首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
大跨度主动蓄能型温室温湿环境监测及节能保温性能评价   总被引:10,自引:6,他引:4  
针对日光温室土地利用率低,单体小不能进行立体栽培果树种植,不利于机械化操作等问题。该文提出一种大跨度主动蓄能型温室,该温室南北走向,双屋面拱形钢骨架结构,并采用主动蓄放热系统进行能量的蓄积与释放。该试验以传统砖墙日光温室作为对照,对大跨度主动蓄能型温室室内外温湿度以及主动蓄放热系统的能量收支进行分析,并对比2种温室的建造成本,综合分析了试验温室保温节能效果及经济效益。结果表明:大跨度主动蓄能型温室土地利用率高达87.4%。温室夜间平均气温高于10℃,无极端低温,晴天夜间平均气温比对照温室高1.5~3.1℃,比室外高13.9~19.3℃;阴天夜间平均气温比对照温室高1.2~2.8℃,比室外高12.5~18.9℃。夜间室内相对湿度平均比对照温室低7%~10%。主动蓄放热系统性能系数COP(coefficient of performance)为3.4~4.2,平均每天能耗0.013 k Wh/m2,与传统燃煤锅炉加温系统相比,平均节能率为47%。大跨度主动蓄能型温室建造成本每平米307.2元,比传统砖墙日光温室低144.5元。大跨度主动蓄能型温室是一种土地利用率高,单体大,保温性能良好,能进行冬季果菜生产的新型温室类型,且投入少,综合其经济环境效益,值得推广应用。  相似文献   

2.
轻简柔性墙体装配式日光温室能耗分析   总被引:1,自引:1,他引:0  
轻简装配式日光温室的柔性墙体一般不具备蓄热能力,为评估其地区适应性,该研究以太阳辐射为主要指标,结合气候条件和日光温室发展选择中国17个城市,利用热平衡方程和日光温室热环境模拟软件RGWS-RHJPJV1.2,计算最冷月室外最低温度下温室的采暖热负荷和冬至日的采暖需求量,并以主动蓄放热系统供热为例,分析轻简装配式日光温室太阳能热利用效果。研究结果表明:在所选城市中,轻简装配式日光温室采暖热负荷的范围为50~150 W/m2,随着城市地理纬度的升高,采暖热负荷增大,以冬至日为例,约20%城市轻简装配式日光温室的采暖需求量在0~2 MJ/(m2·d),约50%在2~4MJ/(m2·d),仅10%大于6 MJ/(m2·d);对轻简装配式日光温室采暖热负荷影响最大的参数是南屋面保温被传热系数,其次是温室的换气次数;在拉萨和昌都,主动蓄放热系统对轻简装配式日光温室采暖需求量的满足率为100%。轻简装配式日光温室的采暖热负荷和采暖需求量在中国不同气候区差异较大,且主动蓄放热系统的加温效果在地区间差异也很大。研究...  相似文献   

3.
固化沙蓄热后墙日光温室热工性能试验   总被引:10,自引:8,他引:2  
结合西北非耕地地区多沙的特点,在因地制宜、就地取材的基础上,该课题组设计了1种以多孔砖和固化沙为后墙结构主要材料的新型复合墙体日光温室。该日光温室有被动蓄热后墙和主动蓄热后墙2种类型,被动蓄热后墙以固化沙为主要蓄热体,主动蓄热后墙在被动蓄热墙体的基础上增设了蓄热循环系统。通过在内蒙古乌海地区进行试验,分析其热工性能,并与当地普通砖墙日光温室性能进行比较分析。试验结果表明,晴天条件下,固化沙被动蓄热后墙温室、固化沙主动蓄热后墙温室、普通砖墙温室的夜间平均气温分别为13.7、17.0、12.8℃。阴天条件下,3座温室的夜间平均气温分别为10.6、13.8、10.0℃。固化沙被动蓄热后墙温室墙体内部恒定温度区域处于500~740 mm之间,蓄热体厚度近500 mm,其中固化沙蓄热体厚度近380 mm。固化沙主动蓄热后墙温室的墙体内部恒定温度区域处于740~1 000 mm之间,蓄热体厚度超过740 mm,其中固化沙蓄热厚度超过620 mm。综上,固化沙主动蓄热后墙日光温室的热工性能明显优于固化沙被动蓄热后墙日光温室及当地普通砖墙日光温室,可满足喜温作物的越冬生产,在西北多沙地区具有一定的实用推广价值。  相似文献   

4.
日光温室后墙蓄放热帘增温效果的性能测试   总被引:15,自引:12,他引:3  
为了增加日光温室有效蓄热量,改善日光温室夜间温度环境,保障作物安全越冬,该文设计了一种以日光温室后墙为结构支撑的温室蓄放热帘增温系统,白天利用该系统的集放热板吸收太阳辐射热,并通过水介质将热量储存于蓄热水池中;夜晚通过水介质的循环将蓄积的热量释放到温室中,以提高夜晚温室内空气温度。试验结果表明:晴天时应用温室蓄放热帘增温系统能将温室夜间平均气温提高4.6℃,阴天时能提高温室夜间平均气温4.5℃;试验期间当室外最低气温为-12.5℃时,对照温室最低气温仅为5.4℃,而试验温室最低气温为10.1℃;该系统在阴天平均集热效率为42.3%,在晴天时平均集热效率为57.7%;与电加热方式相比该系统的节能率达到51.1%以上。  相似文献   

5.
日光温室空气对流蓄热中空墙体热性能试验   总被引:6,自引:5,他引:1  
空气对流循环蓄热墙体是一种通体中空型日光温室墙体,其内部中空层与温室空间连通而具有空气对流换热效果。为详细了解该墙体构造的蓄放热特性及其对日光温室热环境的影响,通过与同样构造但中空层封闭的无对流墙体的对比,在北京市通州区试验温室中测试了墙体内部温度分布及变化规律、墙体蓄放热量及其对温室内气温的影响。其结果,与对照墙体相比,对流方式下墙体内部温度分布规律不同,墙体内部整体温度水平较高、且昼夜波动幅度较大,墙体白天蓄热量提高15.1%,夜晚放热量提高14.7%,这一效果使得温室夜间最低温度提高2.2℃,有效提高了墙体的蓄放热能力,改善了温室夜间温度水平。  相似文献   

6.
日光温室平板微热管阵列蓄热墙体热性能试验   总被引:1,自引:1,他引:0  
为提高日光温室复合结构墙体热稳定层的温度并提升温室墙体材料的蓄热性能,该研究提出一种新型日光温室平板微热管阵列蓄热墙体(Micro Heat Pipe Array,MHPA),搭建了小型MHPA墙体温室试验台,采用对比试验的方法,结合温室墙体温度、墙体蓄放热量以及温室环境温度等评价参数,对比分析了典型日MHPA墙体的蓄放热特性及其改善温室热环境效果。结果表明,与普通温室相比,冬季典型晴天,放热时段(17:00至次日9:00)MHPA墙体内表面平均温度提高1.6~2.3℃,由室内向室外沿墙体厚度方向0~370 mm区域内MHPA墙体内部的平均温度提高2.7~4.0℃;MHPA温室的平均温室环境温度提升1.2~1.5℃,地表面平均温度提升0.6~1.0℃;MHPA墙体的日总蓄热量提高了8.93%~14.35%,日总放热量提高了2.24%~8.07%,且在夜间23:00至次日7:00 MHPA墙体的放热速率高于普通墙体的,平均提升11.53%。因此,MHPA墙体引入于日光温室墙体中可提升温室墙体材料的蓄放热性能,改善温室热环境。该结果可为日光温室平板微热管阵列蓄热墙体的应用提供参考。  相似文献   

7.
日光温室主动蓄放热系统应用效果研究   总被引:11,自引:0,他引:11  
针对日光温室冬季夜晚温度低、作物易发生冷害等问题,设计了以水为蓄热介质的主动蓄放热系统.系统由集/放热装置、储热装置和控制装置等组成.白天进行太阳辐射热的吸收与储存,夜晚释放热量用于温室增温.试验结果表明,晴天条件下,主动蓄放热系统的集热功率为0.3kW/m2,蓄热量为6.9MJ/m2;夜间放热功率为0.2kW/m2,放热量为5.7MJ/m2,热利用效率为0.83,试验温室与对照温室的平均气温相差6.3℃;阴天及多云天气条件下,试验温室与对照温室的夜间平均气温相差4.6℃,表明主动蓄放热系统能有效改善日光温室夜间低温状况,进而保障蔬菜安全越冬生产.  相似文献   

8.
彩钢板保温装配式节能日光温室的温光性能   总被引:11,自引:8,他引:3  
针对传统日光温室防雨、防雪、防风、防火能力差,以及室内光温环境分布不均匀等问题,研制开发彩钢板保温装配式节能日光温室,该温室骨架为半圆弧形钢结构,采用岩棉彩钢板滑动保温覆盖形式和可移动保温山墙方法,温室跨度12 m、脊高5.5 m、长度65 m,屋面采光角高达41.5°。该日光温室采用水循环系统和空气-地中热交换系统代替土墙和砖墙等蓄热体,解决了装配式日光温室的蓄放热问题,实现了日光温室部件的工厂化生产和安装的标准化装配。与对照(辽沈Ⅲ型土墙日光温室)比较,彩钢板保温装配式节能日光温室脊高前移、位于温室中部,温室后部遮光减少,土地利用率提高20%以上,屋面采光角增加16.3°,采光率提高5.3%,晚间室外大气温度在-25.8℃时,室内气温在13℃以上,室内外温差达到39.1℃,比对照温室提高2.3~3.5℃。彩钢板保温装配式节能日光温室栽培空间大,采光好,升温快,室内横向和纵向光照和温度分布均匀,植株生长整齐,有效解决了传统日光温室抵御雨、雪、风、火自然灾害能力差的问题。该温室集成了大型连体温室温光分布均匀和传统日光温室蓄热保温好的优点,提高了太阳能的利用效率,温室总体温光性能超过对照温室,且滑动覆盖易于实现日光温室保温覆盖件的精准控制,为中国日光温室的自动化控制和现代化提供新途径。  相似文献   

9.
主动蓄放热-热泵联合加温系统在日光温室的应用   总被引:19,自引:15,他引:4  
为提高主动蓄放热系统集热效率,增强日光温室抵御低温能力,设计了一套主动蓄放热-热泵联合加温系统。白天运行主动蓄放热系统,将北墙获得的太阳辐射能储存到蓄水池中;根据天气情况及蓄水池水温变化适时开启热泵机组,降低主动蓄放热系统循环水温,进而提升其集热效率;夜间室内气温较低时,通过主动蓄放热系统放热。试验结果表明:与对照温室相比,试验温室夜间气温高出5.26~6.64℃;热泵机组制热性能系数COPHp为4.38~5.17,主动蓄放热系统可为热泵机组热源提供充足的热量,保证理想的热源温度;在日光温室特定的光热环境下,主动蓄放热-热泵联合加温系统的集热效率达到了72.32%~83.62%,总体COPSys值达5.59,节能效果显著。该研究为提高日光温室夜间温度提供了新思路。  相似文献   

10.
冬夏兼用型日光温室内热湿性能分析与应用效果   总被引:2,自引:1,他引:1  
日光温室是中国北方地区重要的农业设施类型,可进行春提早、秋延后与越冬栽培,但在夏季高温季节使用困难。为了提高苏北地区日光温室的利用效率,该文设计了一种后墙部分可拆装的冬夏兼用型日光温室,该日光温室的后墙包括上下两部分,上部分为镀锌钢架和秸秆块组成的拆装墙体,下部分为空心砌块砌筑的固定墙体。该文以当地传统空心砌块后墙日光温室为对照,首先监测两种日光温室最热月和最冷月的室内外温湿度变化;其次,比较分析了两种日光温室后墙材料热工性能、冬季后墙温度波动和热流密度的差异以及夏季室内空气流动速率的差异;最后,分析比较了两栋日光温室冬夏季室内作物生长状况、产量以及投入产出比。结果显示,冬夏兼用型日光温室固定墙体的热稳定性能和隔热性能分别高于传统空心砌块墙体10.8倍和18.3倍,昼平均热流密度高约19.0%,蓄热时间长约1.0 h,夜间平均热流密度高约18.3%,放热时间长约2.1 h。夏季拆除秸秆块后,冬夏兼用型日光温室内空气流速明显高于对照温室。田间监测发现,与对照温室相比,冬夏兼用型日光温室冬季白天室内平均气温高1.1℃,室内平均湿度低9.1%;夜间室内平均气温高1.0℃,室内平均湿度低6.8%,番茄单株产量显著提高16.7%;夏季通风口面积大,室内空气流速大,通过自然通风排除的热量多,白天室内平均气温低4.0℃,夜晚室内平均气温低3.1℃,日最高气温低1.4~8.1℃,不结球白菜单株鲜质量显著提高38.5%。统计结果显示,与对照温室相比,冬夏兼用型日光温室投入产出比高8.05%。综上,与当地传统空心砌块后墙日光温室相比,冬夏兼用型日光温室冬季保温性能和控湿性能好,夏季通风降温性能优良,能够实现作物的周年生产,在苏北地区具有一定的实用价值。  相似文献   

11.
主动蓄放热加热基质与加热空气温室增温效果对比   总被引:7,自引:6,他引:1  
为进一步提高日光温室内主动蓄放热热能的利用效率,该文以主动蓄放热加热基质系统(active heat storage-release substrate warming system,AHSSWS)提升栽培基质温度作为试验组,以主动蓄放热加热空气系统(active heat storage-release air warming system,AHSAWS)提升夜间气温处理作为对照组,比较了2种加温方式对基质温度、室内气温及番茄生长、产量的影响,并对2个系统的能量收支情况、设备投入、运行成本进行了比较。试验结果表明,相比主动蓄放热加热空气系统,主动蓄放热加热基质系统可提高基质温度2.5~5.3℃;与加热空气相比,加热基质处理可提高番茄株高及产量(增产43%)。连续晴天情况下,主动蓄放热加热基质系统的COP(coefficient of performance)为1.5~1.9,主动蓄放热加热空气系统的COP为3.0~4.0;连续阴天情况下,主动蓄放热加热基质系统的COP为0.5~0.9,主动蓄放热加热空气系统的COP为1.0~2.2。相对于主动蓄放热加热空气系统,主动蓄放热加热基质系统的集热效率、节能率、平均COP略低;但试验组的单位产量耗能量为0.7 k J/kg,低于对照组的单位产量耗能量(1.0 k J/kg),从单产能耗角度来讲,主动蓄放热加热基质系统更具优势,因此可根据番茄销售价格及当地电价来选择相应的加温系统。该文研究结果为主动蓄放热热能的高效利用以及主动蓄放热加热基质系统在日光温室冬春季番茄加温栽培应用提供了理论依据。  相似文献   

12.
节能日光温室蓄热技术研究进展   总被引:18,自引:11,他引:7  
节能日光温室起源于中国辽南地区,具有完全的自主知识产权,在中国设施园艺的发展过程中起到了重要的作用。节能日光温室的高效蓄热性能是其与普通日光温室的最主要的区别,节能日光温室的蓄热是通过结构、材料、设备的单一或协同应用来最大化利用太阳能为室内提供热能,有被动蓄热和主动蓄热2种形式。目前的形式主要包括主动采光蓄热、空气循环蓄热、水循环蓄热、相变材料蓄热、卵石蓄热、热泵蓄热、联合方式蓄热。该文综述了节能日光温室蓄热技术的相关研究成果,分析了主要技术问题及研究重点,从传统日光温室节能化改造、节能日光温室新结构发展、蓄热技术研究方法集成及市场化推广应用4个方面进行未来发展方向和研究内容的展望,为国内开展节能日光温室蓄热技术研究提供参考。  相似文献   

13.
复合相变储能保温砂浆在日光温室中的应用效果   总被引:1,自引:3,他引:1  
周莹  王双喜 《农业工程学报》2017,33(20):190-196
为改善日光温室内作物生长的热环境,该文研制了一种适用于日光温室的石膏基石蜡/膨胀珍珠岩复合相变储能保温砂浆,其相变温度为25.6℃,相变潜热为89.8 k J/kg。并将50 mm的复合相变保温砂浆用于砖墙日光温室的后墙作为试验温室,与无相变材料的原砖墙温室(即对照温室)进行对比试验。在试验周期内,试验温室的室内日最低温度比对照温室平均高出1.5℃,最高可达2.4℃;其中,阴天试验温室的室内温度比对照温室平均高1.6℃;晴天试验温室的室内最高温度比对照温室低1.7℃,室内最大温差比对照温室低3.1℃,夜间(17:00-次日8:00)试验温室室温比对照温室平均高2.7℃;多云期间,试验温室的室内最高温比对照温室低1.4℃,最大温差比对照温室低3.5℃,夜间试验温室室温比对照温室平均高2.3℃;在相同栽培管理条件下,生长旺盛期和坐果期,试验温室的黄瓜植株高度比对照温室分别平均高出17.1和24.6 cm,试验温室内黄瓜的单果质量和单株结果数分别为对照温室的1.4倍和1.3倍,单株产量为对照温室的1.8倍。试验结果表明,复合相变储能保温砂浆具有良好的保温和蓄、放热效果,对日光温室内的热环境具有明显的改善效果,使其更适于黄瓜的生长。  相似文献   

14.
温室主动蓄放热-热泵联合加温系统热力学分析   总被引:13,自引:11,他引:2  
主动蓄放热-热泵联合加温系统加温和节能效果显著,在温室加温领域应用前景广阔,但系统技术参数及工艺仍有待优化。该文通过对系统进行能量平衡和可用能(Exergy)分析,得出系统及各组件的性能系数、可用能损失、损失比和可用能效率,以此为依据对系统进行性能评价和优化。试验结果表明:系统平均1 d中集热和保温阶段可用能损失总量为9.77×104 kJ,可用能效率为48.7%;可用能损失最大、可用能效率最低的组件是主动蓄放热装置,其次是热泵装置、循环水泵和蓄热水箱,其可用能损失比分别为78.7%、8.3%、7.7%、5.3%,可用能效率分别为25.6%、38.3%、75.0%、88.2%。就整个系统而言,最需要进行技术优化的是主动蓄放热装置与热泵装置,可用能损失主要由有限温差传热引起,降低传热温差、减少有限温差传热过程以及改进生产工艺是优化的重点。试验期间系统的集热效率为89.0%~100.5%,热泵装置制热性能系数(coefficient of performance,COPHp)达5.48~6.08,性能远远高于传统太阳能热水系统以及水、地源热泵。该研究为温室加温系统性能评价和优化设计提供思路。  相似文献   

15.
为探讨日光温室蓄放热新途径,研究了钢管屋架管网水循环集放热系统,测试了该系统的集热与蓄放热状况。理论计算表明,在屋架间距为1 m,上、下弦杆件均为外径33.5 mm的圆管时,系统的太阳能截获率可达7%~8%。在室内地面面积为620 m2的日光温室中的冬季测试结果表明,容积为8.6 m3的蓄热水体白昼日平均蓄热温升4.7℃,平均蓄热量为149 MJ,蓄热流量为8 721 W;夜间水体日平均放热温降2.5℃,平均放热量为78.9 MJ,平均放热流量为5 974 W;与对照日光温室相比,平均提高夜间室内最低气温2.4℃。屋架集放热系统利用温室原有屋架作为集热与放热构件,不会妨碍室内的生产作业,同时成本低,运行管理简单,容易维护。  相似文献   

16.
日光温室水幕帘蓄放热系统增温效应试验研究   总被引:26,自引:16,他引:10       下载免费PDF全文
针对日光温室夜间温度过低,难以满足作物生长需求这一问题。设计了一种水幕帘蓄放热系统,该系统以日光温室墙体结构为依托,以水为介质进行热量的蓄积与释放,白天利用水循环通过水幕帘吸收太阳能,同时将能量储存在水池中,夜晚利用水循环通过水幕帘释放热量,以提高日光温室内温度。试验测试结果表明,应用该水幕帘蓄放热系统可将温室内夜间温度提高5.4℃以上,可将作物根际温度提高1.6℃以上;该系统夜间通过水幕帘的放热量达到4.9~5.6MJ/m2;日光温室蓄放热量的增加,实现了西红柿的安全过冬生产,同时将西红柿的上市时间至少提前20d。该研究成果对日光温室结构的改进、温度调控有较大的科学意义。  相似文献   

17.
日光温室土墙传热特性及轻简化路径的理论分析   总被引:8,自引:6,他引:2  
为减小日光温室土墙厚度,该研究在分析土墙温度变化的基础上提出了土墙轻简化路径并进行了理论分析。根据测试分析,土墙可划分为用于储蓄热量的蓄热层和防止热量从蓄热层向室外方向流失的保温层。土墙86.9%的部分为保温层。模拟结果表明使用由47 cm厚夯土和7 cm厚聚苯板(热阻等于3.13 m厚夯土保温层)构成的复合墙在夜间的放热量与3.6 m厚土墙相近。使用保温材料替代夯土保温层来减薄土墙在理论上可行。另外,根据模拟,当土壤20 cm深处温度提高至23℃后,土壤供热量可超过测试条件下土壤和土墙放热量总和。为此,土墙在理论上可通过以下2条途径实现轻简化:1)使用保温材料建造墙体保温层;2)使用土壤蓄热替代墙体蓄热。  相似文献   

18.
水墙封闭温室夏季降温特性   总被引:3,自引:3,他引:0  
封闭温室(closed greenhouse)是一种建筑结构全封闭式的透光型温室,能够实现节能减排、室内蒸散水回收利用、维持高水平CO_2浓度以及隔绝气传病菌孢子等。但在夏季,封闭温室内高温环境难以有效控制,或需消耗巨大电能,无法投入生产。为降低夏季封闭温室内环境温度,从低碳节能的角度出发,设计并建造了一栋水墙封闭温室。2015年7月26日至9月10日,对水墙封闭温室夏季降温特性进行试验测试,结果表明:正午前后(10:00-16:00),室内平均气温为29.4~34.3℃,比室外低0.8~6.8℃,降温效果明显;且太阳辐射越强烈、环境温度越高,则水墙封闭温室的降温幅度越大(P0.01)。白天作物进行光合生产期间(06:00-18:00),封闭温室内气温有94.6%的时间被控制在35℃以内,可有效避免高温胁迫。夜间(18:00-06:00)室内湿度被控制在80%以下,平均湿度为54.7%~73.7%,比室外低7.2%~17.5%,降湿效果明显;且室内外湿度差与室内外温度差呈线性负相关(P0.01)。白天室内水平方向平均太阳辐射量为31.5~67.4 W/m~2,约为室外的11.9%~17.8%。太阳辐射由室外进入水墙封闭温室内,远红光占比由41.9%降低至9.2%,透过率仅为6.0%,有利于抑制室内高温。在室内太阳光谱中红、蓝光占比最大,分别为23.9%和27.1%,较之室外均有提升;其透过率分别为32.4%和37.5%,远高于紫外光和远红光。可见,水墙封闭温室可以有选择性的透过太阳光谱,抑制室内高温的同时保证充足的光合有效辐射。此外,墙体水温及室内气温分布、日变化均呈现一定规律。综上,水墙封闭温室能在夏季通过自身结构达到理想的降温效果,并获得适宜的湿度、光照等条件,是一种可行的、低碳节能的封闭温室型式,可为封闭温室的应用发展提供参考与技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号