首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
细极链格孢菌蛋白激发子对棉花生长相关酶活性的影响   总被引:1,自引:0,他引:1  
细极链格孢菌蛋白激发子是一种能诱导植物获得系统抗病性的新型蛋白激发子。在湘杂棉3号的主要生育期,用细极链格孢菌蛋白激发子(PEAT)蛋白粗提液进行叶面喷施后,对棉花叶片中酶保护系统的变化进行了研究。结果表明,经细极链格孢菌蛋白激发子诱导后,棉花叶片POD、SOD、NR的活性与C/N比对照显著增加,而MDA含量比对照显著减少。这可能是PEAT影响棉花细胞内微环境的氧化、还原状态激发植株体内酶保护系统,激活植物自身防卫系统与生长系统,从而使棉花产生对病虫害的抗性,促进了植株生长。  相似文献   

2.
种植密度对棉花主要群体质量指标的影响   总被引:8,自引:1,他引:7  
 以转基因抗虫棉农大棉8号为试验材料,设置6个密度水平,研究密度对棉花群体干物质量、LAI、叶层配置及透光率、总铃数等主要群体质量指标的影响。结果表明,最终干物质量以8.7万株·hm-2最大,达11735 kg·hm-2;高密度群体最大LAI出现时间比低密度群体早13天左右,但群体透光率以低密度群体较高;结铃率随密度的增加而降低,以1.5万株·hm-2最大,达43.5%;群体果节量和总铃数分别以10.5万株·hm-2和6.9万株·hm-2的群体最多,分别为323.05万个·hm-2和74.06万个·hm-2;子棉产量以6.9万株·hm-2最高,为3810.33 kg·hm-2。只有各群体指标均相对较优才能构成高产群体。  相似文献   

3.
氮素对花铃期短期渍水棉花根系生长的影响   总被引:4,自引:0,他引:4  
于2005—2006年在江苏南京农业大学卫岗试验站进行盆栽试验,设置正常灌水(土壤含水量为田间持水量的75%左右)和棉花花铃期土壤短期渍水处理(将正常灌水的棉花增加灌水至盆内有可见明水,持续8 d,然后用导管排除表面水层,使盆内土壤含水量逐渐恢复到田间持水量的75%左右),每个水分处理设置3个氮素水平(0、3.73、7.46 g N pot-1,分别相当于大田0、240、480 kg N hm-2),研究氮素对花铃期短期渍水棉花根系生长的影响。结果表明,在渍水处理结束时,与正常灌水处理相比,根干重和根冠比(R∶S)均降低;根系可溶性蛋白含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性降低,过氧化物酶(POD)活性升高,丙二醛(MDA)含量升高;棉花根系活力和单株光合速率(CAP)显著降低。增加施氮可降低渍水棉花根系SOD活性,提高POD和CAT活性,以3.73 g N pot-1(240 kg N hm-2)施氮水平下的棉花根干物重最大,根系MDA含量最低,根系活力最强,单株光合速率(CAP)最高,相应籽棉产量最高。渍水停止15 d后,渍水棉花根系抗氧化酶活性和MDA含量与正常灌水处理的差异较小;施氮仍可提高棉花根系POD与CAT活性,降低MDA含量,增强根系活力,提高CAP。  相似文献   

4.
南疆高产杂交棉生长性状及氮磷钾吸收模拟[   总被引:6,自引:1,他引:5  
 依系统研究法研究高中低三种产量水平杂交棉生长和氮磷钾吸收。结果表明,高产棉的株高与中低产棉差别不大,但主茎增长比中低产棉提前结束,高产棉总铃数明显高于中低产棉,特别在铃位空间分布上更合理;高产棉花的氮磷钾吸收可用Logistic曲线方程表达,拟合良好,快增期、持续时间与中低产棉相比有明显差异,高产棉吸收的N、P2O5、K2O总量为515.3、126.4和591.9 kg·hm-2,大于中低产棉吸收总量;高产棉较中低产棉生长协调性更好,吸收养分总量多。说明南疆棉区在目前生产条件下,应用合理的管理技术措施,能够更有效协调棉花生长和养分分配,实现棉花大面积高产。  相似文献   

5.
氮钾配合施用对短季棉光合特性和产量品质的影响   总被引:10,自引:3,他引:7  
 大田条件下,采用施尿素225 kg·hm-2、300 kg·hm-2两个水平和施氯化钾0 kg·hm-2、120 kg·hm-2、195 kg·hm-2三个水平,研究了不同组合对短季棉光合特性和产量品质的影响。结果表明,在相同施钾水平下,高氮比低氮的叶片光合能力和产量略有提高,高氮比低氮的增产效应随钾量的增加而增加,氮肥的肥效随钾肥的增加而明显提高;在相同施氮水平下,2个施钾的比不施钾的光合能力、产量和纤维品质均显著提高;不同施钾处理间子棉产量差异极显著;本试验条件下,以尿素300 kg·hm-2、氯化钾195 kg·hm-2组合产量最高。在充足的氮肥条件下,保证适量钾肥的供应,维持氮钾平衡对提高短季棉的氮肥利用效率、产量和纤维品质极为重要。  相似文献   

6.
施氮量对不同熟期棉花品种的生物量和氮素累积的影响   总被引:8,自引:1,他引:7  
 以辽棉19号(生育期125 d)和美棉33B(生育期135 d)2个生育期差异较大的品种为材料,于2007-2008年在东北特早熟棉区(辽宁辽阳,41°26' N,123°14' E)设置棉花不同施氮量(即施氮 0,240,480 kg·hm-2) 试验,研究施氮量对东北特早熟棉区棉花生物量、氮素累积特征及氮素累积利用率动态变化的影响。结果表明:棉花生物量和氮素累积量随着棉花生育进程的动态变化符合S型曲线,氮素的快速累积起始日较棉花生物量早10~12 d;辽棉19号和美棉33B均在施氮240 kg·hm-2条件下棉花生物量和氮素累积速率峰值出现时间最早,累积速率最高,其生物量、氮素累积量和皮棉产量最高,同时氮素利用效率较高。施氮480 kg·hm-2不仅降低棉花生物量和氮素累积速率及累积量,而且降低了生殖器官分配系数,导致产量较低。  相似文献   

7.
于2005—2006年在江苏南京农业大学卫岗试验站进行盆栽试验,设置正常灌水(土壤含水量为田间持水量的75%左右)和棉花花铃期土壤短期渍水处理(将正常灌水的棉花增加灌水至盆内有可见明水,持续8 d,然后用导管排除表面水层,使盆内土壤含水量逐渐恢复到田间持水量的75%左右),每个水分处理设置3个氮素水平(0、3.73、7.46 g N pot-1,分别相当于大田0、240、480 kg N hm-2),研究氮素对花铃期短期渍水棉花根系生长的影响。结果表明,在渍水处理结束时,与正常灌水处理相比,根干重和根冠比(R∶S)均降低;根系可溶性蛋白含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性降低,过氧化物酶(POD)活性升高,丙二醛(MDA)含量升高;棉花根系活力和单株光合速率(CAP)显著降低。增加施氮可降低渍水棉花根系SOD活性,提高POD和CAT活性,以3.73 g N pot-1(240 kg N hm-2)施氮水平下的棉花根干物重最大,根系MDA含量最低,根系活力最强,单株光合速率(CAP)最高,相应籽棉产量最高。渍水停止15 d后,渍水棉花根系抗氧化酶活性和MDA含量与正常灌水处理的差异较小;施氮仍可提高棉花根系POD与CAT活性,降低MDA含量,增强根系活力,提高CAP。  相似文献   

8.
施氮量和滴灌施肥频率对杂交棉氮素吸收和产量的影响   总被引:11,自引:2,他引:9  
 在滴灌条件下进行了不同氮肥用量和滴灌施肥频率对杂交棉氮素吸收和产量影响的大田试验研究,试验中设置3个施氮(N)(270、360和450 kg·hm-2)水平和2种滴灌施肥频率(5和10 d)。研究结果表明,不同氮肥用量和施肥频率显著影响杂交棉的干物质重、氮素积累量和子棉产量。在中氮(360 kg·hm-2)和低氮(270 kg·hm-2)水平下,增加滴灌施肥频率可显著促进杂交棉生长,增加干物质和氮素积累量;但是氮肥用量较大(450 kg·hm-2)时,滴灌施肥频率对棉花的生长影响不大。因此,在杂交棉的水肥关键时期,适当地提高滴灌施肥频率可以提高棉花产量。  相似文献   

9.
 研究了钾营养对高品质棉杂交种科棉3号和常规种科棉4号不同部位纤维成熟度的影响。结果表明,施钾肥并通过合理的运筹能有效地促进高品质棉株中、上部纤维成熟度提高、特别是棉株上部纤维成熟度的提高,从而使得棉株上部与中部纤维成熟度的差距缩小,有利于提高整株纤维成熟度。本试验条件下,氯化钾施用量在225 kg·hm-2时,最有利于纤维成熟度的增长,高品质棉杂交种科棉3号钾肥运筹以基肥和花铃肥的比例为5:5,常规种科棉4号基肥和花铃肥的比例为7[JX-*5]:[JX*5]3时更有利于提高棉株中、上部的纤维成熟度,而且上部与中部的成熟度差异最小。  相似文献   

10.
 选用辽棉19号(生育期125 d)和新棉33B(生育期135 d)为材料,于2009年在东北特早熟棉区(辽宁辽阳,41°26'N,123°14'E)设置棉花种植密度(7.50万,9.75万,12.00万株·hm-2)和施氮量(0,120,240,360,480 kg·hm-2)试验,研究不同种植密度下棉花氮临界浓度的变化并建立东北特早熟棉区不同群体棉花氮临界浓度稀释模型。结果表明:不同种植密度下棉花氮临界浓度与地上部最大生物量间均符合幂函数关系(N=aW-b),模型参数 a ,b 值在不同种植密度下存在差异。同一品种生产相同生物量的需氮量随种植密度的增加而增大,而同一密度下生产相同的生物量新棉33B的氮素吸收量高于辽棉19号。基于氮临界浓度稀释条件下的异速生长参数,氮素营养指数以及动态氮素临界累积量等指标得到的东北特早熟棉区不同群体适宜施氮量的结果一致,表明9.75万株·hm-2密度下240 kg·hm-2施氮量为东北特早熟棉区最佳种植密度和施氮量。  相似文献   

11.
氮素水平对杂交棉氮素吸收、生物量积累及产量的影响   总被引:5,自引:0,他引:5  
在滴灌条件下,采用单因素随机区组设计,研究了不同氮素水平(0、135、270、405、540 kg·hm-2)对杂交棉生物量、氮素吸收及产量的影响。结果表明:杂交棉生物量、吸氮量和产量随氮素水平的增加而增加,至施氮量为405 kg·hm-2时达最高值,分别较不施氮水平提高了49.93%,75.43%和82.24%;氮素水平对杂交棉蕾、花、铃生物量积累和氮素吸收的影响大于茎和叶;氮素的增加还显著提高了杂交棉的生物量积累速率、氮素吸收速率以及单株铃数和铃重。本试验中270 kg·hm-2的施氮量可初步满足杂交棉获得高产的需要,施氮量过大不利于产量的提高。本研究条件下杂交棉获得最高产量的氮肥适宜用量为386.5~388.4 kg·hm-2。  相似文献   

12.
化学打顶对棉花群体容量的拓展效应   总被引:13,自引:3,他引:10  
以常规人工打顶为对照,在大田条件下设置不同种植密度(18万、22.5万和27万株·hm-2),研究化学打顶对棉株形态、群体器官数量和经济产量等的影响.结果表明,化学打顶棉花株高显著高于人工打顶,平均高出17%,中上部果枝显著变短,尤其是上部果枝平均比人工打顶短75%.冠层中部透光率平均提高约13%.在相同密度条件下,化...  相似文献   

13.
灌溉方式和施氮量对棉花生长及氮素利用效率的影响   总被引:14,自引:2,他引:12  
 设置2年田间小区试验,探讨了不同灌溉方式及施氮量对棉花生物量、氮素吸收量、皮棉产量及氮素效率的影响。结果表明,与漫灌相比滴灌显著增加了棉花生物量、氮素吸收量、皮棉产量以及氮肥利用率;滴灌棉花地上部各器官干物质积累量和氮素吸收量显著大于漫灌,而地下部干物质积累量和氮素吸收量显著低于漫灌,滴灌条件下较好的水分条件抑制了棉花根系生长而促进地上部生长。施用氮肥显著提高了棉花生物量、氮素吸收量。皮棉产量在施氮量为360 kg·hm-2时最大,过高氮肥投入无助于棉花产量提高。随着施氮量的增加,氮肥利用率、农学利用率、偏生产力均显著降低。灌溉方式与施氮量互作效应对棉花单株铃数及皮棉产量产生显著影响。  相似文献   

14.
北疆灌耕灰漠土施钾对棉花钾素营养生理和产量的影响   总被引:3,自引:0,他引:3  
 选择新疆北疆棉区具有代表性的灌耕灰漠土,采用透射电镜显微技术和常规分析方法,对棉花的钾素营养和钾肥肥效进行了研究。结果表明,施钾可提高棉花冠层功能叶的气孔导度,改善棉花生长中后期功能叶的叶绿体超微结构,使基粒片层数量多且排列整齐致密,而不施钾会导致棉花功能叶片叶绿体过早解体。施钾显著提高了棉花的含钾量,叶和铃壳中钾含量比对照分别增加了13.3%和6.3%。施钾可使果枝数增加11.8%,显著提高皮棉产量,但对纤维品质无明显作用。  相似文献   

15.
以抗草甘膦棉花种质系ZD-90和转Bt基因抗虫棉品种s GK3为材料,以陆地棉标准系TM-1为对照,研究了镉(Cd)胁迫下棉花生育期内的植株生长、产量、农艺性状、纤维品质和抗氧化酶系统活性。结果表明,低浓度Cd对棉花植株的生长发育有一定的促进作用;高浓度Cd对植株的生产发育有显著的抑制作用,植株生长量、子棉产量和皮棉产量显著降低。Cd胁迫对棉花单株铃数、铃重和单铃种子数的影响较大,而对衣分无显著影响。不同浓度Cd处理间的棉花纤维品质性状无显著差异。棉花植株体内的抗氧化化物酶(POD、SOD和CAT)活性在棉花生长发育的初期或低浓度胁迫条件下迅速升高,但随着Cd浓度的增大和胁迫时间的延长,酶活性受到抑制。植株体内累积的MDA含量则随着Cd处理浓度的增加和胁迫时间的延长呈逐渐升高趋势。3个品种比较,TM-1对Cd较敏感,ZD-90次之,s GK3受Cd胁迫的为害相对较轻,是一个较耐Cd的棉花品种。  相似文献   

16.
陆地棉棉铃对位叶碳氮变化特征与其生物量关系的研究   总被引:1,自引:1,他引:0  
在大田栽培条件下,选用科棉1号和美棉33B两个棉花品种,于江苏南京、徐州进行施氮量(0、240、480kg.hm-2)试验,研究棉铃对位叶碳氮变化特征与棉铃(棉子、纤维)生物量的关系。结果表明:棉铃对位叶全碳、全氮含量变化可用函数Y=at2+bt+c〔Y(%):全碳或全氮含量,t(d):铃龄,a、b、c:参数〕拟合,碳氮比变化可用Logistic方程拟合。进一步分析棉铃对位叶碳氮变化的特征值发现:(1)棉铃对位叶全碳含量达到最小值的时间早、最小含量值高,则可提高棉铃、棉子、纤维生物量快速累积持续期间的平均速率,但缩短了棉铃和纤维生物量快速累积持续期,延长了棉子生物量快速累积持续期。(2)棉铃对位叶全氮含量达到最小值的时间晚,则可延长棉铃和纤维生物量快速累积持续期;全氮最小含量值高,则可延长棉子生物量快速累积持续期。(3)棉铃对位叶碳氮比快速增长持续期长、快速增长平均速率小,则可延长棉铃及纤维生物量快速累积持续期。可见,棉铃对位叶碳氮变化特征与棉铃生物量的关系密切,可通过调控棉铃对位叶碳氮含量及其比值促进棉铃发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号