首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
粳稻品系Y98149是从离子束诱变的后代中获得的显性半矮秆突变体,与野生型Y98148是一对株高近等基因系。将已经获得的3个与水稻显性半矮秆基因紧密连锁的RAPD标记分别克隆、测序,根据测序结果设计了3对特异性PCR引物,成功地将RAPD标记S1041525、S1076549和S1272403转化成更稳定的SCAR标记SCS1041498、SCS1076510和SCS1272388。通过Y98148×Y98149的F2代分离群体的分析,这3个SCAR标记与显性半矮秆基因的遗传距离分别为12.6 cM、7.5 cM和16.3 cM, 且位于基因的同一侧。序列同源性比较表明,标记S1272403为单拷贝,其核苷酸序列与水稻第7染色体上两个BAC克隆B1249D05(AP006451)和OJ1212-C12(AP005604)同源性为99%,B1249D05与OJ1212-C12有23 kb的重叠区域,标记S1272403位于这个重叠区域,据此初步将显性半矮秆基因定位,为进一步精确定位和图位克隆奠定了基础。  相似文献   

2.
一个新的抗玉米矮花叶病基因的发现及初步定位   总被引:3,自引:0,他引:3  
由SCMV引起的矮花叶病是我国的主要玉米病害之一, 鉴定和发掘新的抗病基因对于玉米抗病遗传育种具有重要意义。以抗病自交系海9-21和感病自交系掖478杂交的一个BC2F3群体为试验材料, 通过人工接种矮花叶病毒进行抗病性鉴定, 发现该分离群体中抗病植株与感病植株数符合1∶3的分离比例, 推测其抗病基因是由1对隐性基因控制。抗感池和SSR标记连锁分析表明, 存在一个新的玉米矮花叶病隐性抗病基因(或等位基因), 将该基因命名为scm3。scm3基因来源于抗病玉米自交系海9-21, 位于第3染色体短臂3.04~3.05区域, 在SSR标记umc1965和bnlg420之间, 遗传距离分别为45.7 cM和6.5 cM。连锁的标记还有umc1307、umc2265、bnlg2241和umc2166, 它们与scm3之间的遗传距离分别是8.3、13.3、15.5和19.7 cM, 这些SSR标记与scm3基因在染色体上的排列顺序为umc1965—scm3—bnlg420—umc1307—umc2265—bnlg2241—umc2166。  相似文献   

3.
小麦抗白粉病新基因的AFLP和SSR标记及其染色体定位   总被引:9,自引:2,他引:9  
李韬  张增艳  林志珊  陈孝  高珊  辛志勇 《作物学报》2005,31(9):1105-1109
M53 (YAV2/TEZ//Ae.squarrosa 249) 是硬粒小麦与粗山羊草的双二倍体合成种,携带一个抗白粉病新基因,暂命名为Pm-M53,该基因对北京地区白粉病优势生理小种15号表现免疫抗性。本研究利用来源于杂交组合M53/宛7107的一个F2群体,在苗期采用白粉病15号小种(Blumeria graminis f. sp. tritici)接种,抗病反应型鉴定表明,抗感比例符合3∶1,说明其抗性受显性单基因控制;对部分F2植株的F3株系的抗病鉴定进一步证明了F2鉴定的可靠性;利用AFLP和SSR标记技术结合F2分离群体对目的基因进行了遗传作图,将目的基因定位在5D染色体的长臂上。其中AFLP标记P16M16-109(Apm109)和P5M16-161(Apm161)与目的基因的遗传距离分别为1.0和3.0 cM。SSR标记Xwmc289b、Xgwm583和Xgwm292与目的基因的遗传距离分别为20.0、33.0和24.0 cM。这些标记位于目的基因的两侧。利用中国春遗传背景的缺-四体和双端体结合AFLP标记Apm109确证了SSR标记定位的可靠性,进一步证明该基因是一个新的抗白粉病基因。  相似文献   

4.
大豆种粒斑驳抗性的遗传分析及基因定位   总被引:1,自引:0,他引:1  
运用SSR标记技术及分离群体组群分析法(BSA法), 对大豆品系3C624×东农8143的F2、F3代群体接种SMV1号株系鉴定种粒斑驳抗性, 并进行抗种粒斑驳基因的分子定位。结果表明, 东农8143对SMV1号株系的种粒斑驳抗性受1对显性基因控制。用Mapmaker/Exp 3.0b进行连锁分析, 抗种粒斑驳基因位于大豆染色体组的F连锁群上, 并获得了与抗种粒斑驳基因紧密连锁的5个SSR标记Sat_297、Sat_229、Sat_317、Satt335和Sct_188, 标记与抗病基因间的排列顺序和连锁距离为Sat_297–12.4 cM–Sat_229–3.6 cM–SRSMV1–1.7 cM–Sat_317–2.4 cM– Satt335–13.8 cM–Sct_188。其中近距离标记Sat_229(3.6 cM)、Sat_317(1.7 cM)和Satt335(4.1 cM)可用于标记辅助选择育种和抗源筛选。  相似文献   

5.
利用我国流行的小麦条锈菌生理小种CY28、CY29、CY30、CY31、CY32和水源11致病型4对102份硬粒小麦-粗山羊草人工合成小麦材料进行抗病鉴定,其中CI108(组合为GAN/Aegilops squarrosa 201)对上述6个流行生理小种均表现免疫。利用CY31对杂交组合CI108/铭贤169正交、反交的F1材料以及F2代群体进行抗病鉴定,结果表明其抗性受细胞核显性单基因控制。基因推导表明,CI108对30个条锈菌生理小种均表现抗性,其抗谱与23份已知抗条锈病基因品种(系)不同,与K733(含有Yr24)和洛夫林13(含Yr9+未知基因)相似,但CI108与洛夫林13、K733对多个条锈菌生理小种的抗性程度不同,洛夫林13、K733与CI108系谱不同,且缺乏CI108特异的SSR标记Xgwm456的抗病特异带。所以,CI108中抗条锈基因应该是不同于其他基因的抗条锈病新基因,暂命名为YrC108。进一步利用CI108/铭贤169的F2群体、抗感分离分析池(BSA)筛选YrC108的SSR分子标记,找到了3个紧密连锁的标记,其中Xgwm456和Wmc419位于YrC108的一侧,与YrC108间遗传距离分别为0.6 cM和1.8 cM,Wmc413位于YrC108的另一侧,遗传距离为0.6 cM。本研究为小麦抗条锈病育种提供了高抗、广谱的新抗源和进行高效检测的分子标记。  相似文献   

6.
水稻特异亲和基因S-e的分子定位   总被引:3,自引:0,他引:3  
水稻籼粳亚种间杂种具有强大的优势,但亚种间杂种的不育性限制了这一优势的利用。开展杂种不育基因的定位工作,对于进一步了解杂种不育性的遗传基础,克服亚种间杂种的不育性具有重要的意义。本研究选用粳型品种台中65的近等基因系E47-1和籼型品种广陆矮4号为材料,利用74个SSR标记对杂种F2群体进行偏态分离标记的筛选,同时根据F2和F3群体花粉育性和具有偏态分离的SSR标记之间的连锁关系,对特异亲和基因(F1花粉不育基因)S-e座位进行了分子定位,取得了以下主要结果:1、利用116个均匀分布在水稻12条染色体上的SSR标记对籼粳两亲本进行多态性筛选。结果有101个SSR标记在亲本间具有多态性,15个SSR标记在亲本间无多态性,SSR标记在亲本间的多态率高达87.07%。2、选用74个亲本间具有多态性的SSR标记对E47-1/广陆矮4号组合F2群体的偏态分离进行了初步的筛选和分析。发现有6个染色体区段的9个SSR标记在F2群体中存在偏态分离,它们分别位于第3、第6、第7、第10、第11和第12染色体上,卡方值均达到显著或极显著水平。6个染色体区段中有2个严重偏态分离区段,分别位于第6和第12染色体。3、通过对F2群体的花粉育性和偏态分离区段的SSR标记基因型的相关关系分析,表明位于第12染色体上的SSR标记RMl9附近存在一个F1花粉不育基因。继而在该标记附近设计位置特异性微卫星标记PSM401、PSMl80、PSMl82,利用F3作图群体,将特异亲和基因S-e座位定位在分子标记PSM401、PSMl80和PSMl82、RMl9之间,该基因与各标记的遗传距离分别为2.3cM、1.3cM、3.7cM和4.3cM。4、选取在S-a、s-b、S-c、S-d、S-e五个座位均纯合、花粉表现为部分不育的F2单株,发展了另一R群体,表明该群体存在另一特异亲和基因座s-f。本研究利用SSR标记,对特异亲和基因S-e进行了分子定位。S-e座位的分子定位,进一步丰富和完善了特异亲和性的学术观点,并为分子标记辅助选育水稻的粳型亲籼系奠定了基础。  相似文献   

7.
从缙恢10/R21的杂种后代中发现了一个抽穗期稳定遗传的迟熟恢复系N91(110~114 d),以早熟不育系金23A(89~94 d)作为杂交和回交亲本,获得的F2和BC1F1群体抽穗期均表现双峰分布,χ2检测表明其抽穗期受一对主基因控制,暂命名为Hd(t)。在400多对SSR引物中筛选出5对在早熟基因池和迟熟基因池中表现差异的引物,进行单株验证,用回交群体进行基因定位,发现位于第7染色体长臂末端的SSR标记RM1364和RM3555与Hd(t)连锁,遗传距离分别为32.7 cM和22.5 cM。在目标区域进一步合成8对SSR引物,将Hd(t)基因定位在RM22143与第7染色体末端之间,与RM22143相距12.9 cM。该结果为Hd(t)基因的精细定位、分子标记辅助育种和基因克隆奠定了基础。  相似文献   

8.
大豆对SMV SC-7株系群的抗性遗传与基因定位   总被引:5,自引:0,他引:5  
科丰1号×南农1138-2的P1、P2、F1和180个重组自交家系接种SC-7株系群的鉴定表明,P1与F1全抗,P2全感,说明抗性为显性;重组自交家系抗、感按1∶1分离,说明抗性由一对基因控制。利用王永军等的遗传连锁图对SC-7株系群的抗性基因进行连锁分析,将抗病基因Rsc-7定位于N8-D1b+W连锁群上,并与已定位的5个抗性基因中的3个连锁,还有一个与之相连锁的标记LC5T,其排列顺序和遗传距离为Rsa (30.6 cM) Rsc-7 (22.1 cM) Rn3 (10.3 cM) Rn1 (15.8 cM) LC5T。  相似文献   

9.
小麦新种质N9628-2抗白粉病基因的SSR分析   总被引:1,自引:0,他引:1  
以抗白粉病的波斯小麦-小伞山羊草双二倍体Am9为母本, 与高感白粉病的普通小麦品种陕160杂交, 并用陕160回交一次, 从其后代中选育的普通小麦种质N9628-2对陕西省关中地区白粉病流行小种关中4号表现免疫。为了明确N9628-2所携带抗性基因的遗传方式及与抗性基因连锁的分子标记, 对该种质的抗白粉病基因进行了遗传分析和SSR标记分析。用高感白粉病品种陕160、陕优225与N9628-2杂交, F1代对白粉病均表现高抗, F2代抗感分离比例均符合3∶1, 表明N9628-2的白粉病抗性由1对显性基因控制。通过208对SSR引物对陕160 ´ N9628-2 F2代抗感分离群体的142个单株的检测, 发现位于6A上的SSR位点Xwmc553和Xwmc684在双亲和抗、感池间有特异性, 并与抗性基因连锁, 遗传距离分别是10.99和7.43 cM, 表明抗病基因可能位于6A染色体上。 用中国春部分第6同源群的缺体-四体系和双端体系进行验证, 进一步将抗性基因定位在6AS。用连锁的SSR标记和相关亲本分析表明, 该抗病基因可能来源于小伞山羊草Y39, 它不同于已有抗白粉病基因, 可能是一个新基因。  相似文献   

10.
水稻显性早熟基因Ehd的SSR标记定位   总被引:1,自引:0,他引:1  
以籼稻品种广陆矮4和粳稻品种台中65为亲本构建高世代回交分离群体,选用分布于水稻全基因组的145个SSR标记对亲本及抽穗期早熟基因进行分析.结果表明,114个标记在亲本间具有多态性,多态率78.6%;在BC3F1群体中,检测到10个标记的基因型来源于供体亲本广陆矮4号;在BC3F2定位群体中,早熟植株数与晚熟植株数的分离比例为3:1,早熟植株平均比晚熟植株提早抽穗21 d;通过SSR标记与抽穗期共分离分析将显性早熟基因Ehd界定在分子标记RM271和RM258之间;Ehd与标记RM184和RM271紧密连锁,遗传距离分别为2.6 cM和2.1 cM,此结果为该基因分子标记辅助选择奠定了基础.  相似文献   

11.
M. C. Zhang    D. M. Wang    Z. Zheng    M. Humphry    C. J. Liu 《Plant Breeding》2008,127(4):429-432
Powdery mildew (PM) can cause significant yield loss in mungbean and several loci conferring resistance to this disease have been identified. A restriction fragment length polymorphism (RFLP) marker (VrCS65) linked closely to one of these loci was used to screen a mungbean bacterial artificial chromosome (BAC) library and positive BAC clones identified were used to develop simple sequence repeat (SSR or microsatellite) and sequence tagged site (STS) markers. Four of the new PCR markers (including two SSRs and two STSs) co-segregated with the original RFLP marker VrCS65, and another SSR marker (VrCS SSR2) was located 0.5 cM away from it. These PCR-based and locus-specific markers could be useful in breeding cultivars with enhanced resistance to PM and in the further characterization of the locus including the isolation of gene(s) responsible for the resistance.  相似文献   

12.
Brown planthopper(BPH) is one of the most serious and destructive insect pests of rice in most rice growing regions of the world. In this study, two major resistance genes against BPH have been identified in an Oryza rufipogon (Griff.) introgression rice line, RBPH54. Inheritance of the BPH resistance in RBPH54 was studied by screening the resistance in parents, F1, F2 and BC1 generations against BPH biotype 2. A population of BC3F2 lines was developed and SSR markers were employed for the gene mapping, and new markers were designed for fine mapping of the resistance genes, while sequence information of BAC/PAC clones was used to construct physical maps of the genes. The results showed that the BPH resistance in RBPH54 was governed by recessive alleles at two loci, tentatively designated as bph20(t) and bph21(t). The locus bph20(t) was fine mapped to the short arm of chromosome 6 about 2.7 cM to the upper marker RM435 and 2.5 cM to lower marker RM540 and in a 2.5 cM region flanked by two new SSR markers BYL7 and BYL8 which were developed in the present study. The other BPH resistance locus bph21(t) was initially mapped to a region 7.9 cM to upper marker RM222 and 4.0 cM to lower marker RM244 on the short arm of chromosome 10. For physical mapping, the bph20(t)-linked markers were landed on BAC/PAC clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. The bph20(t) locus was physically defined to an interval of about 75 kb with clone P0514G1. Identification and location of these two genes in the present study have diversified the BPH resistance gene pool, which give benefit to the development of resistant rice cultivars, and the linkage PCR-based SSR markers for the bph20(t) and bph21(t) genes would help realize the application of the genes in rice breeding through marker-assisted selection.  相似文献   

13.
Simple sequence repeat motifs are abundant in plant genomes and are commonly used molecular markers in plant breeding. In tomato, currently available genetic maps possess a limited number of simple sequence repeat (SSR) markers that are not evenly distributed in the genome. This situation warrants the need for more SSRs in genomic regions lacking adequate markers. The objective of the study was to develop SSR markers pertaining to chromosome 6 from bacterial artificial chromosome (BAC) sequences available at Solanaceae Genomics Network. A total of 54 SSR primer pairs from 17 BAC clones on chromosome 6 were designed and validated. Polymorphism of these loci was evaluated in a panel of 16 genotypes comprising of Solanum lycopersicum and its wild relatives. Genetic diversity analysis based on these markers could distinguish genotypes at species level. Twenty-one SSR markers derived from 13 BAC clones were polymorphic between two closely related tomato accessions, West Virginia 700 and Hawaii 7996 and were mapped using a recombinant inbred line population derived from a cross between these two accessions. The markers were distributed throughout the chromosome spanning a total length of 117.6 cM following the order of the original BAC clones. A major QTL associated with resistance to bacterial wilt was mapped on chromosome 6 at similar location of the reported Bwr-6 locus. These chromosome 6-specific SSR markers developed in this study are useful tools for cultivar identification, genetic diversity analysis and genetic mapping in tomato.  相似文献   

14.
一个新的水稻黄绿叶突变体的遗传分析与基因定位   总被引:5,自引:0,他引:5  
通过化学诱变获得一份稳定遗传的水稻黄绿叶突变体D83。该突变体苗期植株呈黄绿色,分蘖期开始逐渐转为淡绿色。与野生型相比,突变体苗期叶绿素a、叶绿素b和类胡萝卜素含量分别下降45.03%、53.93%和39.56%,成熟期每穗着粒数减少9.45%,千粒重下降10.76%。对D83与正常绿色品种杂交F1、F2代的遗传分析表明,D83的突变性状由一对隐性核基因控制。以D83/浙福802 F2代作定位群体,应用分子标记将D83所携带的突变基因定位于水稻第2染色体短臂的SSR标记RM110附近,InDel标记Ch2-27和Ch2-32之间,该基因与这2个InDel标记的遗传距离分别为1.2 cM和2.3 cM。认为D83所携带的突变基因是一个新的水稻黄绿叶突变基因,暂命名为chl13(t)。  相似文献   

15.
水稻窄叶突变体nal7(t)的遗传分析与基因定位   总被引:1,自引:1,他引:0  
本研究以恢复系缙恢10号为试验材料,经过EMS诱变,对水稻叶突变进行了研究。结果表明,群体中发现一个窄叶突变体,表现为叶片变窄、节间变细、结实率降低等一系列突变表型。成熟期的功能叶片宽度为野生型的74.69%,倒一、二、三节的宽度分别为野生型的45.10%、57.38%、74.63%,总叶脉数为野生型的67.36%。遗传分析表明该突变性状受一对隐性核基因控制,利用SSR标记将其定位在第3染色体长臂RM14379和RM14427之间,遗传距离分别为2.1cM和3.0cM。因与nal7位于相同的染色体区段,暂命名为nal7(t)。  相似文献   

16.
一个水稻落粒性基因SH1的SSR标记定位   总被引:2,自引:0,他引:2       下载免费PDF全文
以籼稻品种93-11为轮回亲本,与粳稻品种日本晴杂交并回交的高世代分离群体为研究材料,选用104个多态性的SSR标记对水稻的落粒性基因进行定位。结果表明,在BC4F2群体中,6个标记的基因型来自于日本晴;在BC4F3定位群体中,难落粒植株数与易落粒植株数的分离比例为3:1,落粒性受1对显性基因控制,命名为SH1;分子标记与落粒性共分离分析将SH1定位在SSR标记RM5389和RM1068、RM1387之间,与3个标记的遗传距离分别为0.7cM、5.5cM和13.1cM,此结果为该基因的分子标记辅助选择奠定了基础。  相似文献   

17.
水稻粤丰B的香味遗传分析与SSR标记定位   总被引:11,自引:2,他引:11  
水稻香味的遗传机制比较复杂,从1930年开始,就对香味的遗传机理进行过大量的研究,但不同的研究者所得出的结果不同。随着现代生物技术的发展,水稻香味基因的分子标记定位方面的研究报道不少,但目前所找到的PCR标记与香味基因间的遗传距离偏大,不利于有效地开展香味性状的分子标记辅助选择。为此,进一步对水稻香味性状的遗传及其基因的精细定位是十分必要的。本研究以爆玉米花香型水稻品系粤丰B和无香味品种320B为材料,研究了水稻粤丰B的香味遗传机制,并利用SSR标记对控制香味性状的基因进行了标记定位。结果表明,水稻香味受一对隐性基因控制,有香为隐性,无香为显性;在纯合基因型中水稻叶片的香味与米粒的香味呈高度的一致性;但在杂合的基因型中,叶片无香的单株,其米粒有不香与有香的分离;并将隐性香味基因(fgr)定位于第8染色体上,位于SSR标记GR01和RM223之间,与两标记间的遗传距离分别为3.3cM和5.7cM。  相似文献   

18.
水稻半矮秆基因iga-1的鉴定及精细定位   总被引:3,自引:0,他引:3  
在前期通过空间诱变获得半矮秆隐性突变基因iga-1的基础上,进一步对iga-1进行鉴定。农艺性状调查表明携带iga-1的矮秆株系CHA-2、CHA-2N与原种特籼占13相比存在明显变异。节间长度测量显示CHA-2、CHA-2N节间比例正常,属dn型。外源GA3处理、内源GA3测定和α-淀粉酶活性检测揭示iga-1与GA3调控无关。利用CHA-2与粳稻品种02428杂交获得的F2群体将iga-1定位在水稻第5染色体两个InDel标记DL18和DL19间32.01 kb的物理距离内。该区域有5个阅读框架,其中包括赤霉素信号传导调控基因D1。序列分析表明CHA-2、CHA-2N和特籼占13在D1位点上基因组序列不存在差异,推测D1并非iga-1的候选基因。比较水稻第5染色体上其他矮秆基因发现iga-1可能与半矮秆基因sd-7来自同一位点。  相似文献   

19.
J. S. Niu    B. Q. Wang    Y. H. Wang    A. Z. Cao    Z. J. Qi    T. M. Shen 《Plant Breeding》2008,127(4):346-349
Wheat lines known as 'Lankao 90(6)', derived from the cross 'Mzalenod Beer' (hexaploid triticale)/'Baofeng 7228'//'90 Xuanxi', carry a recessive powdery mildew resistance gene temporarily named PmLK906 . Gene PmLK906 appears to be different from known wheat powdery mildew resistance genes. PmLK906 was tagged using microsatellite markers in a segregating population derived from the cross 'Chinese Spring'/'Lankao 90(6)21-12'. The dominant microsatellite marker Xgwm265-2AL was linked in repulsion with PmLK906 at a genetic distance of 3.72 cM, whereas the co-dominant Xgdm93-2AL was linked to PmLK906 at a genetic distance of 6.15 cM. Both markers were placed on chromosome arm 2AL using 'Chinese Spring' nulli-tetrasomic lines. The recessive PmLK906 has a different specificity to the dominant resistance alleles located at the Pm4 locus and appeared to be located to a locus different from Pm4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号