首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Eight concrete beams reinforced with 500MPa steel bars and four reinforced with 400MPa ultra fine grain steel bars were tested under two point symmetrical concentrated static loading to observe the details of crack pattern development on these beams and investigate their cracking characteristics. It was shown that the cracking behavior of the beams with high strength bars was essentially similar to that of common RC flexural members, whereas the computed crack widths using the formula adopted in the Code for Design of Concrete Structures GB 50010 2002 exceeded that of the experiment under the normal service. Furthermore, the formulas for crack spacing and crack width specified in GB 50010 2002 were evaluated through the experimental results and previous studies of sixty seven concrete beams reinforced with high strength bars. On the basis of the calculation model in GB 50010 2002, revised formulas for crack spacing and crack width were proposed. The values calculated by revised formulas were in good agreement with the test results.  相似文献   

2.
A nonlinear finite element analysis of 4 RC deep flexural simply supported beams with the program VT2 is presented. Crack development and failure modes , longitudinal reinforcement strain distributions and load -deflection curves were compared as a result in order to evaluate the validity of the disturbed stress field model to analyse such deep simply supported beam.  相似文献   

3.
Accurately predicting the residual displacement of reinforced concrete (RC) structures after an earthquake is of great significance in post-earthquake structural performance evaluation and control. To study the residual deformation of the structure, seismic time-history responses of single degree-of-freedom (SDOF) systems with different parameters were analyzed. Based on the analytical results, simplified models for estimating the likely residual deformations of structures characterized by Takeda and Kinematic hysteretic models were proposed respectively, and the residual deformation was found to be sensitive to hysteretic characteristics, stiffness ratio of structures, peak ground acceleration (PGA), as well as maximum elasto-plastic deformation. A case study for RC single-column bridge pier was provided to illustrate the process of residual deformation calculation and post-earthquake performance evaluation by using the proposed methods. Calculation results indicate that the residual deformation of the single-column pier characterized by the Takeda model often is much larger than that of columns characterized by the Kinematic model.  相似文献   

4.
The probabilistic model of resistance in the current unified standard for reliability design is imprecise for RC members subjected to eccentric compression. The reason is that it lacks full considerations of influences of varying eccentricities. An improved probabilistic model of resistance with different eccentricities and reinforcement ratios is obtained by using the Monte Carlo sampling method and the current probabilistic models of all resistant factors. The results indicate that it is accurate to fit the probabilistic distribution of resistance with normal distribution. Given that, the applicability of the improved model is analyzed for reliability analysis of RC members subjected to eccentric compression with random eccentricities. It shows that when the design value of eccentricity is close to or larger than the eccentricity producing balanced failure, there would be large errors in reliability analysis if the probabilistic model of resistance given in the current reliability unified standard is used. However, it is accurate when using the proposed probabilistic model. The results also show that the design of RC members subjected to large eccentric compression is unsafe based on the current reliability unified standard because it lacks full considerations of effects that the resistance decreases as eccentricity increases.  相似文献   

5.
Adopting the element SOLID65 and LINK8 in the general finite element analysis software ANSYS and fiber model beam-column element based on finite element flexibility method respectively, the comparative analysis of the cross, L and T-shaped RC columns under compression, bending, shear and torsion with flange width-thickness ratio of 4:1 is carried out. The applicability of plane section assumption in the nonlinear analysis is discussed primarily, which shows that it is feasible on the whole for shaped RC columns with flange width-thickness ratio equal to or smaller than 4:1.  相似文献   

6.
In order to investigate the flexural behavior of concrete beams reinforced with high strength hot rolled bars of fine grains, static bending test on four rectangle cross section HRBF400, HRBF500 RC beams was conducted. The results show that the experimental maximum crack width under short term load meets the requirement of current code while calculated value does not meet; mid span deflection of RC beams with HRBF400 under short term load still meets the requirement of current code while RC beams with HRBF500 does not meet. Bearing capacity calculating formula under conditions of crack/deflection control was proposed and conception of component's bearing capacity utilization coefficient (BCUC) was put forward. The influences of reinforcement strength, reinforcement diameter, concrete grade, reinforcement ratio, concrete cover thickness and high span ratio on BCUC were analyzed. Within the range of economic reinforcement ratio, ductility of HRBF RC beams meets the requirement. Energy dissipation capacity of HRBF RC beams is similar to that of normal RC beams at low reinforcement ratio but it decreases faster than normal RC beams with the increasing of reinforcement ratio. Energy dissipation capacity of HRBF RC beams is higher than that of normal RC concrete beams in elastic stage and it enhances with the increasing of reinforcement ratio.  相似文献   

7.
The accurate calculation of the deformation capacity of structures is very important to performance-based seismic design, which satisfies the explicit deformation demands. The method to evaluate drift capacity of fiber reinforced polymer (FRP) confined reinforced concrete circular columns under simulated seismic loading is focused. Firstly, the moment-curvature relationship of FRP confined sections of reinforced concrete (RC) circular columns is simulated by numerical analysis. It is found that the calculated ultimate curvature is significantly less than the test result, and the difference is controlled by the axial load ratio of the tested columns. According to the numerical and the test results, an equation is proposed to modify the calculated ultimate curvature. Based on this, the drift capacity can be predicted with the equivalent plastic hinge method. The calculated result agrees well with the test result when FRP amount is low, but it is significantly larger when FRP amount increases. Finally, the main parameters exerting influences on the drift capacity of the FRP-confined RC circular column are analyzed.  相似文献   

8.
粘结性能退化是导致锈蚀钢筋混凝土构件力学性能下降的主要因素之一,基于锈蚀构件粘结性能实验研究成果与内聚力模型,建立了有厚度的双线性内聚力单元与分离式钢筋混凝土梁分析模型,引入粘结界面层,研究了粘结性能退化对锈蚀钢筋混凝土梁抗弯刚度的影响。结果表明,双线性内聚力单元可以有效模拟钢筋与混凝土之间的粘结机制,而根据锈蚀深度确定的有厚度的粘结单元能合理描述锈蚀程度对粘结性能的影响。数值分析结果与实验及经验公式对比,表明了文中方法的有效性和合理性。  相似文献   

9.
采用非线性有限元分析程序ABAQUS对无粘结体外预应力CFRP片材加固简支钢筋混凝土T形梁后进行数值模拟,该模拟梁共4根分别为3根梁侧对称加固,1根为梁底加固均为四点波形齿锚固预应力CFRP带。对比结果显示,数据模拟与试验结果在构件屈服以前的承载力、变形以及极限承载力吻合程度较好,构件屈服以后的变形差别较大,因此,可在一定程度上有效替代试验分析方法。依据吻合程度最好的TL3参数设计了“两点锚固”和“四点锚固”的模型进行模拟分析。通过对锚固点数及加固量改变的对比分析可知,依据加固构件的弯矩改变各段加固量及布置锚固点数的方法既可以保证加固效果不降低,又可以节约CFRP材料。  相似文献   

10.
A fiber beam-column element in conjunction with zero-length elements attached to its ends was proposed to simulate the flexural and shear mechanism respectively. Based on the Limit State Material model and the Shear Limit Curve model provided by OpenSees, the nonlinear shear effect of reinforced concrete column and its coupling with the flexural effect were defined. The reliability of the proposed model was validated by means of comparisons with existing test results. Finally, a plane frame from in-situ pushover test was simulated. It is shown that the proposed method, by taking the nonlinear shear effect into account, produces satisfactory results for frame columns with shear strength and stiffness degradation, while the conventional fiber beam-column element can hardly simulate actual flexure-shear failure mechanism for columns characterized by insufficient transverse reinforcement. The proposed method is applicable for nonlinear analysis of reinforced concrete frame structures with shear deficiencies.  相似文献   

11.
为了探究ECC/高强钢筋混凝土叠合梁的正截面受弯特征,以及ECC层厚度对叠合梁整体受弯性能的影响,做了两组共5根梁试件的正截面受弯试验。发现与高强钢筋混凝土梁相比,叠合梁的承载力更高,相同荷载下的挠度值和最大裂缝宽度较小。在受弯全过程中其截面应变仍符合平截面假定,钢筋与ECC也可以实现协调变形,说明受拉区使用ECC可以使得高强钢筋的应力得到充分发挥。但ECC层厚度过大可能会使叠合梁发生脆性破坏。进一步地,在此研究的基础上,对已有ECC的本构模型进行简化,忽略其应力强化贡献,并运用叠加原理,提出一种用于计算ECC/钢筋混凝土叠合梁正截面受弯承载力的方法,将计算结果与试验结果及诸多文献结果进行比较,发现吻合度较高。  相似文献   

12.
This paper makes use of a beam-colunm model in the elastopl-astic dynamic analysis of RC planar rames.For which an improved method is presented to estabish the envelopes of moment-curvature relationships by appli-cation of RC nonlinear analysis,and a program named PFEPDA suitable to mic-rocomputer is developed.  相似文献   

13.
Rock is a kind of physical nonlinear complicated medium, under deep buried condition the surrounding rock system deformation shows geometrical nonlinear characteristic, and the interaction between the two nonlinear mechanism makes the unloading of surrounding rock system evolving complexly. Based on the Lagrangian method and large deformation caculation method, both the double nonlinearity and nonlinear dynamics character of deep buried tunnel surrounding rock system under unloading are studied. The numerical model results show that the Kolmogorov entropy has been extracted from the evolution data in the unloading process of surrounding rock system. The analysis indicates that the typical chaos character has been demonstrated in the process of unloading for deep buried tunnel surrounding system and the rock mass energy dissipation is analyzed at the stage of unloading.  相似文献   

14.
通过对1片钢筋混凝土剪力墙和4片配有碳纤维增强聚合物(CFRP)筋的剪力墙的低周反复荷载试验,在分析试验中测得的裂缝宽度、裂缝的发展和分布形态、侧向变形的基础上,研究了在钢筋混凝土剪力墙的适当位置部分或全部配置CFRP筋对剪力墙的残余裂缝和残余变形等自复位性能的影响规律。研究结果表明:与普通钢筋混凝土剪力墙相比,配有CFRP筋的剪力墙的开裂荷载较低,裂缝较多,裂缝分布分布范围较广,墙体的最大裂缝宽度、残余裂缝宽度和侧向残余变形分别降低了60%、70%和90%,说明在剪力墙中合理配置CFRP筋能使剪力墙具有优异的自复位性能。  相似文献   

15.
为了研究高强冷弯薄壁槽钢受弯构件的力学性能和设计方法,对3种板件加劲形式的G550高强冷弯薄壁型钢槽形截面受弯构件进行了试验研究和有限元参数分析。结果表明,板件加劲形式对高强冷弯薄壁槽钢受弯构件屈曲模式和受弯承载力有显著影响,翼缘V形加劲比腹板V形加劲能够更有效地提高构件抗弯承载力,构件抗弯承载力的变化规律与屈曲模式有关。根据有限元参数分析结果,在已有直接强度法基础上回归出适用于高强冷弯薄壁槽钢受弯构件的直接强度法修正公式。  相似文献   

16.
A simple and direct limiting deformation equilibrium method for wedge sliding considering all the three deformation components of the discontinuity planes is presented. The traditional limiting equilibrium method is based on a statistic system assuming that sliding is resisted only by the sliding resistance parallel to the sliding direction along the line of intersection of the two discontinuity planes. Therefore, we work out the psudo-elastic system to take care of the deformation of the discontinuities and to solve the indeterminate system. Through analysis and experiment, it is illustrated that the result based on traditional method is unsafe. The calculated results are fairly consistent with the experimental ones, while those based on the traditional method are unsafe. The stiffness of the discontinuities should be emphasized.  相似文献   

17.
预应力CFRP布及预紧螺栓加固RC梁试验研究   总被引:1,自引:0,他引:1  
为提高碳纤维布加固RC结构的效果及其可靠性,提出了预应力碳纤维布与预紧螺栓联合加固技术。结合在役RC梁的损伤特点及目前的RC梁加固方法,分别采用不同的碳纤维布加固技术对完整梁和破坏梁的抗弯性能进行了对比试验研究。针对目前碳纤维布张拉设备的缺陷,研发了便于现场应用的新型碳纤维布布张拉设备,分析了预应力大小对加固效果的影响。结果表明,预应力碳纤维布及预紧螺栓联合加固技术是一种更可靠的桥梁加固方法,不仅能够提高RC梁正截面的抗弯承载能力及正常使用阶段的截面刚度,而且螺栓预紧锚固碳纤维布能够很好地抑制其在混凝土表面的剥离,提高碳纤维布与混凝土表面之间粘结强度,对碳纤维布施加预应力能够充分发挥其高强性能,有效抑制混凝土裂缝开裂和开展。  相似文献   

18.
Based on a thermomechanically consistent mechanical model consisting of springs and plastic dashpots, a plastic constitutive equation for large deformation is derived. Then the incremental form of elastoplastic constitutive equation is developed, which can easily be applied to the finite element analysis and other numerical approaches. The method for the determination of the involved material constants is suggested, which is based on the concept of nonstress configuration proposed by Lee. The necking process of a circular bar subjected to large elastoplastic deformation is simulated and the comparison between the analytical and experimental results is quite satisfactory. The developed model does not use the eoncept of a yield surface, which effectively improves the convergence and computation efficiency.  相似文献   

19.
Influence of Transverse Flexural Crack on Chloride Penetration in Concrete   总被引:1,自引:0,他引:1  
The mechanism for chloride penetration in cracked concrete and its major impact factors were analyzed. As a result, a revised chloride diffusion model based on Fick's Law was built by dual porous medium model. Then several cracked reinforced concrete beams self-anchored with sustained flexural loads were immersed in the 5% NaCl solution with the condition of dry-wet cycles. After 15 times of dry-wet cycles, the rapid chloride testing (RCT) was used for the determination of chloride ion content of the powder at each cracked sections. The test results show that: 1) with the condition of dry-wet cycles, the chloride content will occur a peak in the surface 20mm concrete, so the depth for surface convection zone can be assumed to be 15~20 mm; 2) when the crack width is less than 0.3mm, the equivalent chloride diffusion coefficient increases steadily, which agrees well with model's prediction; when the crack width is larger than 0.3mm, the equivalent chloride diffusion coefficient augments rapidly and influence of convection on chloride penetration becomes more significant; 3) the deterioration factor for equivalent chloride diffusion coefficient in flexural cracked concrete is directly correlative with crack width, which can be expressed by second order power function or separate function.  相似文献   

20.
Considering the damage of concrete mechanical properties and bonding behavior between the steel bar and concrete after the freezing and thawing function in the numerical simulation, the nonlinear analysis on flexural performance of reinforced concrete beam which experiences different salt-frost cycles is conducted, and the evolution law of resistance performance of reinforced concrete beam is studied. It is shown that, in the salt-frost environment, the decrease of concrete mechanical properties is the main reason that causes the degeneration of RC beam on flexural performance, while the reduction of bonding property has an unobvious effect on the beam resistance performance. When the salt-frost cycles reach a certain level, the beam failure pattern would change from the under-reinforced failure to over-reinforced failure. The freeze-thaw damage of bonding property in the beam-ends anchorage zone has a certain effect on the beam resistance behavior, especially for the more serious freeze-thaw degree, the resistance performance of the beam reduces about 4% than the perfect anchor beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号