首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
L. S. Zhuo    H. M. Si    S. H. Cheng  Z. X. Sun 《Plant Breeding》1996,115(5):295-300
The effect of phenylacetic acid (PAA) on rice (Oryza saliva L.) anther culture was investigated with six genotypes, using 2,4-D as control. In the two-step culture protocol, replacing 2, 4-D with PAA in the induction medium did not influence callus induction but significantly improved the shoot differentiation from callus, particularly in the indica cultivar Teqing. The anther-derived calli of all genotypes regenerated shoots directly on the callus induction medium containing PAA. Most of the directly-regenerated plantlets had well-developed root systems and were therefore readily transplanted into soil. The improved shoot differentiation potential and the frequency of direct regeneration depended on genotype, basal medium and PAA concentration. The one-step green shoot regeneration frequencies obtained were 1.98% with the indica cultivar ‘129’, 1.5% with the indica × japonica hybrid ‘Teqing/02428’ (F1), and 1.98% with the indica × indica hybrid ‘Waiyin 2/C.B.’ (F1). The PAA-based one-step method was most effective on the anther culture of indica genotypes. Three DH populations have been constructed from hybrids (F1) via one-step culture. PAA also enhanced the one-step plantlet formation in rice somatic tissue culture.  相似文献   

2.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

3.
Four cold-tolerant rice varieties, viz. ‘Khonorullo’, ‘Namyi’, ‘Abor B’ and ‘Meghalaya-1’ were crossed with two cold-susceptible ones, viz. ‘Pusa 33’ and ‘Subhadra’ (DR92), in all possible combinations to study the inheritance of gene(s) governing panicle exsertion and their allelic relationship among cold-tolerant varieties. F1 hybrids of all the crosses showed complete panicle exsertion indicating dominance of this trait. Segregation pattern of panicle exsertion in F2 and backcrosses show that all the four cold-tolerant varieties possessed a single dominant gene designated as Ctr-1. Absence of segregation for panicle exsertion in an F2 generation obtained from intercrosses of cold-tolerant varieties suggests that the dominant genes in all the four cultivars are allelic.  相似文献   

4.
M. Confalonieri    R. Bollini    N. Berardo    A. Vitale  A. Allavena 《Plant Breeding》1992,109(4):329-334
The abundant lectin phytohemagglutinin (10 % of total seed protein) does not contain sulfur amino acids and, being a potent antimetabolite, it is responsible for the lowering of the nutritional value of bean seeds. The aim of the present work was to improve the dry bean cultivar ‘Taylor's Horticultural’ (Asgrow), by genetically introducing the lectin null (lec/lec) character from two null genotypes: ‘Pinto UI 111’ and ‘Heidi’. Thirty-seven BC2F3 and fourteen BC6F5 inbred lines were evaluated in agronomical trials. Analysis of Variance (ANOVA) showed significant differences among BC2F3 breedings lines for all traits under evaluation. Comparison of the LedLee genotypes versus lec/lec did not show statistically significant differences in the means for the following traits: yield, yield components and percentage of protein in the seed. Fourteen BC6F5 lines, compared together with their recurrent parent ‘Taylor's Horticultural’, showed significant differences among genotypes for 1000 seed weight, protein percentage on dry matter and ash percentage. No significant differences were observed for grain yield. The data indicate that lectin removal did not have a detrimental effect on the traits evaluated.  相似文献   

5.
The effects of NaCl on the growth, ion relations and physiological characteristics at early stages of growth of bread wheat (Triticum aestivum) varieties ‘Chinese Spring’ and ‘Glennson 81’, ‘Chinese Spring’ lines tetrasomic for chromosomes 5A, 2B and 5B, ‘Chinese Spring’ disomic addition lines for chromosomes 2Eb and 5Eb from Thinopyrum bessarabicum (formerly Agropyron junceum), and amphiploids between ‘Chinese Spring’ and Thinopyrum bessarabicum and ‘Chinese Spring’ and Lophopyrum elongatum (formerly Agropyron elongatum) were examined. Plants were grown in a controlled environment cabinet, in nutrient solution with or without addition of 200 mol m?3 NaCl. Growth in terms of leaf area, shoot and root weights was reduced by salt treatment. Salinity conditions gradually reduced the osmotic potential, though there was little effect on water potential. Turgor pressure was not much affected by salt. There was variation between genotypes for all the characteristics studied, especially in the extent of Na accumulation by leaves and roots. The amphiploids and 5Eb addition line accumulated the least Na in comparison with other genotypes. Generally roots accumulated lower quantities of Na than leaves. Genotype K contents were not affected by salt treatment. Stomatal conductance also declined whilst the ABA content increased in the salt treated seedlings. With respect to growth, the amphiploids and 5Eb addition line were most tolerant to salt while ‘Glennson 81’, tetrasomic 2B and tetrasomic 5B lines were most susceptible. The addition of homoeologous group 2 and 5 chromosomes reduced the tolerance to salt relative to ‘Chinese Spring’ euploid. It is concluded that chromosome 5Eb of Thinopyrum bessarabicum carries gene(s) for tolerance to salt and this tolerance may be due to the ability to exclude Na ions from the leaves and roots.  相似文献   

6.
Full‐grown Artemisia annua plants were subjected to chemical and physical stress conditions, and the effect of these on the concentration and chemical composition of essential oil components (EOC) in the leaves was studied. The chemical stress treatments were performed by foliar application of NaCl, H2O2, salicylic acid and chitosan oligosaccharide (COS). The EOC of the leaves were extracted with n‐hexane and identified and quantified by GC–MS and GC–FID, respectively. Approximately 96 % of EOC in the extracts were identified and quantified of which β‐pinene, camphene, germacrene D, camphor, coumarin and dihydro‐epi‐deoxyarteannuin B were the major EOC accounting for about 75 % of the total content of EOC in the extracts. The physical stress treatment, sandblasting of the plants resulted in a significant enhancement in the content of α‐pinene, camphene, coumarin and dihydro‐epi‐deoxyarteannuin B. The total yield of identified EOC in non‐treated plants (control) was 86.2 ± 13.8 μg g?1 fresh weight (FW) compared with 104.0 ± 9.1 μg g?1 FW in sandblasted plants. The chemical stress treatments did not affect the composition of EOC significantly. The results indicate that chemical stress treatments do not affect the concentration and composition of EOC in full‐grown A. annua plants to the same extent as physical stress treatment by sandblasting.  相似文献   

7.
Eighteen genotypes of Brassica napus were crossed to a cytoplasmic male sterile (CMS) line of B. napus BO 15 carrying B. tournefortii cytoplasm (‘tour’ cytoplasm). Fourteen genotypes were found to be stable maintainers of the ‘tour’ CMS. Of the remaining four genotypes, GSL-1 and ‘Asahi-natane’ were found to be heterozygous and ‘Mangun’ and ‘Yudal’ were homozygous for the restorer gene. Analysis of the F1 and F2 progenies of (CMS) BO 15 בMangun’ and (CMS) BO 15 בYudal’ showed that fertility restoration is controlled by a single dominant gene. The availability of a number of stable maintainer lines and the simple inheritance pattern of fertility restorer gene makes ‘tour’ CMS a useful system for hybrid seed production in rapeseed.  相似文献   

8.
According to our previous investigations, resistance to Phytophthora capsid in Capsicum annuum genotypes, ‘Line 29’, ‘PI201232’, ‘PI201234’ and Serrano Criollo de Morelos 334 (‘SCM334’), seems to be controlled by three genes. In order to determine the genie relationships between these four sources of resistance, three experiments were conducted which included the four genotypes, their F1s, F2s, F3s and BC1 generations together with the susceptible pepper genotype ‘Morron INI A 224’. Inoculations were made, when plants had 4—6 leaves, by irrigating the culture substrate with a zoospore suspension of P. capsici isolate ‘Bl’. Though the four genotypes showed percentages of resistance close to a 100%, none of them actually reached this level in the three experiments. ‘SCM334’ was the most resistant genotype, transmitting a high level of resistance to its F1, F2 and BQ generations. ‘Line 29’ was more resistant than ‘PI201232’ and ‘PI201234’. However, the F1 F2 and BQ generations of these three lines showed similar degrees of resistance. The four genotypes seem to have one of the three genes postulated for their resistance in common. All genes displayed a similar level of resistance, except the specific genes of ‘SCM334’, the effect of which was slightly higher. Several working procedures are suggested for breeding programmes.  相似文献   

9.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

10.
To study the genetic structure of open-pollinated faba bean varieties, three sets of genotypes were generated from each of the varieties ‘Minica’, ‘Kristall’, and ‘Deiniol’: (1) inbred lines developed by single-seed descent in bee-proof isolation cages, (2) intravanetal and (3) intervarietal F1-hybrids produced by controlled hand crossing. In 1989 and 1990, a total of 144 entries, including the three open-pollinated source varieties, were grown in single-row plots with two replications at two locations in Western Germany. Performance data of the inbred lines revealed relatively large genotypic variability within each variety, for all the characters studied, which was greater in ‘Deiniol’ and ‘Kristall’ than in ‘Minica’. An average yield heterosis of 20 %, 39 % and 57 %, respectively, was found for the intravarietal hybrids, whereas that of the intervarietal hybrids varied between 70 and 73 %. Compared to the mean yield of the inbred lines the superiority of the open-pollinated source variety was small and not significant in ‘Minica’ (6 %), but it was large and highly significant in ‘Kristall’ (22 %) and ‘Deiniol’ (37 %). The present investigation revealed in faba bean that similar performance levels of open-pollinated varieties may result from either high per se performance under inbreeding with low heterosis values or from lower per se performance but with high heterosis values.  相似文献   

11.
Self‐pollination of a hermaphroditic cultivar normally gives a ratio of 2 : 1 hermaphrodite to female papayas with genotypes M2m and mm, respectively. Much effort has been dedicated to marking the sexual types of papaya at the seedling stage to distinguish hermaphroditic from female papayas. A hermaphroditic papaya mutant (SR*) has been obtained, derived from the ‘Sunrise’ papaya cultivar mutant. Self‐pollination of the mutant resulted in all progenies being hermaphroditic. The genotype of the female was lethal, as a result of a lethal gene being linked to the mm female gene complex in this case. However, a 3 : 1 segregation ratio was obtained from the progeny of the hermaphroditic cultivar ‘Thailand’ crossed with SR*, indicating that all genotypes survived. Homozygous genotypes (M2M2) would be lethal according to Storey's model. Randomly selected F1 plants of the ‘Thailand’ SR* combination were self‐pollinated to obtain an F2 generation. The F2 segregation ratio suggested that the SR* mutant had a different form of the M2 allele, now designated as M@, which allowed the dominant M@M2 to survive in cross combinations. Genetic study has proved that SR* has the M@ml genotype, a new mutant. It is capable of producing all hermaphroditic papaya progenies.  相似文献   

12.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

13.
This work was undertaken to investigate the effect of zinc (Zn) nutrition on root antioxidative responses to cadmium (Cd) toxicity of three wheat genotypes differing in Zn efficiency. A hydroponic experiment was carried out in which two bread wheat genotypes (Triticum aestivum L. cvs. ‘Rushan’ and ‘Cross’) and one durum wheat genotype (Triticum durum L. cv. Durum) were exposed to three Zn2+ (10?11.11, 10?9.11 and 10?8.81 μm ) and two Cd2+ (10?11.21 and 10?10.2 μm ) activity levels. ‘Durum’ showed the highest root sulfhydryl (‐SH) groups content and activity of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) and the lowest root membrane permeability among the studied wheat genotypes. In ‘Durum’, Zn nutrition increased root ‐SH groups concentration of seedlings in Cd‐free nutrient solution. In ‘Cross’, as Zn2+ activity increased from 10?11.11 to 10?9.11 μm , root ‐SH groups concentration was increased while decreased with increasing Zn2+ to 10?8.81 μm . Cadmium increased root membrane permeability at both 10?11.11 and 10?9.11 μm Zn2+ levels. Activity of CAT and APX increased in roots of ‘Durum’ plants exposed to Cd at Zn2+ = 10?9.11 μm and thereafter decreased with increasing Zn2+ activity. In contrast, CAT and APX activity in roots of ‘Cross’ and ‘Rushan’ genotypes exposed to Cd decreased by increasing Zn activity to 10?9.11 μm and then increased at Zn2+ = 10?8.81μm . The results showed an increase in activities of antioxidative enzymes in Cd‐treated plants, although this increase was dependent on the crop genotype and Zn levels in the media.  相似文献   

14.
‘Polima’ cytoplasmic male sterility (CMS) was transferred from ‘Polima’ Brassica napus ‘ISN 706’to five different cultivars of Brassica campestris (‘Pusa kalyani’, ‘Pant toria’, ‘Candle’, ‘Tobin’ and ‘ATC 94211′) by repeated backcrossing. It was observed that, while ‘Polima’ CMS manifested complete and stable male sterility in the nuclear backgrounds of ‘Pusa kalyani’, ‘Pant toria’, and ‘Tobin’, the cultivars ‘Candle’ and ‘ATC 94211’possessed the restorer gene for this CMS in the heterozygous condition. An analysis of F1 and F2 generations of ‘Polima’‘Pusa kalyani’בCandle’ and ‘Polima’‘Pusa kalyani’בATC 94211’ revealed that restoration is controlled by a single dominant gene. Identification of stable maintainers and restorers of ‘Polima’ CMS could facilitate the development of hybrid varieties in B. campestris.  相似文献   

15.
Phaeoisariopsis griseola (Sacc.) Ferr., the agent of angular leaf spot disease of common bean, is a highly variable pathogen for which resistance gene diversification is required. This study analysed genetic resistance to this disease within genotypes of three Phaseolus species. Twenty-nine genotypes of Phaseolus vulgaris, Phaseolus coccineus and Phaseolus polyanthus were inoculated with 54 isolates of Phaeoisariopsis griseola. The genetic resistance was estimated according to the symptom intensity observed for each plant genotype-pathogen isolate combination. Globally, genotypes of the common bean secondary gene pool were resistant to a higher number of isolates than common bean varieties. Interactions between plant genotypes and pathogen isolates suggested vertical resistance genes within P. vulgaris, as well as within P. coccineus and P. polyanthus. The ‘NI666’accession (P. coccineus) showed resistance to all the fungal isolates inoculated while the variety ‘Aroana’(P. vulgaris) was susceptible to most of the isolates. Interspecific hybridization between these two genotypes gave F1 hybrid plants which showed resistance to angular leaf spot disease.  相似文献   

16.
Phenylpropenes play an important role in plant defense against animals and microorganisms, and in attracting pollinators and insects. We report the genetic inheritance of methyl chavicol and eugenol following a cross between the sweet basil varieties ‘Perrie’ and ‘Cardinal,’ eugenol and methyl chavicol chemotypes, respectively. Methyl chavicol was detected only in ‘Cardinal,’ accounting for more than 95% of the total phenylpropenes. Eugenol was most abundant in ‘Perrie,’ accounting for more than 99% of the total phenylpropenes. Eugenol, chavicol and methyl chavicol were detected in F1 hybrids at intermediate levels (10%–52%) without statistical differences (> .05) for any compound among the F1 progeny arising from the different crossed pairs. The F2 progeny segregated into three groups, 23%–25% to a eugenol chemotype, 23%–25% to a methyl chavicol chemotype, and the remaining (~50%) into an intermediate mixture of the two compounds. This distribution fitted a segregation ratio of 1:2:1 (χ2 = 1.71; = .4249), suggesting that the phenylpropene phenotype is regulated by a single bi‐allelic gene with incomplete dominance. A putative association with biosynthesis enzymes is discussed.  相似文献   

17.
研究通过温室盆栽试验探讨了干旱胁迫对‘三得利’、‘敖汉’和‘中苜1 号’3 个紫花苜蓿品种根系ABA浓度和根系特征的影响。按照田间持水量的100%(对照)、85%(轻度干旱)、70%(中度干旱)和55%(重度干旱)设置4 个梯度的水分胁迫处理,分别对3 个紫花苜蓿品种进行处理,并对根系ABA含量和根系性状进行测量。结果显示:水分胁迫可以显著影响不同生长时期的紫花苜蓿根系ABA的含量。随着处理时间的延长,不同水分胁迫处理的紫花苜蓿根系ABA含量均呈先升高后下降再升高的趋势。在移栽后的第75 天,根系ABA含量达到首个峰值,然后开始下降,到第105 天的时候将至最低,然后开始回升直至处理结束。移栽105 天以后,4 个水分胁迫处理(W1、W2、W3 和W4)紫花苜蓿根系ABA含量分别为44、56.6、64.6、94.4 ng/g FW。同时,不同紫花苜蓿品种根系ABA含量存在差异。移栽105 天以后,‘敖汉’、‘三得利’和‘中苜1 号’根系ABA含量均达到最低,分别为83.2 ng/g FW、61.7 ng/g.FW 和49.9 ng/g FW;之后,根系ABA含量开始回升。与对照相比,重度水分胁迫使根系长度降低了20.92%,使侧根数降低了20.71%,使根鲜重降低了43.79%,使根干重降低了37.96%。重度水分胁迫下植株根冠比是对照的1.9倍,这说明水分胁迫对地上部茎叶的影响要大于地下部的根系。水分胁迫降低了紫花苜蓿根长、侧根数、根鲜重和根干重,增加了紫花苜蓿根冠比,促使根系ABA含量升高。不同紫花苜蓿品种根系ABA含量存在差异。  相似文献   

18.
Comparisons involving 28 random F2-derived F6 wheat (Triticum aestivum L.) lines from the cross, ‘Nacozari’/‘Seri 82’, suggested that advanced derivatives with the 1BL/1RS chromosome translocation possess superior agronomic performance in both full and reduced irrigation conditions when compared with 1B derivatives. This performance advantage was attributed to high grain yield, above-ground biomass at maturity, grains/spike, 1000-grain weight and test weight. The 1BL/1RS lines were shorter with delayed flowering and maturity. The superiority of the 1BL/1RS translocation group on grains/m2 was expressed only under the full irrigation environment. Higher harvest index, longer spike-length and grain-filling period were detected only under reduced irrigation conditions. A significant grain yield relationship with test weight was detected only among the 1BL/1RS genotypes, indicating that they possess heavier and plumper grains than the 1B genotypes.  相似文献   

19.
The objective of this paper was to study the differences between some prolamin variants coded at the loci Glu-3/Gli-1, Glu-1 and Gli-A2 and their relative roles in durum-wheat quality. F3 lines from four durum wheat crosses (‘Abadia’בMexicali’. ‘Oscar’בArdente’, ‘Oscar × Mexicali’ and ‘Alaga’בC. of Balazote’) were analysed for gliadin and glutenin composition by electrophoresis. Whole-grain-derived samples were analysed for SDS sedimentation (SDSS) value, mixing properties, and contents of protein and vitreousness. The glutenin patterns LMW-2. LMW-2? and LMW-2 (CB) at Glu-B3/Gli-B1 were associated with better gluten quality than were LMW-1 and LMW-2*. The glutenin subunits LMW4 and LMW3 + 15 at Glu-A3/Gli-A1 and HMW-1 showed better mixing properties than LMW7 + 12, LMW5 and the null phenotype. respectively. The HMW glutenin subunits 20 + 8 at Glu-B1 showed a negative association with gluten quality, but the rest of the HMW glutenin subunits and α-gliadins did not show any influence on gluten quality. Correlations between the results of the SDSS test and the mixograph were highly significant, but no correlation was found between these results and protein and vitreousness contents. The results are discussed in relation to the development of durum wheat varieties with improved qualities.  相似文献   

20.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号