首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 164 毫秒
1.
植物叶色变化对叶绿体发育和叶绿素生物合成等光合系统结构和调控机制的研究有着重要的理论意义。水稻叶缘白化突变体mal (marginal albino leaf),来源于恢复系缙恢10号(Oryza sativa L.ssp. indica)的EMS诱变群体,经过多代自交,其突变性状遗传稳定。与野生型相比,mal突变体整个生育期叶片边缘白化且叶片变窄,抽穗期倒三叶叶片、倒二叶叶边缘以及倒三叶叶边缘的叶绿素含量极显著降低。透射电镜观察发现,mal突变体叶片绿色部位细胞与叶绿体发育完全,白化部分叶肉细胞大部分中空,无明显完整的细胞器,叶绿体内部完全降解。遗传分析表明该突变体受隐性核基因控制,MAL被定位在第8染色体上SSR标记M22和InDel标记ID27之间,物理距离为171 kb。本研究将为MAL基因的图位克隆及功能研究奠定基础。  相似文献   

2.
一个新的水稻黄绿叶突变体的遗传分析与基因定位   总被引:5,自引:0,他引:5  
通过化学诱变获得一份稳定遗传的水稻黄绿叶突变体D83。该突变体苗期植株呈黄绿色,分蘖期开始逐渐转为淡绿色。与野生型相比,突变体苗期叶绿素a、叶绿素b和类胡萝卜素含量分别下降45.03%、53.93%和39.56%,成熟期每穗着粒数减少9.45%,千粒重下降10.76%。对D83与正常绿色品种杂交F1、F2代的遗传分析表明,D83的突变性状由一对隐性核基因控制。以D83/浙福802 F2代作定位群体,应用分子标记将D83所携带的突变基因定位于水稻第2染色体短臂的SSR标记RM110附近,InDel标记Ch2-27和Ch2-32之间,该基因与这2个InDel标记的遗传距离分别为1.2 cM和2.3 cM。认为D83所携带的突变基因是一个新的水稻黄绿叶突变基因,暂命名为chl13(t)。  相似文献   

3.
水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位   总被引:2,自引:0,他引:2  
通过化学诱变获得遗传稳定的水稻黄绿叶突变体ygl80。与野生型亲本10079相比,ygl80突变体在苗期和孕穗期叶片叶绿素分别下降76.64%和54.59%,类胡萝卜素含量分别下降53.85%和41.18%,成熟期株高、每株有效穗数、每穗着粒数、穗长和千粒重分别减少14.8%、16.5%、21.3%、9.1%和7.4%。遗传分析表明,ygl80的突变性状由1对隐性核基因控制。利用(ygl80/浙辐802) F2作为定位群体, 将突变基因定位在第5染色体长臂InDel标记C2和C3之间,遗传距离分别为0.24 cM 和0.39 cM,两标记之间的物理距离约为90 kb,此区间内包含11个预测基因。基因组序列分析发现,ygl80突变体在编码叶绿素合酶的YGL1(LOC_Os05g28200)基因编码区第5027碱基处(位于第14外显子),碱基C突变为碱基T,使编码蛋白序列第348位的脯氨酸(Pro)突变成亮氨酸(Leu)。该基因是已报道的水稻ygl1黄绿叶突变基因的等位基因。ygl80突变体在整个生育期都表现为黄绿叶,而ygl1突变体在苗期叶片黄化,中期慢慢转绿,后期叶色以及总叶绿素和类胡萝卜素的含量接近野生型,这可能是YGL1基因编码的叶绿素合酶蛋白的氨基酸不同突变位点造成的。  相似文献   

4.
水稻窄叶突变体nal7(t)的遗传分析与基因定位   总被引:1,自引:1,他引:0  
本研究以恢复系缙恢10号为试验材料,经过EMS诱变,对水稻叶突变进行了研究。结果表明,群体中发现一个窄叶突变体,表现为叶片变窄、节间变细、结实率降低等一系列突变表型。成熟期的功能叶片宽度为野生型的74.69%,倒一、二、三节的宽度分别为野生型的45.10%、57.38%、74.63%,总叶脉数为野生型的67.36%。遗传分析表明该突变性状受一对隐性核基因控制,利用SSR标记将其定位在第3染色体长臂RM14379和RM14427之间,遗传距离分别为2.1cM和3.0cM。因与nal7位于相同的染色体区段,暂命名为nal7(t)。  相似文献   

5.
一个由甲磺酸乙酯(EMS)诱变宁粳36水稻品种获得的温敏型叶片白化突变体tsa1在低温条件下(20~24°C)表现叶片白化,但在较高温度下(28~32°C)叶色与野生型无显著差异。突变体白化叶片中叶绿素a和类胡萝卜素含量与野生型相比显著下降。显微观察发现突变体白化组织中正常叶绿体数量稀少,包含大量小型的异常叶绿体,进一步用透射电镜观察发现异常叶绿体中无发育完整的类囊体片层结构,表明该突变体中叶绿体发育存在严重缺陷。遗传分析表明该突变性状受单个隐性核基因控制。利用tsa1与南京11杂交所得的F2群体中的368个隐性极端个体,将该突变基因定位于第5染色体长臂163 kb的范围内。本研究为该基因的图位克隆及功能解析奠定了基础。  相似文献   

6.
鉴定和克隆叶色突变基因对于深入了解叶绿素合成、降解途径的关系以及植物的光合作用有着重要的作用。从EMS诱变恢复系缙恢10号后代中鉴定出1个灰白转黄突变体pyr1,该突变体在苗期部分死亡,整张叶片呈现灰白色,在不同的生育时期叶片呈现不同的颜色,直到孕穗期叶片上部和叶缘表现黄色。苗期到抽穗期突变体叶绿素含量比野生型显著或极显著降低。透射电镜观察表明,突变体与野生型细胞结构无明显差异,但叶绿体发育异常,内部大量降解,基质片层退化。遗传分析表明该性状受1对隐性基因控制,利用326株F2隐性定位群体将PYR1基因定位在第1染色体长臂上,位于标记RM11722和Ind1之间,物理距离约92 kb,本研究为PYR1基因的图位克隆奠定了基础。  相似文献   

7.
赵晨晨  黄福灯  龚盼  杨茜  程方民  潘刚 《作物学报》2014,40(11):1946-1955
叶片早衰直接影响作物的产量与品质, 因此, 研究叶片早衰的分子与生理机制对于作物遗传改良具有重要的意义。本研究利用60Co辐射诱变水稻品种93-11获得突变体osled, 其从分蘖期叶片就开始早衰, 最先表现为叶尖和叶边缘变褐, 并伴有红褐色斑点。在苗期经模拟干旱胁迫处理后, 突变体不仅早衰, 而且植株变矮以及根系变短。生理分析表明, 野生型剑叶、倒二叶和倒三叶的丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及过氧化物酶(POD)活性基本不变, 但突变体则显著升高且倒二叶和倒三叶极显著高于野生型; 突变体和野生型三片叶的可溶性蛋白含量、过氧化氢酶(CAT)活性及叶绿素总含量均依次下降, 但突变体倒二叶和倒三叶的含量或活性均显著低于野生型。叶片经台盼蓝、二氨基联苯胺(DAB)及四唑硝基蓝(NBT)等细胞组织化学染色及透射电镜分析表明, osled叶片细胞膜系统已破坏, H2O2和O2?积累, 叶绿体已开始解体。遗传分析表明, osled受一隐性基因控制, 借助图位克隆技术将该基因定位于第3染色体长臂的RM15528与RM15553两个标记之间, 遗传距离均为0.7 cM, 该结果为进一步克隆OsLED基因并研究其功能奠定了基础。  相似文献   

8.
水稻ygl98黄绿叶突变基因的精细定位与遗传分析   总被引:5,自引:0,他引:5  
通过EMS诱变获得一份遗传稳定的水稻黄绿叶突变体ygl98,该突变体整个生育期呈黄绿色。与野生型相比,突变体的叶绿素和类胡萝卜素含量分别下降45.3%和45.6%,有效穗数和结实率分别减少14.4%和10.7%,株高降低7.4%。透射电镜观察表明,ygl98突变体的叶绿体形状不规则,叶绿体中有许多空的囊泡状结构,类囊体数目减少,每个基粒仅由少数几个类囊体垛叠而成。遗传分析表明,ygl98的突变性状由1对隐性核基因控制。利用(ygl98/浙辐802) F2作为定位群体,将突变基因定位在第3染色体长臂InDel标记I3和I4之间,遗传距离分别为0.07 cM和0.19 cM,两标记之间的物理距离约为44.2 kb,此区间内包含8个预测基因。基因组序列分析发现,ygl98突变体在编码镁离子螯合酶ChlD亚基的OsChlD基因编码区第1 522碱基处(位于第10外显子),碱基G突变为碱基A,从而造成编码蛋白序列第508位的丙氨酸(Ala)突变成苏氨酸(Thr)。该基因是已报道的水稻黄绿叶基因Chlorina-1的等位基因,但突变体表型有明显区别,Chlorina-1突变体在2~3周龄幼苗时开始出现黄绿叶,且该黄绿叶性状仅在苗期表现,而ygl98突变体整个生育期都表现为黄绿叶,这可能是OsChlD基因组序列的突变位点不同造成的。  相似文献   

9.
水稻早衰突变体esl3的鉴定与基因定位   总被引:2,自引:0,他引:2  
叶片早衰直接降低作物的光合作用、产量和品质。因此,鉴定早衰突变体和研究其基因功能对于作物的遗传改良具有重要的作用。esl3来源于水稻籼型恢复系缙恢10号的EMS诱变库,苗期叶片中上部即呈现褐化枯萎,该特征一直持续到植株成熟。与野生型相比,突变体衰老部位叶绿素和光合速率极显著下降,绿色部位光合色素和光合速率则略有升高。农艺性状分析发现,结实率无显著变化,有效穗、穗长、穗粒数、千粒重、株高和干物质重则显著或极限著下降。遗传分析表明,esl3叶片早衰枯死性状受1对隐性核基因控制。利用391株日本晴/esl3的F2突变型单株,最终把ESL3基因定位在第5染色体SSR标记RM19085和Indel标记Ind05-2之间,物理距离91 kb,包含14个注释基因,为下一步调控基因的克隆和功能研究奠定了基础。  相似文献   

10.
水稻叶色突变体是研究植物光合作用、叶绿素代谢和叶绿体发育的重要材料。本研究从籼稻品种蜀恢527经EMS(甲基磺酸乙酯)诱变处理后代中筛选出一个淡黄叶矮化突变体Yellow leaf and dwarf(yld)。与野生型蜀恢527相比,该突变体全生育期都表现出淡黄叶矮化性状,其剑叶的淡黄色表型最为明显,倒二叶次之,倒三叶最弱,其中剑叶的叶绿素及类胡萝卜素含量降低最为明显;并且伴随着穗粒数、千粒重、结实率、株高等主要农艺性状的显著降低,但有效穗显著增多。透射电镜观察结果显示,与野生型相比,该突变体多数叶绿体结构基本完整,但基粒模糊,基质片层大量减少且排列疏松。遗传分析表明,该突变性状受一对隐性核基因控制。在yld突变体与粳稻武运粳7号杂交的F2群体中分离出323个突变单株,最终将YLD基因定位在第11染色体的L5和L7两标记之间,物理距离为115.7 kb。本研究为YLD基因的克隆和功能分析奠定了基础。  相似文献   

11.
叶色突变体是研究高等植物光合作用、叶绿素代谢途径、叶绿体结构与功能分子机制的理想材料。本研究从EMS(ethyl methane sulfonate)处理的缙恢10号(Oryza sativa L.ssp.indica)诱变群体中发现了一个苗期呈现黄绿色、抽穗期渐变为淡绿色的叶色突变体,命名为yellow green leaf 9(ygl9)。与野生型相比,ygl9苗期和分蘖期光合色素极显著降低,抽穗期光合色素显著降低,气孔长度、气孔导度和蒸腾速率极显著增加,净光合速率无明显变化。透射电镜观察表明,ygl9的嗜锇小体增多、基粒模糊、基质片层减少且疏松,但叶绿体结构基本完整。遗传分析显示该突变性状受1对隐性核基因调控。利用西农1A/ygl9 F2群体中的759株隐性单株,最终将YGL9定位在第3染色体短臂SSR标记S03-1和In Del标记Ind03-19之间,遗传距离分别为0.13 c M和0.07 c M,物理距离为63 kb。本研究为YGL9基因的克隆和功能分析奠定了基础。  相似文献   

12.
从恢复系育种材料[R128//(R318/R1025)F1]F6中获得一个新的斑马叶突变体zebra1349,突变体秧苗期如果不移栽,与野生型一样表现绿色,移栽后5 d新抽出的叶片包括叶鞘会呈现出与叶脉垂直的黄绿相间的条纹,移栽后30 d抽出的叶片又表现正常绿色,成熟期主要农艺性状与野生型无明显差异。与野生型相比,突变体六叶期斑马叶黄区部位的总叶绿素、叶绿素a、叶绿素b和类胡萝卜素的含量分别下降了55.86%、61.02%、39.34%和47.03%。透射电镜(TEM)观察表明,突变体斑马叶绿区部位叶绿体发育正常;黄区部位叶肉细胞中叶绿体结构异常,类囊体膜退化和分解严重,类囊体基粒片层数量明显减少,片层间距拉大,排列疏松。对zebra1349与正常叶色品种杂交F1、F2代的遗传分析表明该性状受1对隐性核基因调控。利用1192株zebra1349/02428 F2隐性定位群体,最终把ZEBRA1349基因定位在水稻第12染色体In Del标记indel39和indel44之间,其遗传距离分别为0.04 c M和0.17 c M,根据日本晴基因组序列推测,两标记之间的物理距离约为89 kb。本研究为ZEBRA1349基因的图位克隆和功能研究以及分子标记辅助育种奠定了基础。  相似文献   

13.
水稻开花灌浆期,内外颖呈绿色,含光合色素,为阐释非叶片组织叶绿体发育的分子机制,本文对EMS诱变获得的新型白穗突变体wp4进行了研究。抽穗灌浆期,wp4的穗轴呈绿色,内外颖呈乳白色;内外颖叶绿体发育不健全,无类囊体结构,叶绿素a、叶绿素b和类胡萝卜素含量极显著降低。此外,wp4全生育期叶片呈淡黄色,叶绿体内基质片层较少且排列松散;与野生型相比,wp4的叶绿素a含量显著降低,叶绿素b和类胡萝卜素含量虽略低,但差异未达到显著水平。农艺性状分析发现,与野生型相比,wp4的有效穗和结实率略有增加,其他性状则略有降低,但变化均未达到显著差异水平。遗传分析表明wp4受一对隐性核基因调控,利用1200株西农1A/wp4的F2隐性群体,最终将WP4精细定位在第8染色体约79 kb的物理范围内,根据水稻基因组注释计划,该区间包含14个基因,这为WP4的功能和作用机制研究奠定了基础,也为水稻标记性状育种提供了新的资源。  相似文献   

14.
水稻早衰突变体esl2的遗传分析和基因定位   总被引:1,自引:0,他引:1  
利用EMS诱变水稻籼型恢复系缙恢10号, 从其后代中鉴定出一个早衰突变体esl2, 苗期正常, 孕穗期开始叶尖和叶缘黄化衰老。与野生型相比, 孕穗期和抽穗期光合色素含量均显著下降, 抽穗期倒一叶的超氧化酶歧化酶(SOD)活性、可溶性蛋白(SP)含量降低, 活性氧(ROS)、过氧化物酶(POD)、过氧化氢酶(CAT)、丙二醛(MDA)和脯氨酸(PRO)含量或活性增加。超微结构观察表明, esl2衰老部位的细胞多中空且形状不规则, 伴随细胞裂解、细胞质溶解等特征; 同时, 叶绿体结构异常, 叶绿体膜溶解、基粒模糊, 基质片层疏松, 类囊体发育异常。遗传分析表明, 该突变体受一对隐性核基因调控。利用1 005株西农1A/esl2的F2隐性定位群体, 最终将Esl2定位在第4染色体SSR标记RM17122和swu4-13之间, 物理距离约244 kb, 这为Esl2基因的克隆和功能研究奠定了基础。  相似文献   

15.
转绿型叶色突变体是研究植物叶绿体分化与发育的基础材料。grc2是利用60Co-γ射线诱变籼型三系保持系T98B后获得的单叶独立转绿型黄化突变体。grc2植株上任一叶片刚抽出时为黄色,在生长10 d左右后变绿,具有单叶不依赖于植株特定发育阶段而独立转绿的特性。与野生型T98B相比,grc2黄化叶片的总叶绿素和叶绿素b含量显著降低,叶绿体滞留在黄化质体阶段,表明grc2可能在叶片早期发育中起关键作用。遗传分析表明,grc2受1对隐性核基因独立控制;利用源于grc2/Nipponbare的F2群体的960个突变单株,将grc2基因定位在STS标记S254与S258之间约31 kb的范围内,该区域含有5个未报道过的注释基因。这些结果为grc2的克隆及功能研究提供了重要信息。  相似文献   

16.
叶片是光合作用的主要器官,适度卷曲有利于改善群体光照,提高光能利用率,因此,发掘和研究叶片发育相关基因是改良株型和植物生长发育研究的重要基础工作。本研究报道了一个新的水稻稳定遗传卷叶突变体rolled leaf 28(rl28),与野生型相比,rl28从拔节期起叶片开始沿中轴脉向内侧卷曲,叶片的卷曲度均极显著高于野生型,且叶夹角也不同程度小于野生型。扫描电镜及石蜡切片观察表明,rl28叶片单位面积气孔数、气孔导度显著高于野生型,蒸腾速率极显著高于野生型,rl28中脉增大及临近的2个泡状细胞数量减少。遗传分析表明该突变性状受1对隐性核基因控制,RL28基因被定位在第5染色体标记5-43和5-34之间,物理距离为90 kb。本研究将为RL28基因的图位克隆及功能研究奠定基础。  相似文献   

17.
水稻类病斑突变体spl34的鉴定与基因精细定位   总被引:2,自引:0,他引:2  
利用化学诱变剂EMS处理籼型水稻恢复系“缙恢10号”, 从其后代中筛选到1个遗传稳定的类病斑突变体spl34。该突变体于分蘖后期在下部叶片的叶鞘上开始出现褐色的类病斑, 随后沿着中脉扩散至整个叶片, 成熟期扩散至整个植株。相比于野生型, 该突变体的株高显著变矮, 穗长显著变短, 穗粒数、结实率和千粒重极显著降低。遮光试验和组织化学分析表明, 突变体类病斑的形成受光诱导, 在类病斑形成部位发生大量过氧化氢沉积和细胞程序性死亡。荧光显微镜观察发现, 在紫外光照射下突变体产生的荧光较野生型弱。与野生型相比, 突变体spl34的H2O2和O2-含量较高, 而CAT、POD和T-SOD等保护酶的活性显著降低; 稻瘟病抗性无明显差异或略显降低。遗传分析表明, 突变体spl34的表型受1对隐性核基因控制。基因定位结果表明, 该基因定位于第4染色体的LR49和LR52两个分子标记之间, 物理距离为200 kb。测序分析发现该区间内的候选基因LOC_Os04g56480的第3449位碱基发生突变(G3449T), 导致色氨酸替换为半胱氨酸。qRT-PCR结果表明该基因在突变体内表达量降低, 而部分病程相关基因的表达量则升高。  相似文献   

18.
水稻早衰突变体esl5的鉴定及其基因精细定位   总被引:1,自引:0,他引:1  
叶片早衰直接影响作物产量和品质, 鉴定早衰突变体、图位克隆调控基因对于研究植物衰老机理具有重要的意义。以甲基磺酸乙酯诱变水稻籼型恢复系缙恢10号, 获得一个早衰突变体esl5 (early senescent leaf mutant 5), 本文对其进行了形态鉴定、细胞学观察、理化分析和基因定位等研究。结果表明, 与野生型相比, esl5的苗期叶片正常, 分蘖期呈黄绿色, 孕穗期开始叶片中上部逐渐黄化衰老; 衰老部位的细胞结构异常, 细胞膜降解, 叶绿体基质片层疏松、排列不规则, 光合色素含量和光合速率极显著下降。此外, esl5的·OH和H2O2含量极显著升高, SOD和CAT的活性则极显著降低。与野生型相比, esl5的生育期延长了20 d左右, 千粒重显著增加, 穗粒数、实粒数和结实率则显著降低。esl5受1对隐性核基因调控, 精细定位在第3染色体Indel标记Indel03-1和Indel03-2之间83.4 kb的物理范围内, 包含11个注释基因, 这为ESL5的克隆和功能研究奠定了基础, 也有利于水稻品种的遗传改良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号