首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
为了解决玉米田除草剂苯唑草酮长期施用造成土壤中大量残留问题,本研究利用富集驯化法进行菌株筛选,利用高效液相色谱法测定其降解能力,通过形态和18S rDNA序列分析对其进行种属鉴定。结果表明,本研究从长期施用苯唑草酮的土壤中分离纯化出5株能以苯唑草酮为唯一碳源生长的真菌菌株TOF1,TOF2,TOF3,TOF4和TOF5。它们在7天内对初始浓度400 mg/L苯唑草酮的降解率分别为35.86%、34.35%、32.12%、9.91%和27.99%,通过重复验证,发现TOF1和TOF2降解重复性较好,这2个菌株分别鉴定为Penicillium chrysogenum(产黄青霉)和Penicillium tardochrysogenum(缓慢产黄青霉)。这2个种属的获得为苯唑草酮污染土壤生物修复提供了新的菌种资源。  相似文献   

2.
为了研究氟磺胺草醚污染土壤的生物修复机理,利用富集培养技术从长期施用氟磺胺草醚的土壤中分离得到1株能够以氟磺胺草醚为唯一碳源生长的细菌,命名为F-12。通过菌落形态、生理生化特性和16SrDNA基因序列分析,初步鉴定菌株F-12为克雷伯氏菌属(Klebsiella sp.)。并分析了氟磺胺草醚的初始浓度、接种量、温度和pH值对菌株F-12降解氟磺胺草醚效果的影响,确定了最佳降解条件。结果显示,该菌在氟磺胺草醚浓度为100 mg/L、接种量为15%、pH为6.0、温度35℃条件下,培养2 d后对氟磺胺草醚的降解效率达到80%以上。具有应用到氟磺胺草醚污染土壤生物修复的能力。  相似文献   

3.
氟磺胺草醚降解菌的分离鉴定及生长特性研究   总被引:3,自引:2,他引:1  
氟磺胺草醚广泛应用于大豆田防除阔叶杂草,其长残留问题十分严重,微生物降解是解决氟磺胺草醚残留问题的有效途径。利用高压富集的方法,从长期施用氟磺胺草醚的田间土壤中,分离筛选出6株能够以氟磺胺草醚为唯一碳源生长的降解菌,其中一个菌株在查氏液体培养基中培养5d,对40mg a.i./L氟磺胺草醚的降解率为92.13%。通过形态特征鉴定并对该菌株18S rRNA的部分序列进行基因测序,对其在系统发育分类学上的地位加以分析,同时研究环境条件对其生长的影响。结果表明,该菌株为真菌,初步鉴定为黄曲霉(Aspergillus flavus),实验室命名为TZ1985。菌株TZ1985最适生长温度为25℃,最适培养基pH值为7.0,生长最适葡萄糖含量为0.6%,生长最适氟磺胺草醚的浓度是10mg a.i./L。  相似文献   

4.
为明确氟磺胺草醚降解菌的蛋白质组学相关机理,针对实验室前期筛选得到的高效降解菌Shigella flexneri FB5,在明确菌株对氟磺胺草醚高效降解的基础上,研究进行了蛋白提取和双向电泳试验。结果发现氟磺胺草醚诱导下菌株差异蛋白点13个,使用质谱技术对它们进行鉴定。通过生物信息学比对得到其功能,并对目标蛋白的基因进行PCR扩增与测序。结果表明:研究得到氟磺胺草醚诱导下菌株两个相关基因,测序后发现基因F3序列与E.coli结合蛋白dps基因同源性是100%,基因F6序列与沙门氏菌肠溶亚种血清变型索菲亚菌S1635外膜蛋白基因和E.coli SYW004外膜蛋白基因A相似度是87%,同时对这两个基因所在家族功能进行分析,并且推测出基因的理化性质。  相似文献   

5.
本研究旨在筛选出在高温条件下具有较强木质纤维素降解酶活性的细菌菌株,探究其降解秸秆木质纤维素的特性。从太白山林区温泉采集土壤样品并在高温条件下进行富集培养,利用脱色圈试验和比色法筛选出目标菌株,通过形态观察和16S rDNA序列分析鉴定菌株种类。对高温富集初筛所得菌株的纤维素酶、漆酶、木质素过氧化物酶和锰过氧化物酶活性进行测定。菌株X-08的纤维素酶活为0.02872 U/mL,菌株M-17的MnP、LiP和Lac酶活分别为51 U/mL、672 U/mL和192 U/mL。鉴定出菌株X-08为Anoxybacillus rupiensis,M-17为Geobacillus thermocatenulatus。采用双菌降解玉米秸秆,20天后木质素和纤维素的降解率分别达到24.51%和20.47%。研究结果为农业废弃物生物降解提供了新的细菌菌种资源,并为秸秆中木质纤维素的降解处理方法提供了新的思路。  相似文献   

6.
旨在将贵州的玉米秸秆生物质资源通过微生物降解还田,应用到烤烟轮作生产上。以植烟土壤为材料,采用刚果红染色法以及CMCase活性测定进行菌株的筛选,通过失重法测定秸秆降解率。实验共获得44株分解纤维素菌株;初筛获得20株纤维素分解菌。选择D/d较大的5株菌株,通过拮抗实验共获得复合菌剂10株。5株高效纤维素分解菌初步鉴定为Cellulosimicrobium cellulansCellulosimicrobium funkei(同源性都达100%);通过CMCase活性测定,复合菌剂酶活高于单一菌剂,选择酶活高(314.39 U/mL)且作用时间短(5天)的菌剂进行秸秆降解实验,25天降解率达53.35%,是对照的1.87倍。因此,5株菌株可作为贵州烟区玉米秸秆还田的潜在开发菌种,这对于资源有效利用、环境友好和植烟土壤连作障碍改良具有重要意义。  相似文献   

7.
环境中胆固醇降解菌的分离与鉴定   总被引:2,自引:2,他引:0  
本研究利用富集培养法从水塘底的污泥中分离出12株能以胆固醇为唯一碳源生长的菌株,并初步筛选出4株降解能力较强的菌株,这4个菌株在30℃,200 r/min的培养条件下,96 h内对30 μg/mL的胆固醇的降解率分别为51.25%、36.65%、55.62%和29.59%。且它们适合生长的pH范围广,均在第12 h后进入生长的稳定期。其中2个菌株(L4、L5)经形态特征以及16SrDNA序列分析,初步鉴定为肺炎克氏杆菌(Klebsiella pneumoniae)。  相似文献   

8.
为了得到一株具有降解纤维素性能的产芽孢菌株,采用加热富集芽孢菌及刚果红脱色圈的初筛方法,从菜地土壤、动物粪便、青贮饲料等样品中分离筛选出41株能够降解纤维素的产芽孢细菌。对初筛菌株发酵培养,测定发酵液透明圈直径及纤维素酶活力,菌株T-7具有显著的降解能力,纤维素酶活力达1678.89U/mL。通过形态观察鉴定、生理生化实验和16SrDNA序列分析对其进行种属鉴定,鉴定T-7菌株为短小芽孢杆菌(Bacillus pumilus)。研究了供试菌株T-7的降解工艺,获得了菌株发挥最大降解特性所需的最佳培养条件。结果表明,将菌株T-7以10亿活菌/1Kg的接种量接入玉米秸秆,并且添加辅助碳氮源2%蔗糖+2%尿素时,在发酵8天后对秸秆中纤维素的降解率达40.34%。研究结果为纤维素的生物降解发掘了新的菌种资源,并为秸秆的大规模降解利用奠定了基础。  相似文献   

9.
LAS高效降解菌的分离鉴定及其降解性能的初步研究   总被引:2,自引:1,他引:1  
从环境中筛选分离出能高效降解直链烷基苯磺酸钠(LAS)的菌株,研究其降解性能,以期为LAS污染治理提供菌种资源。利用富集培养技术从重庆市某地区经含洗涤剂污水长期浸泡的污泥中分离获得1株对直链烷基苯磺酸钠(LAS)具有较强降解能力的菌株,命名为L1。通过对菌株形态、生理和生化特性分析,初步鉴定菌株L1为黄单胞菌属(Xanthomona sp.)。经研究,该菌的生长和LAS降解率在pH 5.0~7.5之间比较稳定,其中在pH为7.0时效果最佳,并且具有一定的酸碱调节能力。LAS浓度为150 mg/L,是该菌生长和LAS降解的最适浓度,48 h菌体生长量测定的吸光值可达0.413,LAS降解率可达87.64%,表明菌株L1具有治理LAS污染的潜在应用价值。  相似文献   

10.
探讨根际促生长细菌荧光假单胞菌(Pseudomonas fluorescens)CLW17对草甘膦的降解作用及其分子机制。利用平板培养法和钼锑抗比色法对CLW17菌株降解草甘膦能力进行研究。采用Plackett-Burman(PB)与Central Composite Design(CCD)试验联用确定CLW17降解草甘膦的最佳条件。对降解草甘膦关键基因thiO进行生物信息学分析,并构建敲除株(CLW17ΔthiO)及回补株(ΔthiO/thiO),研究其对草甘膦降解的影响。荧光假单胞菌CLW17菌株耐受草甘膦的最大浓度为0.7%。在降解草甘膦最优条件下,野生株CLW17、敲除株CLW17ΔthiO和回补株ΔthiO/thiO对草甘膦降解率分别为72.81%、32.78%和54.33%。生物信息学分析显示thiO基因编码366个氨基酸,拥有信号肽和跨膜结构域。CLW17具有较强的降解草甘膦能力,且thiO基因与降解草甘膦能力密切相关。研究结果可为草甘膦污染的治理及土壤修复提供良好的菌种资源。  相似文献   

11.
为了解决大豆田除草剂氟磺胺草醚长期施用造成土壤中大量残留对后茬敏感作物的药害问题,本研究通过盆栽试验研究添加细菌发酵液对玉米种子的发芽率和幼苗生长指标的影响,通过田间试验研究添加细菌发酵液对土壤和玉米籽粒中氟磺胺草醚残留和玉米产量的影响。盆栽试验表明土壤处理30天和60天处理组的玉米出苗率差异极显著,根干重差异显著;菌液处理土壤30天时,残留氟磺胺草醚对后茬敏感作物玉米幼苗生长影响较小;田间试验表明收获时土壤中未检测出氟磺胺草醚,玉米吸收了86.91%~97.87%氟磺胺草醚,施用菌液后玉米籽粒对氟磺胺草醚的残留率下降了21.8%~32.76%,使其残留量符合国家标准,而且能够增加玉米株棒数和平均产量。菌液施用对氟磺胺草醚污染的土壤具有较好的修复作用且能够减轻氟磺胺草醚对后茬玉米的药害现象。  相似文献   

12.
以磷酸钙为难溶态磷,从樟子松根际土壤分离筛选高效解磷细菌,采用透明圈法分离解磷细菌,以解磷效率为指标定量筛选高效菌株,通过生理生化指标测定结合16S rRNA序列系统发育树构建鉴定菌株,并利用单因素方法分析研究不同碳源、氮源及 C/N比值对菌株解磷能力的影响。结果表明:分离筛选得到11株解磷细菌,筛选得到2株高效解磷细菌A43和A54,初步鉴定菌株A43和A54均为Pseudomonas koreensis,A43在碳源为葡萄糖,氮源为硫酸铵,A54在碳源为蔗糖,氮源为硝酸钠,C/N比均为20:1条件下,菌株解磷效果最佳。试验筛选的高效解磷细菌为进一步制备樟子松促生微生物菌肥打下良好基础。  相似文献   

13.
烟草青枯病和黑胫病拮抗细菌的筛选、鉴定及防效研究   总被引:1,自引:0,他引:1  
筛选对烟草青枯病和黑胫病具有良好防效的生防菌株,为烟草根茎类病害的有效防控提供生防资源。从发病烟株根际土壤中分离细菌,采用平板对峙法和滤纸片法测定分离菌株对烟草青枯病菌和黑胫病菌的抑制活性,基于盆栽验证法检测高活性菌株对烟草青枯病和黑胫病的防治效果,通过16S rDNA通用引物对高活性拮抗菌株进行分子生物学鉴定,同时选用9对特异性引物对高活性菌株的促生长和抑菌活性进行PCR检测。共筛选出2株对烟草青枯病和黑胫病均有防治效果的拮抗菌株LF-1和LF-2,经分子生物学鉴定LF-1为枯草芽孢杆菌Bacillus subtilis,LF-2为解淀粉芽孢杆菌Bacillus amyloliquefaciens。室内活性试验结果表明,菌株LF-1、LF-2对烟草青枯病菌抑制率分别为31.16%、56.98%,对烟草黑胫病菌抑制率分别为64.44%、72.44%;盆栽试验结果表明,菌株LF-1对烟草青枯病和黑胫病的防效分别为69.54%和65.49%,菌株LF-2对烟草青枯病和黑胫病的防效分别为72.49%和68.32%。菌株LF-1和LF-2对烟草根茎类病害具有较好的生防效果,在烟草根茎类病害防控中应用前景广阔。  相似文献   

14.
为了评估新型肥料品种在水稻轻简化施肥中的应用效果,以树脂包膜缓释肥(RCF)、聚氨酯包膜缓释肥(PCF)和有机缓释肥(LSF)等新型肥料产品为研究材料,通过多点大区对比试验,研究了“一基一追”轻简化施肥方式对‘籼粳杂交稻’和‘晚粳稻’产量和氮肥利用效率的影响。结果表明,籼粳杂交稻试验中氮肥减量12.8%(218 kg N/hm2),RCF、PCF和LSF等新型肥料轻简化施肥处理水稻产量、产量构成因子与常规施肥(FF)处理间都没有显著差异;‘晚粳稻’试验中氮肥减量36.1%(177 kg N/hm2),RCF、PCF和LSF等新型肥料轻简化施肥处理分别比FF处理减产20.4%、12.0%和22.8%。PCF处理水稻有效穗数和成穗率与FF处理间差异不显著,RCF和LSF处理则显著降低了‘晚粳稻’有效穗数和成穗率。轻简化施肥各处理氮肥偏生产力都显著高于FF处理。RCF和PCF处理氮肥农学利用率与FF处理间差异不显著,LSF处理“籼粳杂交稻”试验中氮肥农学利用率显著高于FF处理,‘晚粳稻’试验中则显著低于FF处理。水稻轻简化施肥技术的应用效果同时受到施氮量和肥料品种的影响,聚氨酯包膜缓释肥(PCF)在不同水稻类型和试验点上的减氮稳产效应优于树脂包膜缓释肥(RCF)和有机缓释肥(LSF)。  相似文献   

15.
低温秸秆降解真菌的筛选及在秸秆还田中的应用   总被引:2,自引:1,他引:1  
旨在针对黄淮海北部小麦-玉米一年两熟区的气候特点,进行低温秸秆降解真菌的筛选及其应用效果研究。以纤维素钠-刚果红培养基、秸秆液体培养基为筛选培养基,在16℃培养温度下进行秸秆降解真菌的筛选;采用形态学和分子生物学相结合的方法进行菌株鉴定;用沙袋法和田间小区试验法测定菌株的秸秆降解能力。筛选获得一株低温秸秆降解真菌SDF-31,该菌株为长枝木霉(Trichoderma longibrachiatum)。该菌株接种15天时和45天时的秸秆降解率分别为43.89%和56.73%,显著高于常温秸秆降解菌剂和空白对照。SDF-31处理的秸秆原有纤维结构高度破环、产生大量纤维碎片,且土壤全氮、碱解氮、有效磷、速效钾等指标都显著高于常温降解菌剂和空白对照,其中速效钾和碱解氮的含量分别比常温秸秆降解菌剂提高17.00%和5.12%,比空白对照分别提高25.53%和15.09%。筛选获得一株具有低温秸秆降解作用的长枝木霉(T. longibrachiatum) SDF-31,为黄淮海北部秋冬季节玉米秸秆还田提供菌株资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号