首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
为探讨共生期和密度对棉田套播油菜生长和产量的影响, 设置3个共生期: 棉油共生10 d (T10)、20 d (T20)和30 d (T30)及4个种植密度 30 (D1)、45 (D2)、60 (D3)和75万株 hm–2 (D4)裂区试验。结果表明: (1)同一密度下, 延长共生期, 越冬期、蕾薹期和花期绿叶数、叶面积指数均增加, 促进了根系及地上部干物质累积, 根冠比、株高、根茎粗增加, 茎秆酸不溶木质素和总木质素含量下降, 可溶性糖、半纤维素和纤维素含量升高。油菜根倒角度虽增加, 但茎倒角度、总倒伏角度减小, 油菜单株和群体产量均增加, 以T30D2群体产量最高。(2)密度对油菜生长和产量的影响因共生期不同存在差异。相同共生期处理下, 随密度增加, 单株绿叶数减少, 根系干物质、地上部干物质累积量降低, 单株产量降低。T30条件下, 叶面积指数(LAI)随密度增加呈先增后减的趋势, 在D3密度时, LAI最大; 在T20、T10条件下, LAI则随密度增加而增加。群体产量与LAI变化趋势一致。在T30、T20处理下, 茎倒角度随密度增加呈先降后增趋势, 在T10处理下, 则逐渐增加, 与茎秆纤维素含量变化趋势相反, 两试点均为T30D3田间总倒伏角度最小。(3)武穴及天门试点棉田套播油菜产量所要求的共生期及密度最优配置分别为29.8 d、48.8万株 hm–2, 29.7 d、57.6万株 hm–2; 在此配置下, 两试点油菜产量理论值分别为3243.0、3082.8 kg hm–2, 与当地棉田套播油菜常用栽培模式(共生期15 d, 密度15.0~22.5万株 hm–2, 产量约2625 kg hm–2)相比, 可实现增产23.5%、17.4%。  相似文献   

2.
以食葵中熟品种LD5009为材料,在石羊河中游绿洲设3个种植密度(D1:39 990株/hm2,D2:49 990株/hm2,D3:66 660株/hm2)和3个行距(R1:0.7m,R2:0.6m,R3:0.5m),研究不同密度与行距配置对向日葵盛花期冠层结构、光合特性以及产量构成的调控作用。结果表明,D3R2处理下茎粗降低至2.50cm,株高和冠层下部叶向值分别增加至187cm和50.50。高密度能显著增大冠层中部叶面积指数(LAI),而中等密度有助于平衡冠层中、下部光环境,保证冠层底部较高的LAI,D2R2处理下LAI可达5.20,其中冠层下部为1.97。叶绿素含量、净光合速率(Pn)和蒸腾速率(Tr)均随密度的增加而降低,且差异集中体现在冠层下部,D3R2处理冠层下部叶绿素含量、PnTr分别降至1.09mg/g、-1.87μmol/(m2·s)和1.33mmol/(m2·s)。产量、盘粒数、千粒重与株高、冠层中、下部叶向值、冠层中、下部LAI呈负相关,与茎粗、冠层中及下部透光率、冠层下部叶绿素含量、PnTr呈正相关。本试验条件下,种植密度为49 990株/hm2且0.6m行距配置可确保适宜的冠层结构与光合特性,为高产提供保障。  相似文献   

3.
种植密度和行距配置对超高产夏玉米群体光合特性的影响   总被引:70,自引:1,他引:69  
在67 500株 hm-2、90 000株hm-2和112 500株hm-2等3个种植密度条件下,研究了密度和行距配置对超高产夏玉米品种登海701产量和群体光合特性的影响。结果表明,随密度增加,籽粒产量、叶面积指数(LAI)、光合有效辐射(PAR)上层截获率、群体光合(CAP)和群体呼吸(CR)、干物质积累量均提高;而叶绿素含量、穗位叶层和下层PAR截获率则降低。在67 500株 hm-2下,宽窄行与等行距处理相比无显著优势。但在90 000株 hm-2和112 500株 hm-2密度下,80 cm+40 cm行距处理的产量、叶面积指数(LAI)、叶绿素含量、穗位叶层的PAR截获率、花后群体光合速率(CAP)平均值均显著高于其他行距处理(等行距、70 cm+50 cm和90 cm+30 cm);而群体呼吸速率与光合速率的比值(CR/TCAP)则显著低于其他行距处理。说明在较高密度条件下,80 cm+40 cm的宽窄行配置有助于扩大光合面积、增加穗位叶层的光合有效辐射、提高群体光合速率、减少群体呼吸消耗,从而提高籽粒产量。  相似文献   

4.
不同种植模式对高粱晋糯3号产量和养分吸收的影响   总被引:1,自引:0,他引:1  
为了明确高粱新品种晋糯3号的最佳种植模式,研究了不同行距及密度对晋糯3号产量和养分吸收的影响。试验共设3个行距:30、50和60cm,每个行距处理设4个密度:4.5万、7.5万、10.5万和13.5万株/hm 2。结果表明,行距50cm时,晋糯3号单株叶面积、叶面积指数(LAI)、单穗粒数及产量最高,其次为行距60cm,行距30cm处理最低;相同行距时,密度为13.5万株/hm 2时产量较高,但与密度10.5万株/hm 2的产量没有显著差异。密度为4.5万株/hm 2时晋糯3号单穗粒数是密度为10.5万和13.5万株/hm 2时的1.8~2.0倍,产量为同一行距最高产量的72%~88%,这表明晋糯3号具有较强的群体调节能力。行距50cm结合密度4.5万株/hm 2促进了开花后植物对氮的吸收,开花后植株较强的氮素吸收能力是低密度产量提高的主要因素之一。行距50和60cm密度为10.5万和13.5万株/hm 2时产量较高且没有显著差异,但行距50cm有利于氮磷钾养分的吸收,为此晋糯3号的最佳种植模式为行距50cm结合密度10.5万~13.5万株/hm 2。  相似文献   

5.
实现机械采收是黄河流域棉区棉花生产的必然发展趋势,但当前人工采收棉田的行距与摘锭式采棉机的行距不匹配,需要在采棉机的可调行距范围(76~102 cm)内明确棉花适宜种植行距及其配套措施。研究于2016—2018年在河北省河间市秸秆还田条件下开展,包括行距与氮(N)肥、行距与甲哌鎓(mepiquat chloride, DPC)化控2个独立试验,探讨了各因素对冠层结构和冠层微环境的影响。试验采用裂区设计,行距(76、92、102 cm)为主区,施N量(0、105、210kghm~(-2))或DPC用量(0、140、281、394ghm~(-2))为裂区,等密度(90,000株hm~(-2))种植。在天气条件相对正常的2016和2017年,宽行距(92cm和102cm)与窄行距(76cm)相比叶面积指数(leafareaindex,LAI)有所增加、透光率(diffuse non-interceptance, DIFN)有所降低;而在高温干旱的2018年,宽行距的LAI明显降低、DIFN明显增加。施N对冠层结构的影响有限;DPC化控对冠层结构的影响较大,主要表现为降低LAI、增加DIFN。与窄行距相比,宽行距可在各年份不同程度增加冠层温度、降低相对湿度;施氮对冠层微环境影响不大; DPC化控的冠层温度略高、相对湿度略低。行距与氮肥、行距与DPC对LAI等冠层结构、温度和相对湿度的互作效应均不显著。  相似文献   

6.
在前期研究确定总氮用量180 kg hm–2下, 缓释氮肥与常规氮肥7∶3配施比例可获得机插稻高产的基础上, 研究缓释氮肥配施和不同株距下机插杂交稻磷素积累、分配与利用特征及其与产量的关系。采用二因素裂区设计, 设3种机插株距(行距均为30 cm) 16、18及20 cm和4个缓释氮肥用量(36、66、96和126 kg hm–2)与常规氮肥(均为54 kg hm–2)配施处理。结果表明, 缓释氮肥用量对机插稻主要生育时期磷素积累量、各生育阶段磷素吸收量及吸收速率、结实期茎鞘磷素转运量及转运率和叶片磷素转运率及贡献率均有显著影响。在株距为18 cm, 群体密度为18.52万穴 hm–2, 缓释氮肥(96 kg hm–2)与常规氮肥(54 kg hm–2)配施总量为150 kg hm–2时, 可有效提高机插稻对磷素的吸收, 促进结实期茎鞘、叶片磷素向穗部的转运及分配, 能充分发挥本区域机插杂交籼稻的优势, 产量可达11 463.8 kg hm–2, 为本试验的最佳肥密运筹处理。株距为16 cm, 群体密度(20.84万穴 hm–2)相对较大, 施氮总量为180 kg hm–2时, 群体吸收的磷总量较高, 进一步促进了植株体内磷素的吸收转运及分配, 有利于产量提高, 但从节本增效的角度考虑, 以缓释氮肥配施量150 kg hm–2为宜; 株距增加到20 cm施氮总量在180 kg hm–2下, 群体(16.67万穴 hm–2)较小, 吸收磷素的绝对量少, 茎鞘、叶片中的磷素向穗部转运量多, 穗部磷素积累量增加, 产量增加。相关分析表明, 株距与缓释氮肥配施量耦合下, 尤其以齐穗期至成熟期茎鞘磷素转运量与产量相关性较高(r = 0.72**), 更有利于产量的提高。  相似文献   

7.
种植密度对油菜机械收获关键性状的影响   总被引:5,自引:0,他引:5  
李小勇  周敏  王涛  张兰  周广生  蒯婕 《作物学报》2018,44(2):278-287
油菜机械化生产中, 茎秆倒伏和角果开裂是引起产量损失的主要因素。为探究密度对油菜机械化关键性状的影响, 以中双11、华油杂9号为材料, 设置4个密度(15万株 hm-2、30万株 hm-2、45万株 hm-2和60万株 hm-2), 测定产量构成、倒伏指数及抗裂角指数相关指标。结果表明, (1)不同密度下, 群体有效角果数, 每角粒数差异显著, 2个品种产量均在45万株 hm-2时最大; (2)随密度增加, 油菜根颈粗变细, 茎秆倒伏指数增加, 增加了倒伏风险; 在低密度(15万株 hm-2和30万株 hm-2)下, 茎秆临近冠层部位最易倒伏, 在高密度(45万株 hm-2和60万株 hm-2)下, 茎秆中部及中部偏上部位倒伏指数较大, 即与低密度相比, 高密度油菜茎秆倒伏发生部位降低; (3)分枝抗裂角指数均小于主茎抗裂角指数, 且随分枝高度降低呈先增加后降低趋势。不同品种油菜主茎抗裂角指数对密度响应存在差异: 中双11随密度增加逐渐降低, 在15万株hm-2下最大, 华油杂9号则随密度增大呈先增后降趋势, 在30万株 hm-2下最大。角果发育初期至成熟期含水量下降速率与抗裂角指数极显著负相关, 且相关系数最大, 表明该指标是密度影响抗裂角指数的最关键因素。  相似文献   

8.
为了探究‘丰油10号’在黄淮地区适宜的播种密度与行距配置。在河南省油菜主产区进行大田试验,比较不同种植密度及行距配置方式下,‘丰油10号’的物候期、叶片叶色值(specialty products agricultural division, SPAD)及开花期叶面积指数(leaf area index, LAI)、经济性状、产量和品质情况。结果表明:‘丰油10号’的生育期随着密度和行距的增大,逐渐缩短;叶片的SPAD值在蕾薹期和开花期随密度增大逐渐降低,随行距缩小而减小;植株LAI在开花期随着密度的增大先增后减,同一密度下,40 cm行距下较高;株高、一次有效分枝数、主花序的长度和角果数随密度的增加逐渐较小,分枝部位则升高,随行距的减小单株有效角果数下降,千粒重不受密度和行距配置的影响;籽粒产量和含油量随着种植密度的增加先增后减,籽粒产量在种植密度为42万株/hm2,40 cm行距下最高,为2734.6 kg/hm2,当行距缩小到20 cm,籽粒平均减产4.65%;籽粒芥酸和硫苷含量不随密度和行距改变发生变化。在其它栽培措施保持不变的情况下,建议‘丰油10号’在黄淮流域的种植密度控制在34.5万~49.5万株/hm2,行距设置为40 cm。  相似文献   

9.
为探讨蒜茬花生高产栽培种植模式,2014—2015年在聊城农科院科技示范园对其田间配置方式及种植密度进行试验研究。试验采用裂区试验设计,田间配置方式(垄上小行距)为主处理,设A1(25 cm)、A2(35 cm)、A3(45 cm);密度为副处理,设单粒精播B1(18万株/hm~2)、B2(21万株/hm~2)、B3(24万株/hm~2)、B4(27万株/hm~2)、双粒穴播B5(13.5万株/hm~2)5个密度水平,研究田间配置方式和种植密度对花生生育性状、产量性状、干物质积累及田间群体透光率的影响。研究结果表明,主处理垄上小行距A1(25 cm)、A2(35 cm)对花生群体透光率、单株结果数、饱果数和荚果干重的有利影响显著高于A3(45 cm),其他性状主处理间差异不大;密度对群体透光率、植株干重、产量性状影响较大,结果显示花生饱果期副处理B2(21万株/hm~2)、B3(24万株/hm~2)、B5(13.5万株/hm~2)群体透光率较低,即群体光截获率较高,更有利于光能利用率的提高。产量结果以A1B3最高,与A1B2、A2B2、A2B3处理产量差异不显著,与其余主副处理协作均差异显著。  相似文献   

10.
不同株行配置与密度对油菜产量的影响   总被引:6,自引:2,他引:4  
本文系统地研究了4种不同种植密度条件下,3种等行距、3种宽窄行共6种株行配置对油菜经济性状和产量的影响差异,结果表明:不同株行距配置方式对密度在15×104株/hm2油菜产量影响不显著,但对密度45×104株/hm2油菜影响达极显著水平,适宜株行距配置增产效果最高达到19.1%;认为20 cm~40 cm的行距配置有利于当前较高密度直播油菜的生产。  相似文献   

11.
为了高效开发利用小黑豆资源,提高小黑豆产量,在山西隰县采用随机区组设计方法研究了不同行株距(密度)对小黑豆产量及相关性状变异系数的影响。结果表明:行距40 cm的平均产量优于行距60 cm的平均产量;不同行株距配置(密度)中,R40P30(8.34万株/hm2)处理的籽粒产量、单株籽粒产量、单株荚数和结荚高度4个性状均优于其他处理,R60P15(11.12万株/hm2)处理的百粒重性状优于其他处理,株高性状以R60P25(6.67万株/hm2)处理最高不,同行株距配置(密度)对有效分枝性状不存在影响;不同行株距配置(密度)处理对各性状的变异系数影响序列为产量>结荚高度>单株籽粒产量>百粒重>单株荚数>有效分枝>株高。该项研究为进一步提高小黑豆产量提供了理论和技术支撑。  相似文献   

12.
以超高产大豆品种吉育86为试验材料,采用垄上双行的种植模式,研究花后水肥一体化与化控措施对大豆产量及生理特征的影响。结果表明:水肥一体化显著提高大豆产量,R2(盛花期)+R4(盛荚期)(T3)、R4+R5(始粒期)(T4)、R2+R4+R5处理(T5)的增产幅度最大,但3个处理间差异不显著;水肥一体化+化控进一步提升大豆产量,R2+R4+R5结合化学调控处理(T9)的产量最高,达3 780.4kg/hm 2,比对照增产19.25%。通过T5、T9与对照高产生理特征比较表明,T5显著增加了SPAD值、光合参数、叶面积指数、单株生物产量、株高、茎重和百粒重;与T5相比,T9提高了SPAD值和光合参数,并且降低了株高、最大叶面积指数,有效地控制了倒伏,使叶面积指数动态更合理,促进茎、叶、叶柄干物质向籽粒转移,最终增加单株粒重和百粒重,显著增加了产量。说明水肥一体化+化控是提升大豆产量潜力的有效措施,水肥一体化显著增加了单株荚重、单株粒重和百粒重,化控措施对百粒重影响不显著,进一步增加了单株荚重和单株粒重。R2期后进行2~3次水肥处理,并在始花期(R1)化控处理为提高大豆产量的最优措施。  相似文献   

13.
The effects of three okra planting densities (28 000; 56 000 and 111 000 plants ha1) intercropped within or between maize rows were investigated in two field trials during the 1990 and 1991 wet seasons at Nsukka. The plant height and the leaf area index (LAI) increased as the planting density increased in sole or intercropped okra while the number of branches per plant decreased with increasing okra planting density. The height of maize plants also increased as okra planting density increased but the LAI decreased. Intercropping reduced the yield and yield components (number and weight of pods per plant) of okra and maize (number of cobs, cob length and 100-grain weight). Increasing okra planting density reduced the sole and the intercropped okra and also the maize intercrop yield by reducing the number of pods and grains as well as the pod and grain size, respectively. Assessment of the productivity ofthe mixtures showed that the highest yield advantage (35%) of growing okra and maize together was obtained at 28000 okra plants ha1 while the highest monetary return was realized at the highest okra planting density of 111000 plants ha1 intercropped between maize rows. The patterns of row arrangement did not have effect on the growth, yield and yield components of the mixtures.  相似文献   

14.
玉米光合特性和冠层微环境对密度和行株距配置的响应   总被引:1,自引:0,他引:1  
适宜密度及行株距配置可构建合理的玉米群体和冠层结构,提高光合效率,系统分析玉米光合特性及冠层微环境对密度和行株距配置的响应机制,为华北平原玉米光温高效生产提供科学依据。试验采用裂区设计,主区设密度6.75万株/hm 2(D1)和8.25万株/hm 2(D2),副区为3种行株距配置:60cm等行距(H1)、宽窄行80cm+40cm(H2)、匀播(H3)38cm(行株距相同,D1)和34.5cm(行株距相同,D2)。结果表明:常规生产密度等行距(D1H1)种植和高密度宽窄行(D2H2)种植能形成合理的群体冠层结构,具有适宜的冠层温度、CO2浓度和相对湿度,能促进植株对光能的吸收和利用,提高净光合速率,从而获得较高的产量。因此,在常规密度等行距种植基础上,进一步增加密度至8.25万株/hm 2时,宽窄行种植方式具有较高的产量潜力。  相似文献   

15.
Useful light interception during reproductive stages is very important for soybean ( Glycine max (L.) Merr.) dry matter production. The objective of this experiment was to investigate the light utilization in the canopy for yield, and its components in the case of arranging branch direction to row direction with flat type (1/2 phyllotaxy) soybean. The field study was conducted in the field at Niigata University on a loamy sand soil at 25, 16 and 9 plants m−2 in 1994, 1995 and 1996, using cultivar 'Miyagishirome' (Maturity Group VII or VIII, phyllotaxy 1/2; branches develop flatly) with treatments so that branches developed at right angles direction (Type R) and in a parallel direction (Type P) to the direction of the row.
Total dry weight (TDW) was greater in Type R than in Type P. A higher leaf area index (LAI) was shown in Type R than in Type P in each plant density among the three years. More light penetrated into the canopy in Type R than in Type P. Higher TDW and LAI were produced by effective light interception at the canopy of Type R.
Yield and its components were greater in higher than lower density and tended to be greater in Type R than in Type P. Increased yield depend on seed, pod and node number m−2. The increase of yield components in Type R was suggested to be due to favorable light condition in the canopy, compared with Type P.  相似文献   

16.
为了探究膜下滴灌条件下西北旱区制种玉米高产节水最佳种植模式。通过田间小区试验,设置了9种宽窄行种植模式处理。窄行间距为30 cm(N30)和40 cm(N40),宽行间距分别为60 cm(W60)、70 cm(W70)、80 cm(W80)、90 cm(W90)和100 cm(W100),其中对于N40处理,没有设置宽行间距为100cm的处理,株距统一为15 cm。结果表明,窄行间距相同时,随着宽行间距增大,株高呈减小趋势、茎粗及叶面积指数呈增大趋势;相同种植密度下,窄行行间距为30cm时,其植株茎粗小、株高高;各处理生育期累计耗水量ET范围约为525.10~545.18 mm;从群体总体产量水平来看,在相同种植密度情况下,N30处理的总体产量水平高于N40处理。[结论]从稳定高产角度考虑,推荐当地膜下滴灌制种玉米种植模式为:窄行和宽行种植间距分别为30和70 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号