首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to identify quantitative trait loci (QTL) for the eating quality of waxy corn and sweet corn (Zea mays L.), QTL analysis was conducted on an F2 population derived from a cross between a waxy corn inbred line and a sweet corn inbred line. Ten QTLs for pericarp thickness (PER), amylose content (AMY), dextrose content (DEX) and sucrose content (SUC) were found in the 158 F2 families. Among them, four QTLs, qAMY4 (10.43%), qAMY9 (19.33%), qDEX4 (21.31%) and qSUC4 (30.71%), may be considered as major QTLs. Three of these, qAMY4, qDEX4 and qSUC4, were found to be located within a region flanked by two adjacent SSR markers on chromosome 4 (umc1088 and bnlg1265), making this SSR marker pair a useful selection tool for screening the eating quality traits of AMY, DEX and SUC. The QTL for amylose content was found to be located between markers phi027 and umc1634, raising the possibility of its identity being the Wx1 gene, which encodes a granule-bound amylose synthase. The new QTLs identified by the present study could serve as useful molecular markers for selecting important eating quality traits in subsequent waxy corn breeding studies.  相似文献   

2.
Fruit nutritional and flavor components are important targets for breeding new cultivars of tomato (Solanum lycopersicum L.). We developed 108 recombinant inbred lines (the K39 RILs) in the F6 generation from a cross between two phenotypically different breeding lines, K03 and K09. A linkage map was constructed using 172 genome-wide simple sequence repeat markers, 3 single-nucleotide polymorphism markers, and 2 phenotypic markers. The K39 RIL map consists of 12 linkage groups (LGs) and covers a genetic distance of 1089 cM. We measured the fruit soluble solids content (SSC), titratable acidity (TA), glutamic acid content (GLU), and lycopene content (LYC) of each line in four generations (F6, F8, F10, F11), β-carotene content (CAR) in two generations, and pH in one generation. By composite interval mapping that considered yearly variations in components as non-genetic effects, we detected three quantitative trait loci (QTLs) for SSC, four for TA, two for CAR, and one each for GLU, LYC, and pH. Among them, we found two QTLs for TA in LGs 6 and 11, those for GLU and LYC were candidates for novel QTLs. QTLs detected in this study were clustered in five LGs, but we observed no apparent trade-off relationships among the QTLs in each LG. Being derived from an intra-specific cross of tomato breeding materials, these QTLs can be used in practical breeding for improving fruit quality with low risk of linkage drag.  相似文献   

3.
甘蔗SSR和AFLP分子遗传连锁图谱构建   总被引:3,自引:0,他引:3  
刘新龙  毛钧  陆鑫  马丽  蔡青  范源洪 《作物学报》2010,36(1):177-183
采用甘蔗商业品种Co419与野生种割手密Y75/1/2杂交,获得269个单株,组成F1群体,用F102/356与商业品种ROC25回交获得266个单株,组成BC1群体。利用筛选的多态性条带丰富的36对SSR引物和12对AFLP引物,对两个群体进行PCR扩增和分子遗传连锁分析,构建甘蔗分子遗传连锁图谱。用F1群体获得630个分离标记,经χ2检测,298个标记为单双剂量标记,占总标记数的47%;用BC1群体获得571个分离标记,有264个标记为单双剂量标记,占总标记数的46%;4个亲本获得单双剂量标记的数量依次为Co41902/356Y75/1/2ROC25。在LOD≥5.0,相邻标记遗传距离≤40cM的条件下,F1群体有134个单双剂量标记被纳入55个连锁群,其中39个连锁群归属8个同源组,16个未列入,总遗传距离为1458.3cM,标记间平均图距为10.9cM;BC1群体有133个单双剂量标记被纳入47个连锁群,其中34个连锁群归属于8个同源组,13个连锁群未列入,总遗传距离为1059.6cM,标记间平均图距为8.0cM。从4个亲本单双剂量标记进入的连锁群数来看,Co419最多,归入34个连锁群,其次为Y75/1/2,归入20个连锁群,第3为02/356和ROC25,归入19个连锁群。研究结果表明,从单双剂量标记比例、形成连锁群数量、总遗传距离来看,F1群体构图质量要优于BC1群体。  相似文献   

4.
The objective of this study was to identify molecular markers linked to fruit-related traits in the tomato subjected to high temperatures. In total, 160 F2 plants derived from a cross between a heat-tolerant breeding line, CL5915-93D4-1-0-3 (Solanum esculentum), and a heat-sensitive wild accession, L4422 (S. pimpinellifolium), were grown in a greenhouse. Six traits including fruit number, fruit weight, brix, seed number, fruit setting, and flower number were scored. The distributions of fruit number, fruit set, flower number, and seed number were skewed towards heat susceptibility which is known to be characteristic of L4422. Polymorphic bands were generated by PCR-derived methods of RAPD, ISSR and AFLP Polymorphism, the segregation ratio, and distribution over the genome of the above 3 markers were compared. Ten linkage groups, ranging 20.6–151.6 cM in size, were constructed with 62 informative markers spanning a total of 776.3 cM. Fruit-related quantitative trait loci (QTLs) were non-randomly distributed in the tomato genome. For the 6 traits investigated, 21 QTLs were dispersed on linkage groups 2–5. The genetic effects of the various QTLs were differently exhibited, in our study we have respectively found from 10.5% to 30.2% of the variation explained by the QTL for flower number (FRN4) and brix (BX2). Thirteen QTL-mapped markers were unique to 1 trait, and 4 markers were linked to more than 1 trait. Among them, QTLs linked to the I868-470 marker had effects on fruit weight and brix, and a significant positive correlation between these 2 traits was noted (r = 0.35, P < 0.05). Thus, the I868-470 marker may have the potential for simultaneous selection of high fruit weight and brix. These markers also allowed us to align genome linkage maps across distantly related species and to reveal the co-localization between these QTLs and major genes.  相似文献   

5.
Microsatellites or simple sequence repeats (SSRs) markers are very informative for various applications in genetics and breeding. Information obtained with these markers has contributed to a better understanding of evolution and the complexity of the sugarcane genome. With the objective of identifying a large set of polymorphic microsatellite markers designated as Unigene derived Sugarcane Microsatellite (UGSM) and Sugarcane Enriched Genomic Microsatellite (SEGMS), 351 UGSM and 36 SEGMS were tested to find out informative SSRs marker for sugar content. These markers were screened and validated for their use in genetic diversity, cross transferability and comparative linkage potential in high and low sugar bulk of two segregating progenies and twenty each, cultivated high and low sugar cultivars. 158 (40.83%) of the microsatellite markers (144-UGSM: 14-SEGMS) were found to be highly robust and polymorphic. Cross amplification was estimated among nineteen accessions of six sugarcane cultivars, one inter specific hybrids, five related species, four related genera, and three divergent genera by using 27 UGSM primers. Analysis of 388 alleles, amplified by these markers, indicated the high number of observed allele ranged from 2 to 26, with an average of 14.37 alleles detected per locus. High level of polymorphism detected by these markers among sugarcane species, genera and cultivars was 96.3%, while cross-transferability rate was 98.0% within Saccharum complex and 88.27% to cereals. Wide range of genetic diversity (0.33–0.79 with an average of 0.56) assayed with UGSM markers suggested their importance in various genotypic applications in sugarcane.  相似文献   

6.
A well-saturated genetic linkage map is valuable for fundamental and applied genetic research. Genetic linkage maps of two half-sib diploid banana populations were constructed using allele-specific-polymerase chain reactions (AS-PCRs), diversity array technology (DArT), and simple sequence repeat (SSR) markers. Molecular maps were produced for each parent using the pseudo-testcross mapping strategy. The first maternal map (6142-1, 81 individuals) consisted of 231 markers divided as followed: 121 DArT, 106 SSR and 4 AS-PCR markers in 15 linkage groups (LGs) covering 670?cM. The second maternal map (6142-1-S, 58 individuals) contained a total of 152 markers including 71 DArTs, 79 SSRs, and 2 AS-PCRs mapped to 16 LGs that spanned 698?cM. The combined paternal map (139 individuals) comprised 316 markers (196 DArTs, 117 SSRs and 3 AS-PCRs) distributed over 15 LGs with a total map length of 1,004?cM. While distorted segregation of some markers was observed in all maps, this was much more frequent for the male parent. Homology between maps was assessed using common markers. While there was generally good congruity with regard to marker order across maps, incongruity in other cases may reflect chromosomal rearrangement events such as inversions, translocations, or deletions. The new banana map can provide a better understanding of the Musa genome and could be used for the identification of economically important traits and improvement of breeding strategies.  相似文献   

7.
X. J. Yuan  X. Z. Li  J. S. Pan    G. Wang    S. Jiang    X. H. Li    S. L. Deng    H. L. He    M. X. Si    L. Lai    A. Z. Wu    L. H. Zhu    R. Cai 《Plant Breeding》2008,127(2):180-188
A 173‐point genetic linkage map of cucumber (Cucumis sativus L.), consisting of 116 SRAPs, 33 RAPDs, 11 SSRs, 9 SCARs, 3 ISSRs, and 1 STS, was constructed using 130 F2 progeny derived from a narrow cross between line S94 (Northern China open‐field type) and line S06 (greenhouse European type). The seven linkage groups spanned 1016 cM with a mean marker interval of 5.9 cM. Using the F2 population and its F3 derived families, a total of 38 QTLs were detected on five linkage groups with an LOD threshold of 3.0 for nine fruit‐related traits: fruit weight, length, and diameter, fruit flesh thickness, seed‐cavity diameter, fruit‐stalk length, fruit pedicel length, length/diameter and length/stalk ratio. Of the identified QTLs, fsl4.3 for fruit‐stalk length explained the largest portion of phenotypic variation (r2 = ~30%). Several QTLs were detected in the same linkage region in different generations and different seasons. Additionally, several QTLs for various fruit traits were mapped to the same or neighbouring marker intervals, suggesting they are possible character associations for controlling cucumber fruit development.  相似文献   

8.
大豆脂肪及脂肪酸组分含量的QTL定位   总被引:6,自引:0,他引:6  
脂肪及脂肪酸组分的改良是大豆油脂品质育种的主要方面。本研究旨在构建遗传图谱,定位大豆脂肪及脂肪酸组分的QTL,为大豆油脂品质育种提供参考。以Essex×ZDD2315的114个BC1F1单株为作图群体,构建了250个SSR标记和1个形态标记,具有25个连锁群的遗传图谱,覆盖大豆基因组2 963.5 cM,平均每个连锁群上10.0个标记,标记平均间距11.8 cM。用BC1F3家系3个重复的表型平均值代表相对应的BC1F1单株表型值,采用Win QTL Cartographer 2.5复合区间作图法(CIM)检测到18个控制脂肪及脂肪酸组分含量的QTL,位于9个不同的连锁群上,表型贡献率为9.6%~34.5%;多区间作图法(MIM)检测到与CIM区间相同的7个QTL(fat-1, pal-1, st-1, ole-1, lin-1, lin-4和lio-2),区间相近的2个QTL(ole-4和lin-5),位于6个不同的连锁群上,表型贡献率为8.2%~39.3%。CIM法检测到的其他9个QTL有待进一步验证。大豆脂肪及脂肪酸组分含量的主效QTL数量不多,效应大的不多,可能还受许多未能检测出来的微效基因控制,育种中既要注意主效QTL的利用,又要考虑微效多基因的积聚。  相似文献   

9.
The cultivated sugarcane (Saccharum spp. hybrids, 2n = 100–130) is one crop for which interspecific hybridization involving wild germplasm has provided a major breakthrough in its improvement. Few clones were used in the initial hybridization event leading to a narrow genetic base for continued cultivar development. Molecular breeding would facilitate the identification and introgression of novel alleles/genes from the wild germplasm into cultivated sugarcane. We report the identification of molecular markers associated with sugar-related traits using an F1 population derived from a cross between S. officinarum ‘Louisiana Striped’ × S. spontaneum ‘SES 147B’, the two major progenitor species of cultivated sugarcane. Genetic linkage maps of the S. officinarum and S. spontaneum parents were produced using the AFLP, SRAP and TRAP molecular marker techniques. The mapping population was evaluated for sugar-related traits namely, Brix (B) and pol (P) at the early (E) and late (L) plant growing season in the plant cane (04) and first ratoon (05) crops (04EB, 04LB, 04LP, 05EB and 05EP). For S. officinarum, combined across all the traits, a total of 30 putative QTLs was observed with LOD scores ranging from 2.51 to 7.48. The phenotypic variation (adj. R2) explained by all QTLs per trait ranged from 22.1% (04LP) to 48.4% (04EB). For S. spontaneum, a total of 11 putative QTLs was observed with LOD scores ranging from 2.62 to 4.70 and adj. R2 ranging from 9.3% (04LP) to 43.0% (04LB). Nine digenic interactions (iQTL) were observed in S. officinarum whereas only three were observed in S. spontaneum. About half of the QTLs contributed by both progenitor species were associated with effects on the trait that was contrary to expectations based on the phenotype of the parent contributing the allele. Quantitative trait loci and their associated effects were consistent across crop-years and growing seasons with very few QTLs being unique to the early season. When the data were reanalyzed using the non-parametric discriminant analysis (DA) approach, significant marker-trait associations were detected for markers that were either identical to or in the vicinity of markers previously identified using the traditional QTL approach. Discriminant analysis also pointed to previously unidentified markers some of which remained unlinked on the map. These preliminary results suggest that DA could be used as a complementary approach to traditional QTL analysis in a crop like sugarcane for which saturated linkage maps are unavailable or difficult to obtain.  相似文献   

10.
A genetic linkage map of walnut containing 2,220 single nucleotide polymorphisms (SNPs) in 16 linkage groups (LGs) was constructed using an F1 mapping population from a cross between “Chandler” and “Idaho,” two contrasting heterozygous parents. Five quantitative yield traits, lateral fruitfulness, harvest date and three nut traits (shell thickness, nut weight and kernel fill) were then mapped on to linkage groups. A significant quantitative trait locus (QTL) in LG 11 with negative additive effects suggested heterozygote superiority in the expression of lateral bearing. A set of three QTLs explaining ~10% of the variation in harvest date was located in LG 1. Shell thickness, nut weight and kernel fill were under the control of two to three linked pleiotropic QTLs in LG 1 segregating from “Idaho.” The marginal positive additive effects of QTLs for harvest date, shell thickness and nut weight and small negative additive effects for kernel fill suggested that the QTLs had a marginal effect on the expression of these traits.  相似文献   

11.
Epicotyl length (ECL) of adzuki bean (Vigna angularis) affects the efficiency of mechanized weeding and harvest. The present study investigated the genetic factors controlling ECL. An F2 population derived from a cross between the breeding line ‘Tokei1121’ (T1121, long epicotyls) and the cultivar ‘Erimo167’ (common epicotyls) was phenotyped for ECL and genotyped using simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP) markers. A molecular linkage map was generated and fifty-two segregating markers, including 27 SSRs and 25 SNPs, were located on seven linkage groups (LGs) at a LOD threshold value of 3.0. Four quantitative trait loci (QTLs) for ECL, with LOD scores of 4.0, 3.4, 4.8 and 6.4, were identified on LGs 2, 4, 7 and 10, respectively; together, these four QTLs accounted for 49.3% of the phenotypic variance. The segregation patterns observed in F5 residual heterozygous lines at qECL10 revealed that a single recessive gene derived from T1121 contributed to the longer ECL phenotype. Using five insertion and deletion markers, this gene was fine mapped to a ~255 kb region near the end of LG10. These findings will facilitate marker-assisted selection for breeding in the adzuki bean and contribute to an understanding of the mechanisms associated with epicotyl elongation.  相似文献   

12.
A cassava F1 population raised from the cross SC6 × Mianbao was used to construct a genetic linkage map. The map incorporated 200 polymorphic amplified fragment length polymorphism, sequence-related amplified polymorphism, simple sequence repeat (SSR), and expressed sequence tag (EST)–SSR markers which fit a 1:1 segregation ratio. It comprised 20 linkage groups (LGs) and spanned a genetic distance of 1645.1 cM with an average marker interval of 8.2 cM. Fifty-seven repeatedly detected QTLs (rd-QTLs) for three phenotypic traits (fresh root yield, root dry matter content, and root starch content) were identified in the F1 population in four trials of year 2003, 2004, 2005, and 2008 by inclusive composite interval mapping. Among the 57 rd-QTLs, 25 rd-QTLs were linked to SSR/EST–SSR markers, which will help to facilitate marker-assisted selective breeding in cassava, and 15 marker intervals on ten LGs showed pleiotropic effects.  相似文献   

13.
Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose.  相似文献   

14.
A seven-year (2009–2015) continuous field experiment was established at the South China Agricultural University in order to identify the effects of sugarcane/soybean intercropping and reduced N rate on ecosystem productivity, yield stability, soil fertility, and N2O emissions. The randomized block experiment was designed with four cropping patterns (sugarcane monocropping (MS), soybean monocropping (MB), sugarcane/soybean (1:1) intercropping (SB1), and sugarcane/soybean (1:2) intercropping (SB2)) and two rates of N fertilization (300 kg hm−2 (N1, reduced rate) and 525 kg hm−2 (N2, conventional rate)). The results showed that the land equivalent ratio (LER) of all intercropping systems was greater than 1 (between 1.10 and 1.84), and the SB2-N1 optimally improved the land utilization rate among all treatments. The cropping patterns and N applied rates had no significant effect on sugarcane yield. The soybean yield was influenced by different cropping patterns because of different planting densities (4, 8 and 16 rows of soybean were plant under SB1, SB2, and MB, respectively) and was adopted in this experiment. In addition, under the SB2 cropping pattern, the soybean yield at the reduced N application rate was higher than that at the conventional N application rate. Wricke’s ecovalence (Wi2), the sustainable yield index (SYI) and the coefficient of variation (CV) were used to evaluate yield stability. Different treatments had no significant effects on sugarcane yield stability, as demonstrated by three indicators (Wi2, SYI and CV), which indicated that intercropping with soybean and reduced N rate had no effect on sugarcane yield. For soybeans, the value of Wi2 demonstrated that the stability of the intercropping system was higher than its counterpart monocropping system, as SYI and CV values indicated that SB2 had higher stability than SB1. During seven years of experiments, there was no significant difference in the soil fertility between MS and SB patterns. The soybean monocropping had a higher available K, pH and lower available P content than sugarcane inter- and mono-cropping. Different cropping patterns had a slight impact on N2O emissions and the greenhouse gas intensity (GHGI) value. Higher N input promoted N2O emissions and increased GHGI values. In conclusion, the present study observed that a 40% reduced nitrogen input combined with intercropping soybeans could maintain sugarcane yield and soil sustainable utilization, and that higher N fertilizer additions induced negative impacts on greenhouse gases emissions. Sugarcane intercropping with soybeans can reduce chemical fertilizer input and simultaneously maintain crop productivity; thus, it can be considered to be a reasonable practice for field management.  相似文献   

15.
Both seed length and seed width are important traits for soybean yield. In the present study, 89 Quantitative trait loci (QTLs) of seed length and 65 QTLs of seed width were collected from published papers and our study. QTLs in this study were evaluated by the soymap2, then totally 23 consensus QTLs were located on 17 linkage groups (LGs) through the meta‐analysis. The minimum confidence interval was 0.28 cM and the mean phenotypic variance (R2) was ranged from 5.33% to 23.36%. To optimize these QTLs based on statistic analysis, overview method was further used to narrow down CI, the number of QTLs was narrowed down to 84. Furthermore, 2,750 candidate genes were screened from the consensus QTL intervals by informatics, a total of 37 genes were found to be associated with seed size. All results could lay a foundation for MAS (Molecular Assisted Selection) and gene cloning.  相似文献   

16.
As soybean seed fatty acid content is valued in food, animal feed and some industrial applications, plant breeders continually aim to improve seed fatty acid constituent value. This study analysed 163 original quantitative trait loci (QTLs) related to soybean fatty acid content from databases and references and revealed 43 consensus QTLs. Meta‐analysis using BioMercator ver.2.1 indicated that these were located across 16 linkage groups (LGs) excluding LG D1a, LG C1, LG M and LG H. Moreover, the overview method was used to optimize these QTLs based on statistical analysis. Some valid QTL regions were narrowed down to 0.5 Mb and mapped on the same LGs as the meta‐analysis result. Furthermore, the functions of all genes located in these consensus QTL intervals were predicted and eight candidate genes were identified. KEGG pathway analysis indicated that Glyma.13G127900 and Glyma.18G232000 were involved in the fatty acid synthesis metabolic (pathway ID ko00071, ko00062, ko01040). These results lay a foundation for fine mapping of QTLs related to fatty acid content and marker‐assisted breeding in soybean.  相似文献   

17.
Y. Peng    K. F. Schertz    S. Cartinhour  G. E. HART 《Plant Breeding》1999,118(3):225-235
A restriction fragment length polymorphism (RFLP) linkage map of Sorghum bicolor (L.) Moench was constructed in a population of 137 F6-8 recombinant inbred lines using sorghum, maize, oat, barley and rice DNA clones. The map consists of 10 linkage groups (LGs) and 323 markers, 247 of which (76.5%) were ordered at a LOD score ≥ 3.0. The LGs comprise from 61 (LG A) to 13 markers (J), which range in length from 205 (A) to 55 cM (J) and have a combined total length of 1347 cM. Highly significant distorted segregation was detected at all of the 38 loci in a 103-cM segment of LG A, the allelic ratios in the segment ranging from approximately 3:1 (one end) to 19:1 (middle) to 2:1 (other end). Duplicated loci located in different LGs have been mapped with 55 of the 295 DNA probes used in the study (18.6%). The distribution of these loci does not provide support for the hypothesis that Sorghum bicolor (L.) Moench is of tetraploid origin. Comparison of the map with RFLP maps of maize, rice, and oat produced evidence for sorghum-maize LG rearrangements and homoeologies not reported previously, including evidence that: (1) a segment of maize 5L and a segment of 5S may be homoeologous to sorghum LGA; (2) maize LGs 4 and 6 are partly homoeologous to sorghum LGE; (3) the short arm of maize LG 2 is partly homoeologous to sorghum LGF; (4) maize LG 4 may be partly homoeologous to sorghum LG G; (5) maize LG 5 and sorghum LG G contain a larger amount of homoeologous genetic material than previously indicated; and (6) a short segment of maize LG 1 may be homoeologous to a short segment of sorghum LG I.  相似文献   

18.
基于SNP标记的玉米株高及穗位高QTL定位   总被引:11,自引:3,他引:8  
为进一步弄清玉米株高和穗位高的遗传机理,为育种生产提供服务,本研究以K22×CI7、K22×Dan3402个F2群体为作图群体,利用覆盖玉米10条染色体的SNP标记构建了2个连锁图谱。并将这2个F2群体衍生的分别含237和218个家系的F2:3群体用于田间性状的鉴定。用复合区间作图模型对2个群体的株高、穗位高表型进行QTL定位分析,结果显示,在武汉和南宁两种环境条件下共定位到21个株高QTL和27个穗位高QTL;单个QTL表型变异贡献率的变幅为4.9%~17.9%;株高和穗位高QTL的作用方式以加性和部分显性为主;第7染色体上可能存在控制株高和穗位高的主效QTL。  相似文献   

19.
大豆耐旱选择群体QTL定位   总被引:1,自引:1,他引:0  
以红丰11为轮回亲本、Clark为供体亲本构建回交群体进行耐旱性鉴定,对获得选择群体进行全基因组SSR标记扫描,计算供体基因型导入频率,利用卡方测验检测偏分离SSR位点,并结合GGT软件对各连锁群分析, 对5个耐旱相关性状进行QTL定位。以卡方测验检测到23个SSR偏分离位点(超导入),分布于10条连锁群。方差分析表明,8个叶片持水能力QTL分布于A1、B1、C2、E、L和N连锁群;9个根长QTL分布于C2、F、G和I连锁群;11个根干重QTL分布于A2、B1、B2、E、F、K、L、M和O连锁群;12个产量QTL分布于B1、D1a、E、F、G、I、L、M和O连锁群;7个生物量QTL分布于E、F、G、K、L和N连锁群。在E连锁群的Sat_136位点,对于叶片持水能力、根干重、产量和生物量具有一致性;在F连锁群的GMRUBP位点,对于根干重和生物量具有一致性,Satt586位点,对于根长、根干重和产量具有一致性;在K连锁群的Satt167位点,对于根干重和生物量具有一致性,SOYPRP1位点,对于根长和生物量具有一致性;在L连锁群的Satt398位点,对于根长和产量具有一致性,Satt694位点对于叶片持水能力和生物量具有一致性;在M连锁群的GMSL514位点,对于根干重和产量具有一致性;以上位点均与卡方测验检测到的“超导入”位点具有一致性。经过供体等位基因卡方测验和耐旱QTL定位,共检测到33个QTL,其中有17个同时被检测到。这些位点可能是控制大豆耐旱性的重要位点。  相似文献   

20.
小麦穗部性状与单株产量密切相关。本研究以小麦骨干亲本燕大1817与优良品系北农6号衍生的269个重组自交系为材料,通过在北京和河北石家庄的2年田间试验数据,利用本实验室已构建的高密度SNP和SSR遗传连锁图谱进行穗长、穗粒数和穗粒重QTL定位。采用完备复合区间作图法共检测到29个穗部性状加性效应QTL,其中10个穗长QTL分布于1B、2D、3A、3B、4A、5A、5B、6A和7D染色体上,解释的表型变异率为2.96%~9.63%,QSl.cau-4A.2在所有5个环境中均能被检测到,解释的表型变异为5.89%~9.62%,另有7个QTL能在2个或2个以上环境中被检测到;8个穗粒数相关QTL分布于1A、3A、3D、4A和5B染色体上,解释的表型变异为4.06%~11.17%,为单个环境QTL。11个与穗粒重相关QTL分布于1A、1B、2A、2D、3A、4D、5A、5B和6B染色体上,解释的表型变异为2.79%~16.12%,其中QGws.cau-1B、QGws.cau-3A和QGws.cau-6B.2在2个或者2个以上环境中能被检测到。另外,鉴定出6个分布于1A、2D、3A、4A和5B染色体上的QTL富集区段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号