首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To satisfy farmer and consumer preferences, breeding efforts to increase yield potential in common bean must take into account the interrelated effects of growth habit, seed size, maturity, and gene pool on yield expression in segregating populations. To examine the relationships among these traits, a genetic study was conducted to determine the effect of growth habit on yield and seed size in crosses among five bean lines from diverse gene pools. Two parental bean lines had determinate, type I growth habits and large seed size typical of the Neuva Granada-Andean gene pool. Two other lines were tropical Mesoamerican types with type II growth habits and small seed size; and the fifth line, G13625, a landrace of the Jalisco gene pool from the Mexican highlands, had a type IV climbing growth habit and medium seed size. Individual F2 plants from each cross and parental lines were evaluated for growth habit and yield component traits under high input field conditions. The following season, the evaluations were repeated on random F3 plants. Of the five parental lines, only G13625 showed significant GCA effects for yield in both the F2 and F3 generations. Improved yielding ability of G13625 progeny was associated with an increased expression of climbing bean growth habit traits: guide length, climbing ability, node number on main stem, and plant height. Crosses between Andean x Mesoamerican and Andean x Jalisco genotypes, as well between growth habit type I (Andean x Andean) and between type II (Mesoamerican x Mesoamerican) had very low parent-offspring heritability values for yield. Yield heritability was only significant for crosses between Mesomerican x Jalisco gene pools. An apparent simple genetic control of growth habit modification towards semi-climbing and climbing types is proposed as the major reason for increased yields in these crosses. No genetic linkage between genes controlling growth habit and seed size was detected which might restrict the development of high yielding large-seeded type II lines.  相似文献   

2.
A core collection of common bean from the Iberian peninsula   总被引:14,自引:0,他引:14  
Characterization of crop germplasm from specific regions helps understand the patterns of genetic variation that facilitates further germplasm collection, characterization, management and their more efficient utilization in genetics, breeding and other studies. Common bean (Phaseolus vulgaris L.) is a traditional crop in the Iberian Peninsula (Spain and Portugal) where subsistence farmers have been growing and maintaining their own cultivars since their introductions from the Americas in the sixteenth century. Our objectives were to: (i) characterize diversity in the landraces collected from the Iberian Peninsula and (ii) form a core collection. Of 388 landraces from the major production regions characterized for 34quantitative and 13 qualitative characters, including morphological, agronomic and biochemical traits, 74.7% had an Andean origin, 16.8% a Mesoamerican origin and 8.4% had seed mixtures or were recombinants between the two gene pools. Landraces of indeterminate climbing growth habit Type IV(47.2%) and bush determinate Type I(26.4%) with large (52.9%) and medium(27.4%) seeds of white (38.8%) and cream(25.9%) colour were predominant. Similarly, the ‘T’ phaseolin pattern and common bean race Nueva Granada were the most frequent(51%). Some exceptionally large-seeded landraces of Andean (e.g., PHA-0917 with119 g 100-seed weight-1) and Mesoamerican (e.g., PHA-0399 with 66 g100-seed weight-1) were found. These and other possible recombinants between the two gene pools merit further investigation. Fifty two landraces (13%) were chosen to form a core collection representing the genetic diversity in the Iberian Peninsula. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
L. Lioi    A. R. Piergiovanni    D. Pignone    S. Puglisi    M. Santantonio    Gabriella  Sonnante 《Plant Breeding》2005,124(6):576-581
This study was undertaken to estimate the level of variation among and within 33 local populations belonging to seven Italian common bean landraces, by analysing the polymorphism of seed storage proteins, simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) molecular markers. The nutritional seed quality of the landraces studied was also investigated. Results showed that the landraces retain a considerable level of heterogeneity. Use of both biochemical and molecular approaches provided a picture of the genetic diversity of each landrace. Cluster analyses based on Nei's genetic distances and Jaccard's similarity index as defined by SSR and AFLP markers, respectively, showed that all populations clustered into two groups corresponding to the Andean and the Mesoamerican gene pools. Knowledge of the genetic structure of a landrace is fundamental in elaborating strategies, which involve the local farmers, allowing us to improve and, at the same time, safeguard the genetic integrity of landrace genetic resources.  相似文献   

4.
Seed protein content at the harvest stage is the sum of protein accumulation during seed filling. The aim of our investigation was to identify loci underlying the filling rate of seed protein at different developmental stages. To this end, we used 143 recombinant inbred lines (RILs) derived from the cross of soybean cultivars ‘Charleston’ and ‘Dongnong 594’ and composite interval mapping with a mixed genetic model. The genotype × environment interactions of the quantitative trait loci (QTL) were also evaluated. Thirty-nine unconditional QTL underlying the filling rate of seed protein at five developmental stages were mapped onto 14 linkage groups. The proportion of phenotypic variation explained by these QTL ranged from 4.88 to 26.05%. Thirty-eight conditional QTL underlying the filling rate of seed protein were mapped onto 16 linkage groups. The proportion of phenotypic variation explained by these QTL ranged from 1.87 to 31.34%. The numbers and types of QTL and their genetic effects on the filling rate of seed protein were different at each developmental stage. A G × E interaction effect was observed for some QTL.  相似文献   

5.
This paper proposes the construction of a genetic linkage map with 376 recombinant inbred lines (RILs) derived from a cross between Mesoamerican?×?Andean common bean (Phaseolus vulgaris L) parents based on single nucleotide polymorphism (SNP) markers; and to detect quantitative trait loci (QTLs) associated with seven morpho-agronomic traits: number of days to flowering (DF), number of days to maturity (DM) or crop cycle; plant architecture (ARC); seed yield (YLD); degree of seed flatness (SF); seed shape (SS); and 100-seed weight (SW). A total of 3060 polymorphic SNP markers were used and 2041 segregated at a 1:1 ratio in the RIL population, as expected. These markers were subjected to linkage analysis in each chromosome. The genetic linkage analysis resulted in linkage maps with a total of 1962 markers spanning 1079.21 cM. A total of 29 QTLs associated with seven morpho-agronomic traits were detected on the 11 chromosomes, which explained between 3.83 and 32.92% of the phenotypic variation in DF. A total of 18 candidate genes associated with the detected QTLs were identified and related with biological processes, molecular functions and cellular components.  相似文献   

6.
Mapping genes for double podding and other morphological traits in chickpea   总被引:4,自引:0,他引:4  
Seed traits are important considerations for improving yield and product quality of chickpea (Cicer arietinum L.). The purpose of this study was to construct an intraspecific genetic linkage map and determine map positions of genes that confer double podding and seed traits using a population of 76 F10 derived recombinant inbred lines (RILs) from the cross of ‘ICCV-2’ (large seeds and single pods) × ‘JG-62’ (small seeds and double podded). We used 55 sequence-tagged microsatellite sites (STMS), 20 random amplified polymorphic DNAs (RAPDs), 3inter-simple sequence repeats (ISSR) and 2 phenotypic markers to develop a genetic map that comprised 14 linkage groups covering297.5 cM. The gene for double podding (s) was mapped to linkage group 6 and linked to Tr44 and Tr35 at a distance of7.8 cM and 11.5 cM, respectively. The major gene for pigmentation, C, was mapped to linkage group 8 and was loosely linked to Tr33 at a distance of 13.5 cM. Four QTLs for 100 seed weight (located on LG4 and LG9), seed number plant-1 (LG4), days to 50% flower (LG3) were identified. This intraspecific map of cultivated chickpea is the first that includes genes for important morphological traits. Synteny relationships among STMS markers appeared to be conserved on six linkage groups when our map was compared to the interspecific map presented by Winter et al. (2000). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We previously surveyed chromosomal regions showing segregation distortion of RFLP markers in the F2 population from the cross between a japonica type variety ‘Nipponbare’ and an indica type variety ‘Milyang23’, and showed that the most skewed segregation appeared on the short arm of chromosome 3. By comparison with the marker loci where distortion factors were previously identified, this region was assumed to be a gametophytic selection-2 (ga2) gene region. To evaluate this region, two near isogenic lines (NILs) were developed. One NIL had the ‘Nipponbare’ segment of this region on the genetic background of ‘Milyang23’ (NIL9-23), and the other NIL had the ‘Milyang23’ segment on the genetic background of ‘Nipponbare’ (NIL33-18). NIL9-23 and ‘Milyang23’, NIL33-18 and ‘Nipponbare’, and ‘Nipponbare’ and ‘Milyang23’ were respectively crossed to produce F1 and F2 populations. The F1 plants of NIL9-23 × ‘Milyang23’ and NIL33-18 × ‘Nipponbare’ showed high seed fertility and the same pollen fertility as their parental cultivars, indicating that ga2 does not reduce seed and pollen fertility. Segregation ratio of a molecular marker on the ga2 region in the three F2 populations was investigated to clarify whether segregation distortion occurred on the different genetic backgrounds. Segregation distortion of the ga2 region appeared in the both F2 populations from the NIL9-23 and ‘Milyang23’ cross (background was ‘Milyang23’ homozygote) and the ‘Nipponbare’ and ‘Milyang23’ cross (background was heterozygote), but did notin the F2 population from the NIL33-18 and ‘Nipponbare’ cross (background was ‘Nipponbare’ homozygote). This result indicates that ga2 interacts with a ‘Milyang23’ allele(s) on the different chromosomal region(s) to cause skewed segregation of the ga2 region. In addition, segregation ratio was the same between the F2 populations from NIL9-23 × ‘Milyang23’ and ‘Nipponbare’ × ‘Milyang23’ crosses, suggesting that the both genotypes, ‘Milyang23’ homozygote and heterozygote, of gene(s) located on the different chromosomal region(s) have the same effect on the segregation distortion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
L.E. Mumba  N.W. Galwey 《Euphytica》1999,108(2):105-119
The extent and distribution of incompatibility between gene pools (Mesoamerican and Andean) and evolutionary classes (wild, landrace and bred) of the common bean (Phaseolus vulgaris) was explored by seeking anomalous values of highly heritable quantitative traits in the progeny of crosses. Clear incompatibility (no progeny or sterile or deformed progeny) was shown by 28 crosses in a 12-parent wild × bred diallel cross, and 37 crosses in a 12-parent landrace × bred diallel cross. Incompatibility was particularly common in the progeny of certain genotypes, but was not consistently associated with the division between gene pools or evolutionary classes. When crosses showing clear incompatibility were eliminated from the data, days to flowering, number of seeds per pod, log (weight per seed) and seed roundness in the F1 generation gave a good fit to an additive-dominance model, confirming that there is no overall tendency to incompatibility between the gene pools. There was a division between the gene pools with regard to log (weight per seed), as expected, but there was no such division, with regard either to the means of the parent lines or the distribution of the statistics V r and W r (which indicate the distribution of dominant alleles between genotypes), for the other quantitative variables. Differences between reciprocal crosses were strikingly widespread, and appeared generally to be due to cytoplasmic effects or cytoplasmic × nuclear interactions rather than maternal effects, indicating that the direction in which a cross is made may have a perceptible effect on the progeny that can be obtained from it. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Knowledge of patterns of genetic diversity among existing cultivars helps to broaden the genetic base of new cultivars and maximizes the use of available germplasm resources. This study examined the organization of diversity for morphological traits in 66 landraces of cultivated common bean (Phaseolus vulgaris) from Galicia and its relationship with phaseolin seed protein diversity. Data on growth habit, seed and pod traits obtained from field evaluations at two locations during the 1989—91 cropping seasons were subjected to multivariate statistical analysis. Cluster analysis based on 14 quantitative variables and five qualitative variables identified 11 groups. The landraces were also characterized by phaseolin electrophoresis. The results allowed separation of these landraces into Middle and Andean American groups, which could be further divided into at least eight groups within the Andean American cultivars and three within the Mesoamerican cultivars. These groups in turn corresponded to the previously described races Nueva Granada and Peru of South American origin, and races Durango, Jalisco and Mesoamerica from the Middle American domestication centre. These results confirm the existence of two major groups of germplasm in the cultivated common bean landraces from Galicia, Mesoamerican vs. Andean American.  相似文献   

10.
The color of the seed coats of ‘Dorado’ (Phaseolus vulgaris L.) is garnet brown (dark red kidney bean color) and differs from most other dry bean varieties in the Honduran red bean market class. A genetic investigation of the color of ‘Dorado’ (same as DOR364) and G19833 (Liborino market class) seed coats was conducted. Crosses with genetic tester stocks demonstrated that the gene for garnet brown (GB) in ‘Dorado’ was not allelic with the R gene for dominant red (oxblood) seed coat. An allelism test between the ‘Dorado’ gene for GB seed coat and the rk drv gene for recessive expression of GB demonstrated allelism. We propose the gene symbol for Rk r for the ‘Dorado’ GB seed coat color gene. Rk r expresses partial dominance over Rk, where Rk r/Rk expresses a paler and highly variable intermediate red color. The interactions of Rk r, rk drv, and c u are discussed. Segregation analysis in the mapping population made up of DOR364 (same as ‘Dorado’) × G19833 recombinant inbred lines showed that the Rk r gene mapped to linkage group 1. The new allele at Rk was located at a distance of 17 cM from the RFLP marker Bng130 with a LOD > 3.0.  相似文献   

11.
Approaches are needed to broaden the genetic base and improve earliness and yield potential of large-seeded beans under sustainable cropping systems. The objective of this research was to develop adapted dwarf bean populations having a commercial seed quality and yield suitable for the production in the South of Europe. The original base populations were produced from crosses between genotypes within each Mesoamerica, Nueva Granada and Peru races, and between Peru and Nueva Granada, and Mesoamerica and Nueva Granada races. Visual mass selection for plant performance was practised in the F2 and F3 generations. In the F4 and F5, single plants were harvested under two cropping systems (sole cropping and intercropping with maize). From F4, selection was based on precocity, combined with seed yield and seed commercial type. The F4:7 selected lines from each original population were compared with their parents and five checks at four environments and two cropping systems. Differences among environments, populations, parents and checks were observed for all traits. Under intercropping with maize, there was a 50% reduction in seed yield. Yield of parents and checks belonging to Andean South American races, intraracial (Nueva Granada × Nueva Granada) and interracial (Nueva Granada × Peru) populations, was higher than that of those of Middle American origin. Intraracial crosses within large-seeded Andean South American (Peru race) and Middle American gene pools (Mesoamerica race) did not produce lines yielding more than the highest yielding parent. Only two large-seeded lines selected from crosses between small- and large-seeded gene pools out-yielded the best parent and check cultivar.  相似文献   

12.
Two genetic linkage maps based on doubled haploid (DH) and recombinant inbred lines (RILs) populations, derived from the same indica-japonica cross ‘Samgang × Nagdong’, were constructed to analyze the quantitative trait loci (QTLs) affecting agronomic traits in rice. The segregations of agronomic traits in RILs population showed larger variations than those in DH population. A total of 10 and 12 QTLs were identified on six chromosomes using DH population and seven chromosomes using RILs population, respectively. Three stable QTLs including pl9.1, ph1.1, and gwp11.1 were detected through different years. The percentages of phenotypic variation explained by individual QTLs ranged from 8 to 18% in the DH population and 9 to 33% in the RILs population. Twenty-three epistatic QTLs were identified in the DH population, while 21 epistatic QTLs were detected in the RILs population. Epistatic interactions played an important role in controlling the agronomic traits genetically. Four significant main-effect QTLs were involved in the digenic interactions. Significant interactions between QTLs and environments (QE) were identified in two populations. The QTLs affecting grain weight per panicle (GWP) were more sensitive to the environmental changes. The comparison and QTLs analysis between two populations across different years should help rice breeders to comprehend the genetic mechanisms of quantitative traits and improve breeding programs in marker-assisted selection (MAS).  相似文献   

13.
The objective of this investigation was to check if epistasis is present in Andean × Mesoamerican beans crosses using triple test cross (TTC) method. The parents of the segregating population were Carioca–MG (Mesoamerican) and BRS Radiante (Andean). In July 2005, F2 progenies (backcrossed with the parents and F1 generation) were evaluated at two locations for three characters: number of pods plant−1, number of grains plant−1 and grain weight plant−1. The presence of epistasis was detected for all yield components. In the partitioning of epistasis in additive x additive (i) and dominant x dominant (j) and dominant × additive (l) it was observed that, for the traits number of pods/plant and number of grains/plant, only epistasis of the type (j) + (l) were significant. For the trait grain mass/plant, all types of epistasis were significant.  相似文献   

14.
Quantitative trait locus (QTL) analysis of kernel shape and weight in common wheat was conducted using a set of 131 recombinant inbred lines (RIL) derived from ‘Chuan 35050’ × ‘Shannong 483’. The RIL and their two parental genotypes were evaluated for kernel length (KL), kernel width (KW), thousand-kernel weight (TKW), and test weight (TW) in four different environments. Twenty QTL were located on 12 chromosomes, 1A, 1B, 1D, 2A, 2B, 3B, 4A, 4B, 5D, 6A, 6B, and 7B, with single QTL in different environments explaining 5.9–26.4% of the phenotypic variation. Six, three, four, and seven QTL were detected for KL, KW, TKW, and TW, respectively. The additive effects for 17 QTL were positive with Chuan 35050 increasing the QTL effects, whereas the remaining three QTL were negative with Shannong 483 increasing the effects. Eight QTL (40%) were detected in two or more environments. Two QTL clusters relating to KW, TKW, and TW were located on chromosomes 2A and 5D, and the co-located QTL on chromosome 6A involved a QTL for KW found in two environments and a QTL for TKW detected in four environments.  相似文献   

15.
‘Drought avoidance’ and ‘drought tolerance’ are two mechanisms by which plants adapt under water stress. These mechanisms are difficult to evaluate separately in field experiments. Using hydroponic culture, we studied the genetic control of drought tolerance in rice (Oryza sativa L.) without the effect of drought avoidance. A backcross inbred population of ‘Akihikari’ (lowland cultivar) × ‘IRAT109’ (upland cultivar) with 106 lines was cultured with (stressed condition) and without (non-stressed condition) polyethylene glycol (PEG) at seedling stage. The relative growth rate (RGR), specific water use (SWU), and water use efficiency (WUE) showed significant genotype × environment interactions with or without PEG, indicating that each line responded differently to water stress. A quantitative trait locus (QTL) analysis revealed that these interactions were QTL specific. A total of three QTLs on chromosomes 2, 4, and 7 were detected for RGR. The QTL on chromosome 7 had a constant effect across environments, while the QTL on chromosome 4 had an effect only under non-stressed condition and that on chromosome 2 only under stressed condition. The stress-specific QTL on chromosome 2 was not co-located with any QTLs for root system depth previously reported from the same mapping population. However, this QTL was co-located with a stress-specific QTL for SWU, suggesting that the control of transpiration was relevant to dry matter production under drought. We concluded that PEG-treated hydroponic culture is very effective for use in genetic analyses of drought tolerance at seedling stage.  相似文献   

16.
A set of 65 recombinant inbred lines of the ‘International Triticeae Mapping Initiative’ mapping population (‘W7984’בOpata 85’) was analysed for resistance to septoria tritici blotch at the seedling and adult plant stages. The mapping population was inoculated with two Argentinean isolates (IPO 92067 and IPO 93014). At the seedling stage, three loci were discovered on the short arms of chromosomes 1D, 2D and 6B. All three loci were detected with both isolates. At the adult plant stage, two isolate-specific QTL were found. The loci specific for isolates IPO 92067 and IPO 93014 were mapped on the long arms of chromosomes 3D and 7B, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
定位棉花种子性状的基因对揭示棉花种子性状的遗传规律,以及明确棉花种子、产量、纤维品质等性状间的遗传关系具有重要意义。以(渝棉1号×T586) F2:7重组近交系群体构建的遗传连锁图谱,在鉴定270个家系3个环境种子物理性状的基础上,利用MQM作图方法,共检测到34个种子物理性状QTL,包括9个种子重(qSW)、5个短绒重(qFW)、3个短绒率(qFP)、8个种仁重(qKW)、6个种子壳重(qHW)和3个种仁率(qKP)QTL,它们可解释4.6%~80.1%的性状表型变异。9个QTL在2个或3个环境中被检测到,其中包括第12染色体显性光子位点的短绒重与短绒率QTL,以及另外7个微效应QTL。34个QTL分布于15条染色体,其中A染色体组20个,D染色体组14个。有12个染色体区段分布有2个或2个以上的QTL,而且同一染色体区域同一亲本所具有的不同性状QTL的方向大多数与性状表型相关系数的正负一致。  相似文献   

18.
Angular leaf spot (ALS), caused by the fungus Phaeoisariopsis griseola is an economically important and widely distributed disease of common bean. Due to the co-evolution of P. griseola with the large and small seeded bean gene pools, stacking Andean and Mesoamerican resistance genes is a strategy most likely to provide lasting resistance to ALS disease. This strategy requires identification and characterization of effective Andean and Mesoamerican resistance genes, and the development of molecular markers linked to these genes. This study was conducted to elucidate the genetics of ALS resistance in the Andean accession G5686 using an F2 population derived from a G5686 × Sprite cross. Segregation analysis revealed that three dominant and complementary genes conditioned resistance of G5686 to P. griseola pathotype 31-0. Three microsatellite markers, Pv-ag004, Pv-at007 and Pv-ctt001 segregated in coupling phase with the resistance genes in G5686. Microsatellites Pv-ag004 and Pv-ctt001, located on opposite ends of linkage group B04 segregated with resistance genes Phg G5686A , Phg G5686B at 0.0 and 17.1 cM, respectively, while marker Pv-at007, localized on linkage group B09 segregated with resistance gene Phg G5686C at 12.1 cM. Parental surveys showed that these markers were polymorphic in Andean and Mesoamerican backgrounds. The usefulness of G5686 ALS resistance genes in managing the ALS disease, and the potential utility of identified molecular markers for marker assisted breeding are discussed.  相似文献   

19.
Inheritance of resistance to angular leaf spot (ALS) disease caused by Phaeoisariopsis griseola (Sacc.) Ferr was investigated in two common bean cultivars, Mexico 54 and BAT 332. Both Andean and Mesoamerican backgrounds were used to determine the stability of the resistance gene in each of the two cultivars. Resistance to P. griseola was phenotypically evaluated by artificial inoculation with one of the most widely distributed pathotypes, 63–39. Evaluation of the parental genotypes, F1, F2 and backcross populations revealed that the resistance to angular leaf spot in the cultivars Mexico 54 and BAT 332 to pathotype 63–39 is controlled by a single dominant gene, when both the Andean and Mesoamerican backgrounds were used. Allelism test showed that ALS resistance in Mexico 54 and BAT 332 to pathotype 63–39 was conditioned by the same resistance locus. Resistant and susceptible segregating populations generated using Mexico 54 resistant parent were selected for DNA extraction and amplification to check for the presence /absence of the SCAR OPN02 and RAPD OPE04 markers linked to the Phg-2 resistance gene. The results indicated that the SCAR OPN02 was not polymorphic in the study populations and therefore of limited application in selecting resistant genotypes in such populations. On the other hand, the RAPD OPE04 marker was observed in all resistant individuals and was absent in those scored susceptible based on virulence data. Use of the RAPD OPE04 marker in marker-assisted selection is underway.  相似文献   

20.
Two soybean recombinant inbred line populations, Jinpumkong 2 × SS2-2 (J × S) and Iksannamulkong × SS2-2 (I x S) showed population-specific quantitative trait loci (QTLs) for days to flowering (DF) and days to maturity (DM) and these were closely correlated within population. In the present study, we identified QTLs for six yield-related traits with simple sequence repeat markers, and biological correlations between flowering traits and yield-related traits. The yield-related traits included plant height (PH), node numbers of main stem (NNMS), pod numbers per plant (PNPP), seed numbers per pod (SNPP), 100-seed weight (SW), and seed yield per plant (SYPP). Eighteen QTLs for six yield-related traits were detected on nine chromosomes (Chrs), containing four QTLs for PH, two for NNMS, two for PNPP, three for SNPP, five for SW, and two for SYPP. Two highly significant QTLs for PH and NNMS were identified on Chr 6 (LG C2) in both populations where the major flowering gene, E1, and two DF and DM QTLs were located. One other PNPP QTL was also located on this region, explaining 12.9% of phenotypic variation. Other QTLs for yield-related traits showed population-specificity. Two significant SYPP QTLs potentially related with QTLs for SNPP and PNPP were found on the same loci of Chrs 8 (Satt390) and 10 (Sat_108). Also, highly significant positive phenotypic correlations (P < 0.01) were found between DF with PH, NNMS, PNPP, and SYPP in both populations, while flowering was negatively correlated with SNPP and SW in the J × S (P < 0.05) and I × S (P < 0.01) populations. Similar results were also shown between DM and yield-related traits, except for one SW. These QTLs identified may be useful for marker-assisted selection by soybean breeders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号