首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
食用豆在耕地质量提升、优化农业生态体系及人类膳食结构改善中发挥着重要作用。豆象是世界性仓储性害虫,严重影响着食用豆产业的健康发展。国内外在食用豆抗豆象种质鉴定评价和利用方面,从各种野生资源中鉴定出抗不同豆象的种质材料,并在豆象抗性遗传学分析、QTL定位和基因挖掘等方面取得显著进展。本文通过对豆象发生和危害规律、抗性鉴定方法、抗性机理研究、抗性种质鉴定与评价、抗性遗传和分子标记以及抗豆象育种方法和品种改良等方面的梳理和总结,对抗豆象研究存在问题进行讨论和展望,以期为我国抗豆象种质创新和品种改良提供参考价值。  相似文献   

2.
对大白菜干烧心病抗性不同的材料进行研究,明确其抗性遗传规律,并完成抗性基因的QTL定位分析,为分子标记辅助选择(MAS)育种与抗病机理的研究提供理论依据。采用大白菜干烧心病抗性显著不同的青麻叶类型高代自交系黑227(抗干烧心病)和包头型高代自交系B120(感干烧心病)作为材料,将得到的杂种F1进行小孢子培养得到DH群体,将亲本和F1及DH群体种植于日光温室,根据田间干烧心病发病程度进行分级,进而得出病情指数,并结合已构建的大白菜分子遗传图谱,利用Map QTL 5.0软件对大白菜干烧心病抗性基因进行定位。结果表明,试材所含有的大白菜干烧心病抗性基因符合数量性状遗传的特点,共检测到2个与大白菜干烧心病抗性基因连锁的InDel分子标记Br ID10343和Br ID10349,这2个标记均位于Chr.7,其间的遗传距离为1.031 c M,遗传贡献率均达到40%以上。InDel分子标记Br ID10343和Br ID10349与大白菜干烧心病抗性基因紧密连锁,结果为抗性基因主效QTL的精细定位及MAS抗病育种奠定了良好基础。  相似文献   

3.
聚合多个有效基因,不仅可以提高作物的抗性,而且可以提高作物的产量和营养品质。尤其是在抗病方面,单基因长时间反复利用容易丧失其抗病性,多基因聚合有利于拓宽抗谱,提高作物的抗性。此外,基因聚合育种与常规育种方法相结合已经成为今后育种主要方法。本研究介绍了作物基因聚合育种的主要方法、聚合基因的互作以及聚合基因在育种上的应用,对目前作物聚合育种存在的不足进行了分析,并对未来的聚合育种目标进行了展望,以期推动作物聚合育种的研究。基因聚合育种主要集中应用在大田作物上,在园艺作物上的研究应用较少,因此,需要加强对基因聚合育种的了解,促进基因聚合育种在园艺作物上的研究。  相似文献   

4.
辣椒抗疫病遗传与育种的最新研究进展   总被引:1,自引:0,他引:1  
本文对国内外辣椒疫病的抗性机制、抗性遗传、抗病育种及分子生物学等方面的研究进展进行了分析,并提出了未来需要研究的问题,同时指出了今后的研究方向。  相似文献   

5.
从SMV株系划分、组成与分布、抗源筛选、抗病基因定位及病毒新类型等方面综述了国内外近年来对SMV的研究进展,重点总结了黄淮海SMV株系组成和分布最新研究结果。对比历年国家或地方区域试验的SMV抗性鉴定结果,分析了黄淮海地区的抗病育种研究现状,提出了该地区今后抗病育种研究方向。  相似文献   

6.
油菜是主要油料作物之一,由核盘菌(Sclerotiniasclerotiorum(Lib.)deBary)引起的菌核病(sclerotiniastemrot)是油菜的主要病害。针对当前与菌核病相关研究的新进展,本研究从4个方面对其进行了概括:(1)核盘菌的侵染方式以及在侵染过程中核盘菌分泌的草酸与寄主中钙离子的动态关系;(2)油菜通过合成植保素、酚类化合物、木质素、几丁质酶和β-1,3-葡聚糖酶等来抵抗核盘菌入侵的抗病机理;(3)现有综合防治技术中抗性种质筛选、无花瓣育种和生物防治;(4)利用与草酸代谢相关基因、抗病相关基因、防御相关转录因子基因和抗菌肽基因开展的油菜基因工程研究成果。并且进一步提出了未来油菜抗菌核病研究的可能方向,这些总结与建议为今后油菜抗菌核病研究提供了有益参考。  相似文献   

7.
水稻抗褐飞虱基因及其育种应用研究进展   总被引:4,自引:1,他引:3  
褐飞虱是危害水稻生产最重要的害虫之一。遏制水稻褐飞虱为害的最安全、有效的措施既利用水稻自身的抗虫性。迄今为止,已经于栽培稻和野生稻中成功鉴定出30个水稻抗褐飞虱基因,其中26个主效抗性基因已被定位,显性基因Bph14已成功克隆,但仅少量主效抗性基因被育种家利用并培育出抗性品种。对褐飞虱的生物型和抗性机理、水稻抗褐飞虱的遗传基础及育种应用研究进行了综述,并就今后的抗性育种研究趋势展开了讨论。  相似文献   

8.
番茄是重要的栽培蔬菜,在世界各地被大面积种植。根结线虫侵染番茄根部对寄主产生损伤,使植株黄化、矮化、下部叶片脱落、成熟期果实小。同时,常见的土传病害,如黄萎病(Cyanosis)、枯萎病、青枯病(Ralstonia solanacearum)等往往会在遭受线虫侵染后爆发。根结线虫病会严重影响番茄产量,甚至导致绝产。Mi-1做为目前唯一被转育到栽培品种中的番茄抗根结线虫基因,在番茄栽培中起着重要的作用。本研究通过对Mi-1基因结构功能分析,Mi-1基因对根结线虫抗性机理,分子标记与抗根结线虫育种应用等方面的研究进展加以综述,意在总结前人相关研究进展并对其存在的问题及今后发展方向进行展望。  相似文献   

9.
黄瓜霜霉病研究进展   总被引:5,自引:1,他引:4  
为给黄瓜霜霉病抗病育种及病害防治提供系统、完善的理论依据,笔者对黄瓜霜霉病发生危害、病原菌生理特性、寄主范围、生理分化以及寄主抗性遗传、综合防治等多个方面国内外研究进展进行归纳总结。分析发现,尽管国内外研究者对病原菌生理分化、抗药性和寄主抗性基因鉴定等方面进行了大量富有成效的研究,但由于鉴定方法不统一及病原菌的高度变异,病原菌生理分化及寄主遗传规律等研究尚存争议,抗性基因功能验证的研究相对匮乏,因而在这些方面还有待进一步深入系统的研究。本研究同时也探讨了今后黄瓜霜霉病的研究方向。  相似文献   

10.
由稻瘟病菌引起的水稻稻瘟病是影响水稻生产的重要病害之一,培育和合理利用抗性品种是控制稻瘟病最经济有效、环保的措施。虽然DNA分子标记分子已经被广泛用于基于分子标记辅助选择技术(MAS)的水稻抗性育种工作中,但是分子标记辅助选择育种的效率取决于分子标记与目标基因的连锁距离。目前,已经克隆的稻瘟病抗性基因多达26个,其全基因组序列已经公开发表,这将有利于基因特异性分子标记的开发。基因特异性分子标记与基因共分离,在分子育种过程中实现了对目标基因的直接选择,有可能成为未来分子育种技术中鉴定目标基因的主流工具。本研究综述了稻瘟病抗性基因特异性分子标记的开发及应用情况,并对已经开发成功的基因特异性分子标记相关信息进行整合,旨在为育种家在分子标记的选择上提供指导信息。  相似文献   

11.
Cowpea is an important legume crop widely grown in sub‐Saharan Africa for food and feed. However, it is largely challenged by bruchid, a serious storage pest resulting in losses in quantity and quality of grains. Therefore, this research was designed to contribute to the breeding of cowpea resistance to bruchid through the identification of candidate genes associated with resistance to bruchid. A total of 217 mini‐core cowpea accessions were genotyped and phenotyped for their reactions to bruchid. To determine the genomic regions linked with bruchid resistance, 41,948 polymorphic SNP markers were used. Genome‐wide association study identified 11 SNPs linked to the average number of eggs, holes, insect emergence and development period and Dobie susceptibility index. Gene search via Phytozome identified six candidate genes (Vigun08g132300, Vigun08g158000, Vigun06g053700, Vigun02g131000, Vigun01g234900 and Vigun01g201900) associated with the resistance traits. These candidate genes could be incorporated into the farmers preferred but susceptible cowpea varieties to bruchid. The SNP markers associated with the resistance traits can be used in marker‐assisted breeding for accurate and rapid screening of cowpea resistant genotypes to bruchid.  相似文献   

12.
A number of improved cultivars of food legume crops have been developed and released in the tropics and the sub-tropics. Most of these cultivars have been developed through conventional breeding approaches based on the development of crop varieties under optimum soil fertility levels. Nevertheless, it is hardly possible to say that the varietal provisions made by the past approach have been readily accepted, and properly utilized to boost productivity of food legumes grown by resource-poor farmers. The approach itself did not fully appreciate the actual circumstances of the resource-poor farmers where marginal production systems prevail and the poorest farmers could not afford to use cultivars developed under optimum soil fertility level. Therefore, the limitations and strategic implications of past experiences made to develop crop cultivars need to be analyzed in order to formulate better strategies and approaches in the future. The main purpose of this article is to review the efforts made, the technical difficulties associated with the genetic improvement in food legumes as related to plant-nutrient relations, causes of limited breeding success and thereby draw lessons useful to designing future breeding strategies. The scope of nutrient deficiency stress and the approaches to breeding for plant-nutrient relations are discussed and the need for refining the approach and better targeting of the breeding methodologies suggested.  相似文献   

13.
Summary Necrotrophic pathogens of the cool season food legumes (pea, lentil, chickpea, faba bean and lupin) cause wide spread disease and severe crop losses throughout the world. Environmental conditions play an important role in the development and spread of these diseases. Form of inoculum, inoculum concentration and physiological plant growth stage all affect the degree of infection and the amount of crop loss. Measures to control these diseases have relied on identification of resistant germplasm and development of resistant varieties through screening in the field and in controlled environments. Procedures for screening and scoring germplasm and breeding lines for resistance have lacked uniformity among the various programs worldwide. However, this review highlights the most consistent screening and scoring procedures that are simple to use and provide reliable results. Sources of resistance to the major necrotrophic fungi are summarized for each of the cool season food legumes. Marker-assisted selection is underway for Ascochyta blight of pea, lentil and chickpea, and Phomopsis blight of lupin. Other measures such as fungicidal control and cultural control are also reviewed. The emerging genomic information on the model legume, Medicago truncatula, which has various degrees of genetic synteny with the cool season food legumes, has promise for identification of closely linked markers for resistance genes and possibly for eventual map-based cloning of resistance genes. Durable resistance to the necrotrophic pathogens is a common goal of cool season food legume breeders.  相似文献   

14.
Summary Insect pests are major problems for all crops, worldwide. In this review we will focus on legumes, which are attacked by a range of insect pests including pod/seed feeders, defoliators and sap feeders. We review the history of breeding for resistance to insect pests in legumes, which has had mixed success, and discuss further opportunities in this area. We also review the extraordinary array of direct and indirect mechanisms contributing to insect defence in legumes, the understanding and exploitation of which offer opportunities for both legume and non-legume crops. There is also good potential to improve insect resistance in legume crops through a detailed understanding of the signaling pathways that regulate induced responses to insect feeding, and recent progress in this area, primarily obtained from non-legume systems, is reviewed. The importance legumes play in farming systems, their wide range of novel chemistry and the emergence of model systems suitable for genomic approaches present opportunities for research in this area strongly linked to breeding programs to help develop legume crops with enhanced insect resistance. CSIRO’s right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

15.
Summary Several Lathyrus species and in particular Lathyrus sativus (grass pea) have great agronomic potential as grain and forage legume, especially in drought conditions. Grass pea is rightly considered as one of the most promising sources of calories and protein for the vast and expanding populations of drought-prone and marginal areas of Asia and Africa. It is virtually the only species that can yield high protein food and feed under these conditions. It is superior in yield, protein value, nitrogen fixation, and drought, flood and salinity tolerance than other legume crops. Lathyrus species have a considerable potential in crop rotation, improving soil physical conditions; reducing the amount of disease and weed populations, with the overall reduction of production costs. Grass pea was already in use in Neolithic times, and presently is considered as a model crop for sustainable agriculture. As a result of the little breeding effort invested in it compared to other legumes, grass pea cultivation has shown a regressive pattern in many areas in recent decades. This is due to variable yield caused by sensitivity to diseases and stress factors and above all, to the presence of the neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), increasing the danger of genetic erosion. However, both L. sativus and L. cicera are gaining interest as grain legume crops in Mediterranean-type environments and production is increasing in Ethiopia, China, Australia and several European countries. This paper reviews research work on Lathyrus breeding focusing mainly on biotic and abiotic resistance improvement, and lists current developments in biotechnologies to identify challenges for Lathyrus improvement in the future.  相似文献   

16.
The Indian gene centre possesses a rich legume biodiversity––1,152 species comprising cultivated, underutilized edible and forage legumes. Majority of the underutilized food legumes are widely distributed as wild species in various agro-ecological regions of peninsular India. Indian legume species (62%) contribute to the food and health security of ethnic communities. A total of 66,546 accessions of legume gene resources including underutilized species are conserved in the National Gene Bank. Collection, characterization and conservation efforts regarding the diversity of these beans are described. The importance of genetic variation in legumes and their wild relatives as a source of desirable resistance to pests and diseases in a changing climate scenario is discussed. Information on legumes used in Indian and modern systems of medicine and ethno-botany as well as the scope for bio-prospecting are presented. Advanced biotechnological applications in legume research for sustainable utilization of these resources are highlighted. An integrated gene resource management strategy to combat malnutrition, identify gene resources for legume improvement and enhance their value as traditional food and medicine is described.  相似文献   

17.
The potential of plant gene technology encompasses a multitude of different techniques ranging from the isolation of useful genes, their characterization and in vitro manipulation to the reintroduction of the modified constructs into target plants, where they are expressed at a rate that alters the phenotype of the plants. Genome analysis, on the other hand, aims at characterizing the genome architecture and function(s).Plant gene technology has catalyzed progress in plant breeding, as will be exemplified by a few examples, but has not yet been applied to food legume improvement on a large scale. Genome analysis, however, has a series of practical implications, as is illustrated by the successful introduction of DNA fingerprint and PCR fingerprint techniques to chickpea (Cicer arietinum L.) breeding and Ascochyta rabiei pathotyping. The present overview addresses both areas of plant molecular biology to illustrate their potential for food legume breeding.  相似文献   

18.
Pigeonpea (Cajanus cajan [L.] Millspaugh) is an important multipurpose grain legume crop primarily grown in tropical and subtropical areas of Asia, Africa and Latin America. In Africa, the crop is grown for several purposes including food security, income generation, livestock feed and in agroforestry. Production in Eastern and Southern Africa (ESA) is however faced with many challenges including limited use of high‐yielding cultivars, diseases and pests, drought, under‐investment in research and lack of scientific expertise. The aim of this review is to highlight the challenges facing pigeonpea breeding research in ESA and the existing opportunities for improving the overall pigeonpea subsector in the region. We discuss the potential of the recently available pigeonpea genomic resources for accelerated molecular breeding, the prospects for conventional breeding and commercial hybrid pigeonpea, and the relevant seed policies, among others, which are viewed as opportunities to enhance pigeonpea productivity.  相似文献   

19.
本研究综述了目前应用于转基因牛中原核显微注射法、体细胞克隆法、病毒载体法等传统动物转基因技术以及具有应用前景的ZFN技术、TALEN技术和iPS技术等。概述了20年来国内外转基因牛重要的研究进展,并就目前转基因牛在乳腺生物反应器、抗病育种、品种改良主要3个方面的应用进行了介绍。在此基础上,就目前转基因牛育种中存在的问题及今后发展趋势进行了讨论,以促进转基因牛研究的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号