systems, breeding programs must decentralize selection, and although decentralized selection can be done in formal breeding programs, it is more efficient to involve farmers in the selection and testing of early generation materials. Breeding within these target systems is challenging, both genetically and logistically, but can identify varieties that are adapted to farming systems in marginal environments or that use very few external inputs. A great deal has been published in recent years on the need for local adaptation and participatory plant breeding; this article reviews and synthesizes that literature.  相似文献   

4.
A number of breeding institutions developed a project to assess importance of participatory plant breeding approaches for rainfed rice improvement in eastern India. The results of the first two years of participatory varietal selection are reported here. The objective was to evaluate the respective effects of participation of farmers in varietal evaluation and decentralization of varietal testing from breeding stations to farmers' fields on varietal ranking. Fields representing various hydrological situations were chosen in two to three villages at four rainfed lowland sites and one upland site. Sets of 15 to 25 varieties were tested both in farmers' fields and on-station in 1997 and 1998 and ranked by both farmers and breeders. The effect of participation was judged by comparing the rankings attributed by farmers and breeders to a given set of material in a given trial. The effect of decentralization was determined through comparisons between individual breeders' rankings across trials. Farmers' rankings were not randomly allocated, but agreement within the farmers' group was not always very strong. Except at one site, concordance among breeders' ranking was high, but, because of the limited number of breeders involved, it was seldom significant. In about two-thirds of the trials, there was a good agreement between farmers' and breeders' mean rankings. The consensus was particularly strong when severe constraints induced contrasting behavior in the genotypes. The decentralization effect appeared to be moderate, but variations due to a breeder effect were recorded. The part of genotype by environment interactions for grain yield due to location within one site and year was evaluated through various methods, showing more effect of G × E interactions at some sites than at others. Crossover interactions inducing changes in ranks represented a limited part of the yearly G × E interactions at all sites. Both farmer participation and decentralization of varietal testing in farmers' field would help in best matching the varieties to the needs, although their combined contribution would be more useful in some sites than in others. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
利用NY/T 2433-2013中的43个基本测试性状对巴彦淖尔分中心的63个向日葵参试品种进行遗传多样性分析,并与32个近似品种作比较,结果表明:参试品种表型性状中共检测到124个等位变异,平均每个性状检测到3.0244个,变幅为1~8个。Shannon’s多样性指数(H')平均值为0.5582,变幅为0~1.8101,41个有效测试性状中有17.07%的性状存在5个及以上等位变异,有51.22%的性状存在3个及以上等位变异,参试品种的等位变异数、每个性状的等位变异数及其变异幅度、多样性指数平均值等均大于近似品种。在外观形态上,参试品种的遗传多样性比近似品种更丰富。UPGMA聚类分析发现,在相似系数为0.860时,可将95个向日葵品种分为2个类群。主坐标分析结果与UPGMA聚类分析结果基本一致,但是可以通过向日葵品种在主坐标中的位置更加直观地判断95个向日葵品种间的遗传相似性。总体看来,参试品种与近似品种形态差异较小,建议育种家拓宽向日葵亲本选育材料,从而促进向日葵材料创新及新品种选育。  相似文献   

6.
Plant breeding collects, induces and rearranges genetic diversity followed by selection. Breeding may contribute to diversity in farmers’ fields or significantly reduce it. History has numerous examples of both. The diversity of many crops have gone through domestication, dispersal and modernization bottlenecks. Between these major decreasing processes, diversity has picked up through different evolutionary processes, and plant breeding affected by policies. Major negative effects of plant breeding on diversity have been recorded following the modernization bottleneck, but alternative breeding strategies have come up as well, both in the formal system and in the interphase between formal and farmers’ seed systems. Multiline breeding and participatory plant breeding are introduced as examples to also analyse effects of current developments in technology and policy. This paper intends to shed some light on the questions: how will current developments in technology and policy affect crop genetic diversity? Are we heading for a new bottleneck—either a molecular or a policy bottleneck, or a combination of both? Or could the future become more diverse? We look at the relationship between breeding, policies, and crop genetic diversity in farming systems with a birds-eye view. Notably because of current policy trends we warn for a new diversity bottleneck.  相似文献   

7.
This paper describes how plant breeders and farmers worked together to produce improved varieties of maize for the low-resource farmers of the Panchmahals district of Gujarat, India. Initially, farmers tested a range of maize varieties in a participatory varietal selection (PVS) programme. However, none of these proved to be very popular with farmers, although farmers who had more fertile fields adopted the variety Shweta from Uttar Pradesh. Hence, in 1994 a participatory plant breeding (PPB)programme was begun to generate new, more appropriate varieties. Yellow- and white-endospermed maize varieties were crossed that had been either adopted to some extent following PVS or had attributes, such as very early maturity,that farmers had said were desirable. In subsequent generations, the population was improved by mass selection for traits identified by farmers. In some generations,farmers did this in populations which were grown by breeders on land rented from a farmer. Soil fertility management was lower than that normally used on the research-station. The breeding programme produced several varieties that have performed well in research-station and on-farm trials. One of them, GDRM-187, has been officially released as GM-6 for cultivation in hill areas of Gujarat state,India. It yielded 18% more than the local control in research-station trials, while being seven days earlier to silk. In farmers' fields, where average yields were lower, the yield advantage was 28% and farmers perceived GDRM-187 to have better grain quality than local landraces. PPB produced a variety that was earlier to mature than any of those produced by conventional maize breeding, and took fewer years to do so. The returns from PPB,compared to conventional breeding, are higher because it is cheaper and benefits to farmers are realised earlier. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
国外种质对中国大豆育成品种遗传贡献的分子证据   总被引:6,自引:1,他引:5  
用SSR标记对32份中国大豆品种与40份国外引进大豆育成品种祖先亲本的遗传多样性进行分析,以明确引进国外大豆种质对中国大豆育种的遗传贡献。结果表明,在22个SSR位点共检测到170个等位变异,中国大豆和引进国外大豆平均等位变异数分别为6.0和6.9个,遗传多样性指数都为0.71,国外品种中检测到48个特有等位变异,而中国大豆中仅检测到22个,且共有等位变异在中外大豆中的分布频率差异较大。聚类分析也发现中国育成品种与国外引进大豆存在较大差异。遗传组成分析发现,Amsoy和十胜长叶2个国外种质的引入使5个中国大豆育成品种增加了23个国外种质特有等位变异;其在育成品种中的保留比例为29.13%,但不同遗传背景中保留的等位变异不同,说明国外种质在中国大豆育种中起着重要作用,而且仍有很多特有等位变异没有被利用,可以继续作为亲本在中国大豆改良中发挥作用。  相似文献   

9.
It is widely recognized that conventional plant breeding has been more beneficial to farmers in high-potential environments or those who can profitably modify their environment to suit new cultivars, than to the poorest farmers who cannot afford to modify their environment through the application of additional inputs and cannot risk the replacement of their traditional, well known and reliable varieties. As a consequence, low yields, crop failures, malnutrition, famine, and eventually poverty still affect a large proportion of humanity. Participatory plant breeding (PPB) is seen by several scientists as a way to overcome the limitations of conventional breeding by offering farmers the possibility to choose, in their own environment, which varieties suit better their needs and conditions. PPB exploits the potential gains of breeding for specific adaptation through decentralized selection, defined as selection in the target environment, and is the ultimate conceptual consequence of a positive interpretation of genotype × environment interactions. The paper describes a model of PPB developed by The International Center for Agricultural Research in the Dry Areas and used successfully in several countries in West Asia and North Africa. Genetic variability is generated by breeders, selection is conducted jointly by breeders, farmers, and extension specialists in a number of target environments, and the best selections are used in further cycles of recombination and selection. Technically, the process is similar to conventional breeding, with three main differences. Testing and selection take place on-farm rather than on-station, key decisions are taken jointly by farmers and the breeder, and the process can be independently implemented at a large number of locations. The model also incorporates seed production. Farmers handle the initial phases, multiplying promising breeding material in village-based seed production systems. The PPB model is flexible; it can generate populations, pure lines, and eventually mixtures of pure lines in self-pollinated crops; as well as hybrids, populations, and synthetics in cross-pollinated crops. PPB has several advantages. New varieties reach the release phase much faster than in conventional breeding, and are better suited to farmers’ needs and willingness to invest in inputs and management. Release and seed multiplication activities concentrate on varieties known to be farmer-acceptable. These advantages are particularly relevant to developing countries where large investments in plant breeding have not yielded returns, and many “improved” varieties developed through conventional breeding are not adopted by farmers. PPB also ensures that biodiversity is maintained or increased because different varieties are selected at different locations. In addition to the economical benefits, participatory research has a number of psychological, moral, and ethical benefits, which are the consequence of a progressive empowerment of the farmers’ communities; these benefits affect sectors of their life beyond the agricultural aspects. In conclusion, PPB, as a case of demand driven research, gives voice to farmers, including those who have been traditionally the most marginalized such as the women, and elevates local knowledge to the role of science.  相似文献   

10.
棉花机械采收对品种的生育期、株型及对脱叶剂敏感度有较高的要求。本研究利用覆盖全基因组有多态性的214对SSR标记对118份含有一个或多个机采性状的种质资源的株高、始节高、始节位、第一果枝平均长度、生育期及脱叶率6个机采相关性状进行关联分析。利用Structure 2.3.1软件进行群体结构分析,并结合2年2点12个重复的田间表型数据,采用Tassel 5.0软件的混合线性模型MLM关联定位。结果检测到460个等位基因,涉及905个基因型,基因多样性指数平均为0.5151,PIC值平均为0.4587,基因多样性指数和PIC值都大于平均数的标记有99个,占总标记数的46.3%,说明该批SSR标记具有较多的等位变异数和较高的遗传多样性。群体结构分析将118份供试材料划分为4个亚群,结果显示各类群中材料与地理来源无对应关系。关联分析结果显示4种环境中,在显著条件下(P0.05),共检测到124个与6个机采相关性状相关的位点,对表型变异解释率范围为2.23%~14.15%;其中在极显著条件下(P0.01),共检测到20个与机采相关性状相关的位点,对表型变异解释率范围为4.84%~14.15%。基于本研究的结果,鉴定出典型的载体材料11份,分别为系7、金垦9号、Y11、豫棉18、AY-4、K2、朝阳棉2号、DZ22、中棉所43、C2和关农长早B14。以上发掘出的控制棉花适宜机采性状的优异等位基因及优异亲本资源,可为机采棉的分子辅助选择育种提供理论依据。  相似文献   

11.
A collection of 189 bread wheat landraces and cultivars, primarily of European origin, released between 1886 and 2009, was analyzed using two DNA marker systems. A set of 76 SSR markers and ~7,000 DArT markers distributed across the wheat genome were employed in these analyses. All of the SSR markers were found to be polymorphic, whereas only 2,532 of the ~7,000 DArT markers were polymorphic. A Mantel test between the genetic distances calculated based on the SSR and DArT data showed a strong positive correlation between the two marker types, with a Pearson’s value (r) of 0.66. We assessed the genetic diversity and allelic frequencies among the accessions based on spring- versus winter-wheat type as well as between landraces and cultivars. We also analyzed the changes in genetic diversity and allelic frequencies in these samples over time. We observed separation based on both vernalization type and release date. Interestingly, we detected a decrease in genetic diversity in wheat accessions released over the period from 1960 to 1980. However, our results also showed that modern plant breeding have succeeded in maintaining genetic diversity in modern wheat cultivars. Studying allelic frequencies using SSR and DArT markers over time revealed changes in allelic frequencies for a number of markers that are known to be linked to important traits, which should be useful for genomic screening efforts. Monitoring changes in the frequency of molecular DNA markers over time in wheat cultivars may yield insight into alleles linked to important traits that have been the subject of positive or negative selection in the past and that may be useful for marker-assisted breeding programs in the future.  相似文献   

12.
Gaudin  Amanda G.  Wubben  Martin J. 《Euphytica》2021,217(11):1-12

Although the effect of local adaptation is well documented in evolutionary biology, few studies have quantified the impact of local adaptation in plant breeding. Decentralized plant breeding programs have the potential to harness local adaptation for crop improvement, but the effectiveness of such models is understudied. We quantified the ability of a decentralized participatory plant breeding program to improve Weed-competitive ability (WCA) in organic spring wheat. After four farmers in the northeast United States selected wheat populations for WCA and its correlated trait of early vigor, we tracked gains in selection and local adaptation. On average, farmers enhanced competitive ability of selected genotypes by 11.46%. Measured gains from selection for early vigor and early canopy cover, however, varied among testing environments. Gains in selection were highly related to the genetic correlation coefficient between selection and testing environment (r?=?0.77 and r?=?0.80 for early vigor and canopy cover, respectively). To accurately measure gains from selection for decentralized breeding programs, testing environments should be chosen that are similar to where selection took place. Inconsistent weed competition among site-years limited conclusions from the analysis of local adaptation for weed competitive ability. Detecting local adaptation in plant breeding, which typically uses a small number of selection cycles compared to evolutionary biology, likely requires many genotypes, environments, and years for adequate statistical power. The ecological complexity of weed competitive ability further complicates experimental design and challenges the ability to measure local adaption.

  相似文献   

13.
Farmer participation is increasingly seen as a key to develop technologies which are more relevant to farmers' communities. In plant breeding, farmer participation is seen as key to increase the probability of adoption of new varieties. This paper addresses the issue of selection efficiency in participatory plant breeding by testing the effect of selection environment and of who did the selection in one cropping season (1997) on the performance of the selected lines in the following cropping season (1998). Selection environment had a larger effect on response to selection than who did the selection, confirming the importance of decentralized selection. Selections made by the breeder and the farmers in 1997, differed in 1998 for a number of traits, but seldom for grain yield. When the difference for grain yield was significant, breeder's selection was more effective on station, while farmers' selection was more effective in farmers' fields. The results of this study indicate that it is possible to organize a plant breeding program with the objective of adapting crops to a multitude of both physical and socio-economic environments: such a breeding program will, at the same time, increase productivity and stability, enhance biodiversity and produce environmentally friendly cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
“VASO” is a Portuguese participatory maize breeding project (1984), where several maize landraces such as “Pigarro” have been selected both by a farmer's (phenotypic recurrent selection) and a breeder's approach (S2 lines recurrent selection). The objectives of this study were to determine the phenotypic and genotypic responses to participatory selection using these two different approaches, to clarify to which extent both selection methods preserve genetic diversity, and conclude what is the preferred method to apply in sustainable farming systems. The results, obtained via ANOVA, regression analyses and molecular markers, indicate that for both selection methods, genetic diversity was not significantly reduced, even with the most intensive breeder's selection. Although there were some common outputs, such as the determinated versus indeterminated ears, cob and ear weight ratio per ear and rachis 2, specific phenotypic traits evolved in opposite directions between the two selection approaches. Yield increase was only detected during farmer selection, indicating its interest on PPB. Candidate genes were identified for a few of the traits under selection as potential functional markers in participatory plant breeding.  相似文献   

15.
B. P. Loos 《Euphytica》1994,80(1-2):49-57
Summary Sixty Lolium perenne populations were screened for allozyme diversity at five loci. Objective was to determine whether allozyme diversity could be used as selection criterion for genebank accessions of L. perenne. Subsampling of locations was tested with allozyme analysis to determine whether genetically different populations could be collected at one location. Correlations between allelic frequencies and environmental factors and morphological data were established, to find ecogeographical patterns in the observed variation. Results indicated that with few examples each allelic variant could be observed in each population screened; very few unique alleles were found. Differences between populations were largely due to differences in allelic frequencies. Few correlations were found with environmental factors and morphological data. For some allele frequencies a north-south cline was observed. Generally, allozymic data of the five screened loci did not appear to be useful for the selection of accessions for genebank storage. Significant genotypic differences between populations collected at one location could be established. In general these results agreed with earlier results concerning phenotypic variation in the same populations.  相似文献   

16.
The evaluation and use of the vast diversity contained in plant genetic resources (PGR) is a main challenge for today’s plant breeding. The use of molecular markers has hugely increased the knowledge about genetic diversity and great hopes are raised about the potential of marker assisted selection [MAS; sometimes also termed SMART breeding (Selection with Markers and Advanced Reproductive Technologies)] to help increasing the use of PGR and maintaining crop genetic diversity. Another approach growing attention has been paid to over the past two decades and which also aims to increase variation in crops is evolutionary and participatory breeding (EPB). In this paper we discuss both the potential of marker-assisted breeding strategies and the potential of EPB breeding to contribute to the maintenance, increase and development of agrobiodiversity. The potentials of molecular markers in the evaluation and use of PGR and their documented contribution to agrobiodiversity are reviewed and results from guided interviews with scientists and breeders are given. Despite tremendous research efforts involving molecular markers, it is still difficult to obtain a clear picture how molecular markers contribute to the use of PGR in plant breeding. Minor and major crops do not benefit to the same degree from recent developments in marker technology. It therefore depends at least in part on economic considerations whether SMART breeding or EPB strategies or both are implemented in the breeding process of a crop. A general decision in favor or against MAS or EPB when breeding for diversity would not yield optimum results.  相似文献   

17.
张军  赵团结  盖钧镒 《作物学报》2009,35(2):191-202
以往研究育成品种间的遗传关系只能通过系谱追踪进行一般性分析, 分子标记的发掘则提供了在位点及其等位变异基础上分析育成品种间遗传关系的手段。本研究在黄淮和南方190份大豆育成品种的85个SSR标记与农艺性状关联分析基础上, 将其中163份品种按系谱祖先归为58-161、徐豆1号、齐黄1号、南农493-1、南农1138-2五个家族, 对产量和品质性状进行优异等位变异在系谱中传承情况的分析。所涉及的最佳位点, 产量9个、百粒重3个、蛋白质含量2个、脂肪含量4个, 总解释率分别为91%、36%、13%和31%。每位点考查2个最优等位变异, 家族系谱祖先具有各自的优异等位变异, 随着育种轮次的增加在后育成品种中有丢失; 在系谱祖先基础上新品种衍生过程中吸纳其他亲本, 5个家族趋向共有大部分优异等位变异, 但频率分布不同。5个家族的品种所含有产量最多优异等位变异数未达饱和, 9个位点中最高含7个优异等位变异, 平均每个品种2.23个, 产量有进一步改良潜力。供试条件下高产品种平均产量是低产的2.36倍, 平均优异等位变异数是低产的4.17倍, 高、低产品种优异等位变异构成差异明显, 但高产品种间优异等位变异构成并不相同。也有的品种高产而优异等位变异数并不多, 有的品种优异等位变异较多但产量并不高。大豆育种不断从不同亲本中累积目标性状优异等位变异, 同时有些也在丢失, 应重视保存过时品种的优异等位变异, 以备后用。  相似文献   

18.
Bulb color in onions (Allium cepa) is an important trait, and homogenous red coloration is desirable in red onion cultivars. The gene encoding anthocyanin synthase (ANS) is required for anthocyanin biosynthesis in onions. We have previously described three different alleles of the ANS gene. Here we report identification of the fourth allele of ANS, ANS-h1, found in a dark red doubled haploid line. ANS-h1 is similar to a non-functional allele found in Brazilian yellow cultivars except that it has several point mutations and indels throughout the promoter and coding regions, none of which are predicted to inactivate enzymatic activity. F2 and backcross populations originating from the crosses between wild-type (ANS-L) allele-containing red and pink (ANS-p) allele-containing white or yellow parents show a discrete segregation ratio of 3 red to 1 light pink, indicating that the wild-type allele is completely dominant over the pink allele. In contrast, segregating populations derived from the crosses between ANS-h1 allele-containing red and the same white or yellow parents show a gradient of red intensity from light pink to dark red, suggesting that other genetic factors may affect expression of ANS-h1. A newly developed PCR-based marker and two previously developed markers for allelic selection of the ANS gene were used to examine allele composition in fifty-six breeding lines and commercial cultivars. Most lines are heterogeneous for the ANS gene with two or three alleles detected. The frequency of the pink allele is low in red breeding lines, but it is predominant in white and yellow lines.  相似文献   

19.
高艾英  吴长艾  朱树生  王宪泽 《作物学报》2005,31(11):1460-1465
采用酸性聚丙烯酰胺凝胶电泳(A-PAGE),分析了山东省种植面积较大的37个小麦品种醇溶蛋白Gli-1和Gli-2位点等位基因的组成特点。结果表明,山东小麦在醇溶蛋白Gli-1 (Gli-A1、Gli-B1和Gli-D1) 和Gli-2 (Gli-A2、Gli-B2和Gli-D2) 位点存在多样性,共鉴定出58个等位基因,出现频率较高的有6个,分别为Gli-A1a (48.6 %)、Gli-B1l (35.1%)、Gli-D1k (35.1%)、Gli-A2b (35.1%)、Gli-B2g (35.1%)和Gli-D2a (29.7%),其中Gli-B1l出现频率较高,表明1BL/1RS易位系在山东小麦中存在比较普遍。醇溶蛋白6个主要位点的遗传变异系数较高,平均为0.7930,变幅为0.7297~0.8269,其中Gli-D2位点遗传多样性最高,Gli-A1最低。对具有优质醇溶蛋白等位基因Gli-B1b或Gli-A2b的品种进行了高分子量谷蛋白亚基的组成分析,表明烟农15、烟优361、山农98-1和山农93-52同时含有优质谷蛋白5+10亚基,在小麦育种中可利用这些优质亚基基因。  相似文献   

20.
The paper describes experiments on farmer participation in plant breeding conducted in three countries (Morocco, Syria and Tunisia) on barley, which is the predominant annual rainfed crop in the most marginal areas of these countries. Trials with different types and number of breeding material were planted both on research stations and in farmers' fields. Selection was done by professional breeders and farmers and data were gathered on breeders' and farmers' selection criteria and selection efficiency. The trials reflected the situation of the crop in the three countries, with high yields on station, low yields in some of the most marginal farmers' fields, and poor correlations between research stations and farmers' fields, as well as between farmers' fields. Grain yield was by far the most commonly used selection criterion by the farmers. However, farmers also made a widespread use of selection criteria not normally used by breeders such as grain filling and straw yield, as well as other characteristics of the straw (color) and of the leaves because of the importance of the crop as source of animal feed. A major difference between the selection criteria used by breeders and farmers was disease resistance, almost entirely neglected by the latter. Farmer selection was effective in identifying some of the highest yielding lines in the farmers' own fields and also in those cases where they performed selection on station. The coincidence between entries selected by the breeder and the farmers was high in Morocco but very low in Syria and Tunisia. There were substantial differences between the lines selected by the breeders on station and those selected by farmers in their fields. In Syria, decentralized-participatory selection was significantly more efficient in identifying the highest yielding entries in farmers' fields than any other selection strategy. This work demonstrates that it is possible to organize a plant breeding program so that farmers become major actors in the selection of new cultivars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号