首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
卡那霉素浸种是一种简单、方便的转基因抗虫棉间接鉴定技术.本实验以不同浓度卡那霉素溶液、采用不同浸泡时间处理棉花种子,研究转基因抗虫棉与非转基因棉花在发芽率、根系生长、子叶颜色等生理指标方面的变化.结果表明,卡那霉素浓度为4000mg/kg时将棉花种子浸泡48h可有效筛选出转基因抗虫棉.  相似文献   

2.
为了对转基因抗虫棉后代进行简单、快速、准确地鉴定和筛选,利用 Bt-CryI Ab/Ac 试纸条法、硫酸卡那霉素浸种法对转基因和非转基因棉花种子进行鉴定和筛选。结果表明:3 种不同品牌的转基因试纸条检测结果完全一致,均能快速、准确地检测出转基因和非转基因棉花种子。利用 5000mg/L 的硫酸卡那霉素将棉花种子浸泡 48h 并持续培养 10d,通过观察棉花种子的发芽率及侧根生长情况也可有效筛选出转基因抗虫棉,但此种方法较试纸条法检测周期长,而且存在试验误差,影响试验准确率。因此,转基因试纸条法是一种更为快速、简单、准确的鉴定和筛选转基因抗虫棉植株的方法。  相似文献   

3.
棉花氮素和SPAD值叶位分布规律研究   总被引:16,自引:1,他引:15  
 在盆栽和大田氮肥试验的基础上,研究棉花氮素和叶绿素含量(SPAD值)随叶位的空间分布特征,并对不同叶位叶片的含氮率、SPAD值之间及其与总叶片含氮率和植株含氮率之间的相关性进行了分析。结果表明棉花不同叶位叶片含氮率、叶绿素含量、SPAD值均存在差异,增加施氮量能提高叶片含氮率、叶绿素含量和SPAD值,同时减小叶位间的差异;SPAD值对氮素的敏感性为倒4叶最高,倒2叶最低,而倒1、倒3叶的敏感性排序因品种不同而不同;蕾期、初花期和盛花期均以倒4叶与总叶片及植株含氮率相关系数最高;且适宜氮素水平下,初花期倒4叶SPAD值的变异系数最小。以某一特定叶片的SPAD值或以叶色差的大小来诊断棉花氮素营养状况时,倒4叶是较为理想的指示叶。  相似文献   

4.
研究不同施磷条件下棉花叶片叶绿素含量的变化规律,旨在建立基于高光谱的叶片磷含量估测模型,实现棉花叶片磷含量快速监测。在盆栽试验条件下,设置不同的磷肥量,测定棉花功能叶叶绿素含量与磷含量,并利用植被指数和叶绿素含量的相关性构建磷含量的光谱变量,从而实现利用高光谱对棉花叶片磷含量的定量监测。结果表明:(1)棉花播种后100天左右,叶片磷含量与叶绿素呈现显著关系(决定系数R2=0.96)。(2)利用多个植被指数(X)和叶绿素含量(I)的相关性构建倒一叶、倒二叶、倒三叶、倒四叶的磷含量光谱变量,其中各叶片相关性最优的模型:倒一叶(L1)为I1=2.6131XRENDVI-0.4275,XRENDV为红边归一化植被指数,R2=0.71,RMSE=0.2;倒二叶(L2)为I5=0.0142XTVI+0.3274,XTVI为三角植被指数,R2=0.76,RMSE...  相似文献   

5.
含NPTⅡ标记基因的转基因抗虫棉室内快速鉴定方法   总被引:1,自引:0,他引:1  
通过试验研究,提出了3种室内快速筛选和鉴定含NPTⅡ标记基因的转基因抗虫棉的方法.一是待检测棉子去种皮,在含卡那霉素培养基培养,根据幼苗子叶颜色和棉苗状态来辨别是否是转基因材料,卡那霉素最适浓度为0.75 g·L-1;二是去皮种子培养在无卡那霉素的萌苗培养基上,在棉苗子叶上涂抹卡那霉素溶液进行鉴定,最适浓度为4.0 g·L-1;三是在待测棉苗子叶上打孔、滴加一定浓度的卡那霉素,根据打孔并滴加卡那霉素部位的叶片颜色变化,鉴别并统计转基因植株,其最适浓度为2.0 g·L-1.3种方法均可在卡那霉素处理后4~7 d内快速鉴定出转基因植株.同时,对转基因阳性植株进行PCR鉴定,结果表明3种卡那霉素方法鉴定的准确率均在90%以上.  相似文献   

6.
棉花叶片不同位点SPAD值与植株氮营养相关性研究   总被引:3,自引:1,他引:2  
为了确定最能代表棉花氮素营养水平的叶片SPAD值测定位点,采用水培试验方法,设7个供氮水平,分3次测定棉花6片主叶(倒1叶至倒6叶)17个不同位点的SPAD值,对棉花不同叶位及同一叶片不同测定位点SPAD值与棉株氮素营养水平的相关关系进行研究。结果表明,倒4叶SPAD值与棉株地上部氮含量的相关性最好,相关系数为0.6524,达到了显著水平,可认定倒4叶为棉花的功能叶。而棉花倒4叶17个测定位点中,叶片上缘位置SPAD值与地上部氮含量的相关性较靠近叶柄的部位更好,其中S3位点即叶尖位置的相关系数最高,为0.4597,达极显著水平。可以初步确定棉花倒4叶叶尖位置为测定SPAD值以判断棉花氮素营养水平的最佳位点。  相似文献   

7.
高品质转野生荠菜凝集素基因棉花的获得   总被引:2,自引:1,他引:2  
利用花粉管通道转基因技术,将DE35S启动子驱动的野生荠菜凝集素(WSA)基因导入10个高品质棉花品种(系)。所使用的转基因表达载体还含有选择标记基因NPTⅡ(卡那霉素抗性基因)和Ω序列,以利于转基因植株的筛选以及WSA基因的高效表达。对转化当代3197棵棉苗的检测结果表明,4.88%植株具有卡那霉素抗性(Kan )。根据野生荠菜凝集素基因序列设计一对特异性引物,对156个Kan 植株进行PCR检测,筛选出45个转WSA基因棉花工程植株。45个株系纤维品质测定结果表明,获得了9个高品质转WSA基因棉花株系。并对植物基因工程研究中以NPTⅡ作为标记基因的局限性以及一些转WSA基因棉花株系纤维强度变劣的原因进行了探讨。  相似文献   

8.
3种筛选NPT-Ⅱ标记转基因油菜方法研究   总被引:1,自引:0,他引:1  
利用卡那霉素溶液叶片涂抹法、种子浸泡法以及卡那霉素MS培养基筛选法三种方法对含有NPT-Ⅱ标记基因的转基因油菜种子(T0)进行筛选。结果表明,三种筛选方法的最佳卡那霉素选择压为200mg/L;涂抹叶片法4-5d可以明显识别植株对卡那霉素抗性与否,此法筛选到的4株植株PCR检测全部呈阳性,可靠性达100%;浸泡种子法2-3d可以明显识别植株对卡那霉素抗性与否,此法筛选到的5株植株PCR检测全部呈阳性,可靠性100%;MS培养基筛选法一般10d可以明显植株识别对卡那霉素抗性与否,此法筛选到20株植株,移栽后存活5株,PCR检测3株呈阳性,2株是假阳性植株,可靠性为60%。因此可以认为卡那霉素涂抹叶片和浸泡种子两种方法是转基因油菜进行大规模、快速的筛选及后代的遗传分析的理想方法。  相似文献   

9.
卡那霉素浸种筛选转基因棉花的初步研究   总被引:7,自引:0,他引:7  
转基因技术已经被广泛应用于作物的抗虫、抗病及高品质等的改良育种 ,而且转基因植株的鉴定方法也有多种 ,其中带有NPTⅡ标记基因的转基因后代材料的大田筛选 ,主要是在苗期 ,利用卡那霉素溶液 (Kanamycin)点涂植株幼叶 ,以幼叶的变黄与否来确定。为防止漏点漏涂 ,出现假阳性植株 ,须在花铃期以前对材料点涂 2~ 3次 ,因此从大量的转基因材料中筛选转基因植株 ,工作量相当大。本研究的目的是试图筛选出适当的卡那霉素浓度 ,通过浸种以快速地鉴定出转基因植株。1 材料和方法1.1 供试材料转基因抗虫棉新棉 33B、非抗虫棉豫棉 11号和转基因…  相似文献   

10.
为了获得耐低温棉花新材料,通过花粉管通道法获得了转CaM基因棉花,经过分子检测得到了3个转基因株系。同时对得到的转基因株系的T4代(C1、C2、C3)和棉花受体(CK)在低温处理后的相关生理生化指标进行了初步测定。发现在低温(4℃)处理24 h后,C1、C2、C3叶片中的丙二醛(MDA)含量明显低于对照,超氧化物歧化酶(SOD)、过氧化物酶(POD)的活力、可溶性糖的含量明显高于对照,而常温下(23℃)测定值没有明显的差异。表明转CaM基因棉花在低温时能够通过减轻叶片膜脂过氧化程度,提高抗氧化酶活力等反应来缓解低温对棉花叶片的损伤。本研究筛选出了3个具有一定抗寒能力的转基因株系,为下一步选育抗寒新品种奠定了基础,也为其他棉花抗寒转基因技术提供了理论依据。  相似文献   

11.
G. H. Kroon 《Euphytica》1994,76(1-2):125-125
Summary K x vadensis is a hybrid of K. blossfeldiana and K. marmorata obtained after doubling the number of chromosomes.  相似文献   

12.
Sorghum shoot fly, Atherigona soccata, is one of the important pests of postrainy season sorghums. Of the 90 sorghum genotypes evaluated for resistance to this pest, RHRB 12, ICSV 713, 25026, 93046 and 25027, IS 33844‐5, Giddi Maldandi and RVRT 3 exhibited resistance in postrainy season, while ICSB 463, Phule Anuradha, RHRB 19, Parbhani Moti, ICSV 705, PS 35805, IS 5480, 5622, 17726, 18368 and 34722, RVRT 1, ICSR 93031 and Dagidi Solapur showed resistance in rainy season, suggesting season‐specific expression of resistance to A. soccata. ICSB 461, ICSB 463, Phule Yasodha, M 35‐1, ICSV 700, 711, 25010, 25019 and 93089, IS 18662, Phule Vasudha, IS 18551 and 33844‐5 and Barsizoot had fewer deadhearts than plants with eggs across seasons, suggesting antibiosis as one of the resistance mechanism. Five genotypes exhibited resistance with high grain yield across seasons. Correlation, path and stepwise regression analyses indicated that leaf glossiness, seedling vigour, trichome density, oviposition and leaf sheath pigmentation were associated with the expression of resistance/susceptibility to shoot fly, and these can be used as marker traits to select and develop shoot fly‐resistant sorghums.  相似文献   

13.
Summary Hordeum chilense is a wild barley extensively used in wide crosses in the Triticeae. It could be a valuable source of resistance to Fusarium culmorum and Septoria nodorum. Some H. chilense x Triticum spp. amphiploids, named tritordeums, were more resistant than the parental wheat line to these diseases, others were not. Average contents of ergosterol and deoxynivalenol (DON) suggested that resistance to colonization by Fusarium was the highest for Hordeum chilense, followed by tritordeum and wheat in decreasing order. In particular, the H. chilense genotypes H7 and H17 enhanced the wheat resistance to F. culmorum in its tritordeum offsprings. Resistance to S. nodorum in tritordeum was not associated with tall plant height. There is sufficient genetic variation for resistance to F. culmorum and S. nodorum among tritordeum to allow the breeding of lines combining short straw and resistance to both diseases.  相似文献   

14.
J. T. Fletcher 《Euphytica》1992,63(1-2):33-49
Summary Cultivars of tomatoes, cucumbers, lettuce and peppers have been bred for resistance to one or more pathogens. Some tomato and cucumber cultivars have resistance to a wide range of diseases. Resistance has been transient in many cases and a succession of cultivars with new genes or new combinations of resistance genes has been necessary to maintain control. There has been a number of notable exceptions and these have included durable resistance to such pathogens asFulvia fulva and tomato mosaic virus. With lettuce the resistance situation is complicated by the occurrence of fungicide resistant pathotypes. There are no strains ofAgaricus bisporus purposely bred for disease resistance.In protected flower crops only resistance to Fusarium wilt in carnations has been purposely bred but differences in disease resistance are apparent in cultivars of many ornamental crops. This is particularly so in chrysanthemums where there are cultivars with resistance to many of the major pathogens. Similar situations occur with other flower crops and pot plants. Cultivars of some species have not been systematically investigated for resistance.The need for genetic resistance will increase with the further reduction, in the limits on pesticide use and an increasing public awareness and importance of pesticide pollution.ADAS is an executive agency of the Ministry of Agiculture, Fisheries and Food and the Welsh Office.  相似文献   

15.
The genetic constitution and diversity of four relictual redwoods are discussed in this review. These include monotypic genera of the family Cupressaceae: coast redwood (Sequoia sempervirens), giant sequoia (Sequoiadendron giganteum), dawn redwood (Metasequoia glyptostroboides), and alerce (Fitzroya cupressoides). All four species are narrow endemics, share a number of common phenotypic traits, including red wood, and are threatened species. Fossil history suggests that the ancestors of redwoods probably originated during the Cretaceous and Tertiary periods and flourished thereafter for millions of years. Towards the end of the Tertiary period began their decline and struggle for existence that continued during the subsequent geologic upheavals and climate changes, until the survival of the present-day redwoods in the current restricted locations in the world (USA, China, and South America). Although two species, Sequoiadendron and Metasequoia, are diploids (2n = 22), and the other two are polyploids: Fitzroya a tetraploid (2n = 4x = 44), and Sequoia a hexaploid (2n = 6x = 66); they all share the same basic chromosome number x = 11. The genome size in the hexaploid Sequoia is one of the largest (31,500 MB) in the conifers, while the genome sizes of diploid Metasequoia and Sequoiadendron are about one-third (~10,000 MB) of Sequoia. Genetic diversity in the redwoods is lower than most other gymnosperms, except in Sequoia, which seems to rank near the upper quarter of the coniferous forest trees. Genomic research is sparse in the redwoods, and should be pursued for a better understanding of their genome structure, function, and adaptive genetic diversity.  相似文献   

16.
Over the past 20 years, several expeditions were made to northern Chile to collect populations of wild tomatoes (Solanum chilense, S. peruvianum) and allied nightshades (S. lycopersicoides, S. sitiens), and obtain information about their geographic distribution, ecology and reproductive biology. Restricted mainly to drainages of the Andean and the coastal cordillera, populations are geographically fragmented. The two nightshade species are rare and threatened by human activities. Adaptation to extreme aridity and soil salinity are evident in S. chilense and S. sitiens (the latter exhibits several xerophytic traits not seen in the tomatoes) and to low temperatures in S. lycopersicoides and S. chilense. All tested accessions are self-incompatible, with the exception of one S. peruvianum population collected at the southern limit of its distribution. Several distinguishing reproductive traits—anther color, attachment, and dehiscence, pollen size, and flower scent—suggest S. sitiens and S. lycopersicoides attract different pollinators than S. chilense and S. peruvianum. The four Solanum spp. native or endemic to Chile provide a variety of novel traits which, through hybridization and introgression with cultivated tomato, could facilitate development of improved varieties, as well as research on a variety of basic topics, including plant-pollinator interactions, abiotic stress responses, and evolution of reproductive barriers.  相似文献   

17.
The induction in vitro of adventitious shoots in Rosa   总被引:8,自引:0,他引:8  
Summary Adventitious shoots were formed on excised leaves, roots and callus of Rosa persica x xanthina and on excised leaves of R. laevigata and R. wichuraiana on culture media that included BAP and NAA as growth regulators. Shoots formed freely on freshly cultured callus of R. persica x xanthina but their production declined in successive cultures and ceased after twelve weeks. Transplantation to soil was improved by rooting plantlets in cellulose plugs in vitro and transferring plantlets to soil while still in the plugs.  相似文献   

18.
Summary Twenty three accessions of nine Portuguese cabbage and kale land races from different geographic origins were tested at the seedling stage for resistance to several important brassica diseases. Resistance to downy mildew (Peronospora parasitica), expressed as necrosis of the cotyledon mesophyll, was found in all the accessions. Type A resistance to cabbage yellows (Fusarium oxysporum f. sp. conglutinans race 1) was present in most of the landraces. Resistance to clubroot (Plasmodiophora brassicae race 6) was found in one accession of the Portuguese tree kale. High resistance to blackleg (Leptosphaeria maculans) and white rust (Albuco candida) was not detected, although several accessions showed 20 to 30% of plants with intermediate expression of resistance. All Portuguese cole accessions were susceptible to blackrot (Xanthomonas campestris pv. campestris).  相似文献   

19.
Plants were regenerated from intergeneric somatic hybridization between embryogenic protoplasts of Microcitrus papuana Swingle and leaf-derived protoplasts of sour orange (Citrus aurantium L.) via electrofusion. The regenerated plants were morphologically similar to the leaf parent in growth vigor, leaf and branch structure. FCM analysis showed that they were diploids. Simple-sequence-repeat (SSR) and cleaved-amplified-polymorphic-sequence(CAPS) were employed for hybridity characterization. SSR banding patterns of the regenerated plants were identical to the leaf parent, sour orange, indicating that they possessed nuclear component derived from sour orange. DNA amplification with chloroplast and mitochondrial universal primers, followed by restriction endonuclease digestion, revealed polymorphism between the fusion parents. Therefore, this method was used to determine the cytoplasmic compositions of the regenerated plants. Banding patterns for all the polymorphic primer/enzyme combinations of the regenerated plants were similar to those of the embryogenic parent, M. papuana, suggesting that only the cytoplasmic components derived from the embryogenic parent were present in the regenerated plants. FCM, SSR and CAPS demonstrated that intergeneric diploid cybrids have been successfully obtained by symmetric fusion. Related results concerning nuclear and cytoplasmic composition of previous diploid somatic hybrids and potential mechanism for regeneration of such kind of plants are discussed herein. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Five-hundred interspecific and intergeneric crosses were performed among accessions of the wild strawberries Fragaria vesca(2x), Duchesnea indica (8x), Potentilla tucumanensis (2x) and 9 genotypes of the cultivated strawberry, Fragaria×ananassa (8x), following an incomplete diallele mating design. Crosses between D. indica and F.×ananassa produced many putative hybrids when D. indica was used as female but a few achenes and plants when used as male; therefore, pollen-pistil compatibility relations were analyzed by fluorescence microscopy in this direction of the cross. Of the genotypic combinations, 78.6% were incompatible at the stigma level and 17.2% at the first third of the style. Only 3.6% were pollen-pistil compatible and produced fruits with achenes (seven did not germinate or originated short-lived plants and nine produced normal plants). F.vesca×F.×ananassa crosses produced 35 hybrid achenes but only 14% germinated, yielding short-lived plants; histological analyses revealed that inviable seeds had less developed (or collapsed) endosperms and smaller embryos than control plump F. vesca seeds. P.tucumanensis was only used as male, with negative results. These species and genera are partially isolated by a complex system of pre- and post-zygotic barriers. Knowledge of their nature would allow the breeder to devise strategies to put the genetic variability available in the group into a useful form. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号