首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Soil-borne mosaic inducing viruses, i.e., barley mild mosaic virus (BaMMV), barley yellow mosaic virus (BaYMV), and BaYMV-2, cause one of the most important diseases of winter barley in Western Europe. Since resistance of all commercial European barley cultivars is due to a single recessive gene (ym4) which is not effective against BaYMV-2, exotic barley germplasms (Hordeum vulgare L., H. spontaneum Koch) were screened for resistance to the different viruses and analyzed for genetic diversity concerning BaMMV resistance. In these studies it turned out that resistance to BaMMV is entirely inherited recessively and that a high degree of genetic diversity concerning resistance is present within the barley gene pool at least to BaMMV. Therefore, exotic barley germplasms are a very useful source for the incorporation of different resistance genes into barley breeding lines, thereby enabling the breeder to create cultivars adapted to cultivation in the growing area of fields infested by soil-borne viruses. Furthermore, in order to obtain more information on these germplasms they were evaluated for agronomic traits and isozyme, RFLP and RAPD analyses were carried out on these varieties to detect markers linked to the respective resistance genes and to obtain information on the genetic similarity between yellow mosaic resistant barley accessions derived from different parts of the world. Actual results of these studies are briefly reviewed.  相似文献   

2.
K. Werner    B. Pellio    F. Ordon  W. Friedt 《Plant Breeding》2000,119(6):517-519
Based on the RAPD marker OP‐C04H910 which is closely linked to the barley mild mosaic virus (BaMMV) resistance gene rym9 derived from the variety ‘Bulgarian 347’ the marker STS‐C04H910 cosegregating with OP‐C04H910 and generating a single additional band on plants carrying the recessive resistance encoding allele has been developed. Furthermore, the simple sequence repeats (SSRs) WMS6 and HVM67 have been integrated into the genetic map of the rym9 region on chromosome 4HL. Because of their close linkage to rym9 and distinct banding pattern STS‐C04H910 and HVM67 are well‐suited for marker‐ assisted selection, enhanced backcrossing procedures and pyramiding of resistance genes.  相似文献   

3.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

4.
S. Tuvesson    L. V Post    R. Öhlund    P. Hagberg    A. Graner    S. Svitashev    M. Schehr  R. Elovsson 《Plant Breeding》1998,117(1):19-22
The aim of this investigation was to develop a procedure for the largescale molecular breeding for ym4, allowing resistance to BaMMV/BaYMV to be fixed in early breeding generations of winter barley. A codominant STS marker derived from the restriction fragment length polymorphism marker MWG838 for the ym4 resistance gene was combined with a new and easy procedure for preparing leaf samples for polymerase chain reaction (PCR), theoretically allowing one person to extract DNA from 5000 samples in a single day. In the procedure for molecular breeding for ym4, all steps, including leaf sampling, DNA extraction, PCR amplification and digestion with restriction enzyme were assembled in microtitre plates allowing multipipetting throughout the procedure, including the loading of gels. The method is amenable to further automation with the aid of a robot arm. Double haploid (DH) lines, as well as F2 and F4 breeding lines were analysed and, based on markers, homozygous and heterozygous BaMMV/BaYMV resistant plants were identified for further breeding. The winter barley breeding programmes were modified to include marker-based selection for BaMMV/BaYMV resistance on DH or on F2 individuals, which had been preselected for mildew and leaf rust resistance.  相似文献   

5.
J. Weyen    E. Bauer    A. Graner    W. Friedt  F. Ordon 《Plant Breeding》1996,115(4):285-287
Experiments were carried out in order to identify RAPD-markers for the BaMMV/BaYMV resistance gene ym4 to facilitate efficient marker-based selection in practical breeding programmes. Linkage analysis was carried out with 283 doubled haploid (DH) barley lines out of a cross between the BaMMV/BaYMV susceptible cv. ‘Igri’ and the resistant cv. ‘Franka’. Using bulked segregant analysis, 310 RAPD-primers were screened for polymorphism between the parents. Four of these primers gave rise to specific bands linked to the resistance gene ym4.  相似文献   

6.
Summary To assess the possibilities offered by isozymes to locate resistance genes against barley mild mosaic virus (BaMMV), the isozyme patterns of 19 barley (Hordeum vulgare L.) genotypes carrying genes different from ym4 were determined. Of the 15 isozyme systems tested, only three were polymorphic, namely aconitate hydratase, esterase, phosphogluconate dehydrogenase, providing markers on four of the seven barley chromosomes. Studies of F2 progenies derived from three crosses between resistant genotypes and susceptible varieties failed to reveal linkage between resistance genes and isozymes. Another goal of the experiment was to study the linkage relationships between ym4 and the esterase locus (Est1-Est2-Est4). Our estimates of the recombination rate between these two loci (3.41 and 8.32%) were in the range of those reported between these esterases and one of the resistance genes of the Chinese variety Mokusekko 3.  相似文献   

7.
We report on the identification of phenotypic and molecular markers for genes introgressed into oilseed pumpkin Cucurbita pepo from C. moschata germplasm originating in Nigeria, Portugal and Puerto Rico, which provide resistance against zucchini yellow mosaic virus (ZYMV) and on pyramiding these genes for improved and long‐lasting field protection of oilseed pumpkins. One SCAR and two SSR markers have been found for three dominant resistance genes, Zym‐0, Zym‐1 and Zym‐2. Characteristic reactions to ZYMV inoculation of plants carrying the recessive genes for resistance zym‐4* and zym‐6 have been defined. Described are procedures and results of pyramiding various combinations of these genes in oilseed pumpkin using the three markers and the specific phenotypic reactions to infection of some of these genes. The putative combination of all six resistance genes in one genotype resulted in a resistance that appeared to be at least as strong as or even stronger than that of the resistance source germplasm in C. moschata.  相似文献   

8.
Summary Doubled haploids (DH) of Coffea canephora Pierre were developed using haploid embryos which occur spontaneously in association with polyembryony. The frequencies of polyembryonic seeds and haploid embryos varied according to the parental genotypes. However, production of a large number of DH seemed possible from all genotypes. More than 750 DHs produced from various genotypes were grown under field conditions and evaluated for different characters of agronomic importance. Approximately half of DH genotypes did not survive, suggesting a strong, negative effect of homozygosity. Inbreeding depression is particularly severe on general vigor and reproductive aspects. For several characters studied such as leaf shape, leaf rust resistance and hundred bean weight, considerable genetic variations were observed within and between groups of DHs constituted by the DHs produced from the same clone. Despite their low vigor and reduced fertility, the DHs of C. canephora offer new possibilities in genetic research and coffee breeding.  相似文献   

9.
Summary Gene pyramiding in Phaseolus vulgaris is being utilized to develop more effective resistance to the temperature-insensitive-necrosis-inducing (TINI) strains of Bean Common Mosaic Virus (BCMV) present in the USA. Our data indicate that contrary to previous work, the bc-3 gene is effective against these strains in the absence of the strain unspecific bc-u gene in genotypes possessing the I gene. The epistatic bc-3 gene interferes with traditional efforts to pyramid the other recessive resistance genes by masking their activity. Indirect selection based on markers linked to the other recessive resistance genes would likewise be ineffective without the ability to also select for the bc-u gene which is required for expression of the bc-2 2 gene in germplasm carrying the I gene. Because the most resistant genotype (I, bc-u, bc-I 2, bc-22, bc-3) can only be introduced into a wide range of germplasm through the use of molecular markers linked to the different resistance genes, the search for a marker linked to the strain unspecific bc-u gene should also be given priority.  相似文献   

10.
Summary During the last decades extensive progress has been achieved in winter barley breeding with respect to both, yield and resistance to fungal and viral diseases. This progress is mainly due to the efficient use of the genetic diversity present within high yielding adapted cultivars and – with respect to resistance – to the extensive evaluation of genetic resources followed by genetic analyses and introgression of respective genes by sexual recombination. Detailed knowledge on genetic diversity present on the molecular level regarding specific traits as well as on the whole genome level may enhance barley breeding today by facilitating efficient selection of parental lines and marker assisted selection procedures. In the present paper the state of the art with respect to virus diseases, i.e. Barley mild mosaic virus, Barley yellow mosaic virus, and Barley yellow dwarf virus is briefly reviewed and first results on a project aiming on a genome wide estimation of genetic diversity which in combination with data on yield and additional agronomic traits may facilitate the detection of marker trait associations and a more efficient selection of parental genotypes are presented. By field tests of 49 two-rowed and 64 six-rowed winter barley cultivars the genetic gain in yield for the period 1970–2003 was estimated at 54.6 kg ha−1 year−1 (r2 = 0.567) for the six-rowed cultivars and at 37.5 kg ha−1 year−1 (r2 = 0.621) for the two-rowed cultivars. Analysis of 30 SSRs revealed a non-homogenous allele distribution between two and six-rowed cultivars and changes of allele frequencies in relation to the time of release. By PCoA a separation between two and six-rowed cultivars was observed but no clear cut differentiation in relation to the time of release. In the two-rowed cultivars an increase in genetic diversity (DI) from older to newly released cultivars was detected.  相似文献   

11.
A synthetic winter rye population was produced with two race-specific powdery mildew resistance genes, one dominant (Rm1) and the other (rm2) recessive, each at a frequency of about 0.50. The population was advanced by open-pollination in an isolated plot under mildew-free conditions for eight years. Samples of generations Syn-0 through Syn-7 were inoculated in the laboratory with two mildew isolates, one avirulent to either resistance gene, the other virulent to Rm1 and avirulent to rm2, to discriminate resistant and susceptible phenotypes. From the proportions of resistant plants, frequencies of Rm1 and rm2 were calculated and the fitness of carriers of resistance alleles was estimated in relation to carriers of susceptibility alleles at the two loci using continuous models and linear regression analyses. Frequencies of the two resistance genes oscillated only weakly over the eight generations. Coefficients of selection against Rm1-and rm2rm2 genotypes were –0.04 and –0.02, respectively, and not significantly different from zero. Thus the two resistance genes were selectively neutral. It is concluded that pyramiding of major powdery mildew resistance genes in rye varieties should not reduce their yield potential in the absence of mildew.  相似文献   

12.
Xu Jie  J. W. Snape 《Euphytica》1989,41(3):273-276
Summary Two tetraploid and two diploid clones of Hordeum bulbosum were screened for resistance to five isolates of powdery mildew which are virulent on cultivated barley. All were resistant and this resistance was also expressed in hybrids with H. vulgare. The tetraploid genotypes were also resistant to isolates of yellow rust and brown rust. These results show that H. bulbosum contains useful genes for resistance to these diseases and that there is a potential to transfer these into cultivated barley.  相似文献   

13.
K. Matsui    M. Yoshida    T. Ban    T. Komatsuda  N. Kawada 《Plant Breeding》2002,121(3):237-240
Two types of male‐sterile cytoplasm, designated msm1 and msm2, in barley were investigated to determine whether these cytoplasms confer resistance to barley yellow mosaic virus (Ba YMV) and Fusarium head blight (FHB). Alloplasmic lines and isogenic lines of two cultivars showed the same reaction to each Ba YMV as that of their euplasmic lines. This demonstrates that the barley male‐sterile cytoplasms msm1 and msm2 have no effect on resistance to BaYMV. No significant difference in reactions to FHB was recognized among fertile alloplasmic lines of ‘Adorra’, but the difference in reactions to FHB between fertile and sterile isogenic lines of ‘Adorra’ was significant. The damage caused by FHB in the male‐sterile lines that produced sterile pollen was significantly greater than the damage in a sterile line that did not produce pollen. These results suggest that pollen or anthers are important factors in infection with or spread of FHB. For production of hybrid seeds, male‐sterile lines with no pollen production, such as those with msm1 male‐sterile cytoplasm, would reduce FHB infestation.  相似文献   

14.
Summary Hexaploid and octoploid tritordeums and their parents Hordeum chilense and Triticum spp. were screened for resistance to isolates of wheat and barley yellow and brown rusts. All H. chilense lines were highly resistant to both wheat and barley brown rust, few lines were susceptible to wheat yellow rust while susceptibility to barley yellow rust was common. In general the resistance of tritordeum is predominantly contributed by the wheat parent and apparently the genes for resistance in H. chilense are inhibited in their expression by the presence of the wheat genome.Abbreviations WYR wheat yellow rust - WBR wheat brown rust - BYR barley yellow rust - BBR barley brown rust  相似文献   

15.
Summary Breeding for resistance to biotic and abiotic stresses of global importance in common bean is reviewed with emphasis on development and application of marker-assisted selection (MAS). The implementation and adoption of MAS in breeding for disease resistance is advanced compared to the implementation of MAS for insect and abiotic stress resistance. Highlighted examples of breeding in common bean using molecular markers reveal the role and success of MAS in gene pyramiding, rapidly deploying resistance genes via marker-assisted backcrossing, enabling simpler detection and selection of resistance genes in absence of the pathogen, and contributing to simplified breeding of complex traits by detection and indirect selection of quantitative trait loci (QTL) with major effects. The current status of MAS in breeding for resistance to angular leaf spot, anthracnose, Bean common mosaic and Bean common mosaic necrosis viruses, Beet curly top virus, Bean golden yellow mosaic virus, common bacterial blight, halo bacterial blight, rust, root rots, and white mold is reviewed in detail. Cumulative mapping of disease resistance traits has revealed new resistance gene clusters while adding to others, and reinforces the co-location of QTL conditioning resistance with specific resistance genes and defense-related genes. Breeding for resistance to insect pests is updated for bean pod weevil (Apion), bruchid seed weevils, leafhopper, thrips, bean fly, and whitefly, including the use of arcelin proteins as selectable markers for resistance to bruchid seed weevils. Breeding for resistance to abiotic stresses concentrates on drought, low soil phosphorus, and improved symbiotic nitrogen fixation. The combination of root growth and morphology traits, phosphorus uptake mechanisms, root acid exudation, and other traits in alleviating phosphorus deficiency, and identification of numerous QTL of relatively minor effect associated with each trait, reveals the complexity to be addressed in breeding for abiotic stress resistance in common bean.  相似文献   

16.
Quantitative trait loci (QTLs) for resistance against non-parasitic leaf spots (NPLS) were first characterized in a spring barley double haploid population derived from the cross IPZ 24727/Barke (Behn et al., 2004). The aim of the present study was to identify QTLs for NPLS resistance in the half-sibling DH population IPZ 24727/Krona and to compare them with the QTLs of the population IPZ 24727/Barke. An anther culture-derived doubled haploid population of 536 DH lines was developed from the cross IPZ 24727 (resistant)/Krona (susceptible). Field trials were performed over two years in two replications, scoring NPLS and agronomic traits that might interact with NPLS. A molecular linkage map of 1035 cM was constructed based on AFLPs, SSRs and the mlo marker. QTL analyses for NPLS identified three QTLs that accounted for 30% of the phenotypic variation. For comparison of the QTLs from each DH population, a consensus map was generated comprising 277 markers with a length of 1199 cM. In both populations, the QTLs for NPLS mapped to chromosomes 1H, 4H and 7H. A common QTL with a great effect in both populations and over all environments was localized at the mlo locus on chromosome 4H, indicating that the mlo powdery mildew resistance locus has a considerable effect on NPLS susceptibility. The steps necessary to validate the QTLs and to improve the NPLS resistance by breeding were discussed.  相似文献   

17.
Summary Genetic analysis of resistance to PVY in androgenetic doubled haploid lines, F1, F2 and backcross progenies of the Mexican pepper line, CM 334 (Capsicum annuum L.), was performed. Three reaction types were observed when seedlings were inoculated with several PVY strains of different pathotypes and with an American PeMV strain. Resistant genotypes never showed systemic symptoms although some individuals sporadically developed necrotic local lesions on inoculated cotyledons. Susceptible genotypes exhibited either a typical systemic mosaic or a systemic necrosis that caused the death of the inoculated seedlings. Segregation analyses indicated that resistance to pepper potyviruses in CM 334 is conferred by two genes. The first one, tentatively named Pr4, is dominant and confers the resistance to all now known pathotypes of PVY and to PeMV. The second one, tentatively named pr5, is recessive; it confers only the resistance to common strains of PVY. The systemic necrotic response is conferred by an independent dominant gene, tentatively named Pn1.  相似文献   

18.
Cucurbita moschata cv. Nigerian Local has been used as a source of resistance to Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Papaya ringspot virus W (PRSV-W) and Cucumber mosaic virus (CMV) in breeding both Cucurbita moschata and Cucurbita pepo. We used the F1, F2 and BC1 generations derived from the cross C.-moschata cv. Waltham Butternut × Nigerian Local to study the inheritance of resistance to each of the viruses. We confirmed monogenic dominant resistance to ZYMV previously attributed to Zym, and we report monogenic dominant resistance to WMV and CMV which we propose to designate Wmv and Cmv, respectively. A single recessive gene, which we propose to designate prv, controls resistance to PRSV. DNA samples were extracted from a Waltham Butternut BC1 F1 population screened with ZYMV and analyzed using randomly amplified polymorphic DNA markers. No RAPD markers linked to ZYMV resistance were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The majority of verified plant disease resistance genes isolated to date belong to the NBS‐LRR class, encoding proteins with a predicted nucleotide binding site (NBS) and a leucine‐rich repeat (LRR) region. Using degenerate primers, designed from the conserved motifs of the NBS region in tobacco N and Arabidopsis RPS2 genes, we isolated 190 resistance gene analogs (RGA) clones from barley genomic DNA. A total of 13 single‐ and low‐copy RGAs were genetically mapped onto chromosomes 1H–7H (except 5H) using three barley double haploid (DH) mapping populations: Steptoe × Morex, Harrington × TR306 and LUGC × Bowman. Sequence analysis of the RGAs showed that they are members of a diverse group. As a result of BLAST searches, one RGA proved unique as it did not detect any significant hit. Another RGA is putatively functional, because it detected several barley expressed sequence tag (EST) matches. To physically map the RGAs, 13 sequences were used to screen a 6.3 × cv. ‘Morex’ bacterial artificial chromosome (BAC) library. After fingerprint analysis, eight contigs were constructed incorporating 62 BAC clones. These BAC contigs are of great value for positional cloning of disease resistance genes, because they span the regions where various barley R genes have been genetically mapped.  相似文献   

20.
Summary The extreme resistance to ryegrass mosaic virus (RMV) of a clone of Lolium perenne L. was due to a combination of two distinct types of resistance: resistance to infection and resistance to multiplication and movement of virus within the plant. Resistance to infection was quantitatively inherited and highly effective against three strains of RMV, while resistance to multiplication and movement was controlled by two complementary recessive genes and was effective against only two of the three RMV strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号