首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 112 毫秒
1.
In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees with high density on the poor soils in semiarid regions. Little is known about the impacts of afforestation on the sandy soil properties, although the evaluation of these impacts is fundamental to judge the rationality of afforestation policy. Soil phosphorus (P) fractions, acid phosphomonoesterase activities, and other soil chemical properties were compared among five adjoining typical ecosystems on poor sandy soils in southeastern Horqin sandy land. The ecosystems studied are natural elm savanna, degraded grassland, Mongolian pine (Pinus sylvestris var. mongolica) plantation, Chinese pine (Pinus tabulaeformis) plantation, and mixed plantation of Mongolian pine and poplar (Populus simonii). The results showed that organic P dominated soil P (47%-65%) was the principal source of available P. The degradation of elm savanna to grassland significantly reduced soil pH and resulted in an overall reduction in soil fertility, although slightly increased labile inorganic P. Grassland afforestation had no significant influence on soil pH, organic carbon, and total N but significantly reduced total P. Impacts of grassland afforestation on soil P fractions depended on tree species. Natural elm savanna had higher soil P conserving ability than artificial plantations. Therefore, with the aim of developing a sustainable ecosystem, we suggested that vegetations with low nutrient demand (particularly P) and efficient nutrient cycling would be more suitable for ecosystem restoration in the semiarid region.  相似文献   

2.
Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine (Pinus resinosa) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature (Tsoil) and soil moisture (Msoil) were higher in the thinning plots than those in the controls. Litter fall removal had significant effiects on Tsoil and Msoil. Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.  相似文献   

3.
土壤母质与茶叶质量的关系初探   总被引:2,自引:0,他引:2  
Six tea plantations with different soil-forming parent naterials,the same tea variety and tea age and similar landforms and management were selected to conduct a systematic study on the realtionship between soil properties and tea quality.The results showed that the quality of tea grown on the soil derived from dolomites,Quaternary red clays,were inferior.Further study showed that sandy soils were beneficial to improving amino acid content of tea ,and clayey soils made it decrease;high content of bases might decrease the contents of tea polypenols,caffeine,water extracts,but promote the content of amino acds;available phosphorous was significantly positively correlated with water extracts ,but significantly negatively correlated with caffeine;slowly avaiable potassium was positively correlated with amino acid content .Soil parent materials should be regarded as an important factor in eveluating the adatability of tea to soils.  相似文献   

4.
Understanding the spatial variability of soil carbon(C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate change on soil C storage. On the basis of soil data from a transect across the Inner Mongolian grasslands, we determined the quantitative relationships of C and nitrogen(N) in bulk soil and particle-size fractions(sand, silt, and clay) with climate and soil texture to evaluate the major factors controlling soil C and N storage and to predict the effect of climate changes on soil C and N storage. The contents of C and N in the bulk soil and the different fractions in the 0–20 and 20–40 cm soil layers were positively correlated with the mean annual precipitation(MAP) and negatively correlated with the mean annual temperature(MAT). The responses of C storage in the soil and particle-size fractions to MAP and MAT were more sensitive in the 0–20 cm than in the 20–40 cm soil layer. Although MAP and MAT were both important factors influencing soil C storage, the models that include only MAP could well explain the variation in soil C storage in the Inner Mongolian grasslands. Because of the high correlation between MAP and MAT in the region, the models including MAT did not significantly enhance the model precision. Moreover, the contribution of the fine fraction(silt and clay) to the variation in soil C storage was rather small because of the very low fine fraction content in the Inner Mongolian grasslands.  相似文献   

5.
红壤丘陵地区土地利用的生态学效应   总被引:4,自引:5,他引:4  
Plant biomass and biodiversity,element accumulation and return,water loss and soil erosion,and changes in soil properties were studied for up to 10 years after conversiton of sparse tree-shrubby grass land into the following four land use patterns:masson pine(Pinus massoniana Lamb.) land,beautiful sweetgum(Liquidambar formosana Hance)land,vegetation reservation aldn,and artificial mowing land.Thie annual biomass production of the masson pine land was 5060kg ha^-1,being 4.9,2.1,and 6.0 times that of the beautiful sweetgum land,the vegetation reservation land,and the artificial mowing land,respectively,Compared with the background values,the number of plant species for the vegetation reservation and increased by 10 species after 10 years of land utilization,while for the masson pine and the beautiful weetgum decreased by 4,and for the artifiucial mowing land by 9.For masson pine land,total amount of N,P,K,Ca,and Mg needed for producing 1000kg dry matter was only 3.5kg,annual element return through litter was 22 kg ha^-1,both of which were much lower than those of the other patterns.Vegetation reservation was an effective measure to conserve soil and water and improve soil fertility in the red soil hilly region.Artificial mowing aroused serous degradation of vegetation and soil.Some measures and suggestions for management and exploitation of the red soil hilly region such masson pine planting,closing hills for afforestation,and stereo-agriculture on one hill are proposed.  相似文献   

6.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

7.
A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present cxperiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy" soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.  相似文献   

8.
The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.  相似文献   

9.
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.  相似文献   

10.
Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of three composted organic amendments on diuron leaching through columns of two vineyard soils from Vosne-Roman′ee(VR, calcareous Cambisol) and Beaujolais(Bj, sandy Leptosol), France. Bromide(used as non-reactive tracer) and diuron breakthrough curves(BTCs) were analyzed using convectivedispersive equation(CDE), two-region(mobile-immobile, MIM) and two-site models. No influence of the composts was observed on the bromide recovery rates. The CDE model described well the bromide BTCs for all columns of the Bj soil and seven of the VR soil, suggesting a homogeneous water flow. However, for five VR soil columns, the MIM model fitted better, suggesting a partition of the water flow(15%–50% of matrix flow). The texture, the coarse material content and the tillage of the VR soil could explain this heterogeneity. However, for all columns, diuron leaching was greater through the Bj soil(46%–68%) than the VR soil(28%–39%). The compost addition resulted in a contrasting effect on diuron leaching: no difference or a decrease was observed for the VR soil, probably due to an increase of adsorption sites, whereas no difference or an increase was observed for the Bj soil possibly because of interactions and/or competition of diuron with the compost water-extractable organic matter which could facilitate its transport. All the diuron BTCs were best described using the two-site model, suggesting a large proportion of time-dependent sorption sites(30%–50%). The soil type and the nature of the amendments had contrasting influences on diuron transport. Composts with a high water-soluble fraction must be avoided in sandy soils to reduce the risk of groundwater contamination.  相似文献   

11.
土壤水分是黄土高原水蚀风蚀交错带生态环境恢复的关键因子,具有明显的时空异质性。以水蚀风蚀交错带的代表性流域—老爷满渠小流域为对象,采用网格法(50 m×50 m)共布设了73个样点,原位观测0—5 m土壤含水率,共测定23次(2013年6月至2019年10月),通过获取每个样点的环境因子,结合经典统计、地统计、随机森林等方法,分析了小流域尺度不同土层深度(每层1 m,共5层)土壤含水率的季节变化特征与影响因素。结果表明:不同土层土壤含水率的空间分布特征和季节性变化规律不同;对于0—1 m土层,土壤含水率在夏季和冬季之间存在显著性差异(p0.05),而对于1 m以下土层,春季平均土壤含水率高于其他季节,但不显著;无论在何种季节,不同土地利用方式、壤土与砂土间的土壤含水率在3 m以上土层均存在显著差异(p0.05),而阴、阳坡的土壤含水率在所有土层均存在显著差异(p0.05);在不同季节,土壤含水率与容重和砂粒呈负相关,与其他环境因子(有机碳含量、黏粒、粉粒、有机碳密度、土地利用、坡向、土壤质地和pH)呈正相关;除有机碳密度和黏粒较为稳定外,土壤含水率与环境因子的相关性均随土层深度增加呈减少趋势;环境因子对土壤含水率空间变异的整体相对贡献表现为土壤性质地形土地利用。研究结果可为研究区深层土壤水资源管理、土壤水文观测与模拟、植被优化布局等提供参考。  相似文献   

12.
This work evaluated how pine plantations established on old fields and degraded lands influence soil properties in comparison with adjacent unplanted areas that undergo into secondary succession, and native forests, analysing the effects of abiotic variables and stand characteristics in the afforestation process. Thirty‐two paired sites (pine plantations versus unplanted areas) and 10 native forests were selected in the SE Spain. In total, 74 soil profiles were studied, and 222 composite soil samples were collected at three different depths. Soil organic carbon, cation exchange capacity, and C : N ratio showed significantly greater values in pine plantations in relation to the unplanted areas (0–5 cm), and the mean values of soil organic carbon, nitrogen (N), C : N ratio, and cation exchange capacity in these pine plantations were similar to those found under native forests. Only K+ concentrations were clearly higher in the native forests than in the other land uses for all depths analysed. Pine plantations in the drier and warmer areas showed lower soil quality in relation to the paired unplanted areas, as well as the younger and denser ones; it may be because under these situations, more time is needed to produce an improvement. In fact, the paired net variations increased with the stand age and/or tree size. In conclusion, pine plantations were in general more efficient in improving parameters related to soil quality, especially in locations with high soil water retention capacity, which in our study area were found at higher and cooler elevations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Mining activities leave large areas of post‐mining lands to be reclaimed. Increases in soil C and N pools and N availability are important to successfully reestablish trees on post‐mining land. In this study, we determined C and N concentrations and natural stable isotope of 13C and 15N in soil and plant in Mongolian pine (Pinus sylvestris L. var. mongolica Litv.) plantations 8 years after establishment on non‐mined land (NM), post‐mining land without soil amendment (NAM), and post‐mining land with soil amendment (AM) in a placer gold mining region of Northeast China. We found that the growth of Mongolian pine was significantly slower on NAM as compared with NM (decreasing by 73% in tree height and 63% in basal diameter), but tree growth improved on AM. Soil C and N concentrations, plant N concentration, and soil δ15N value decreased in the order of NM > AM > NAM, implying that soil N availability decreased in post‐mining land, but soil amendment could increase soil N availability. However, the values of δ15N in plant tissues of Mongolian pine were higher on NAM than on NM and AM, suggesting that soil inorganic N form absorbed by trees might be changed when trees were directly planted on post‐mining land with lower soil N availability. In addition, the values of δ13C in 1‐ and 2‐year‐old leaves of Mongolian pine were lowest when planted on NAM, indicating a decrease in intrinsic water‐use efficiency of Mongolian pine. Our results suggest that soil amendment helps us establish forests successfully on post‐mining lands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
土壤含水量是影响半干旱区农作物生长的重要因素。为了准确测定土壤含水量的变化动态以指导农业高效用水,近年来,利用地球物理测量方法研究高分辨率的水流入渗,已经越来越受到欢迎和重视。本文以陇中半干旱区玉米田为例,通过在土壤表面布置电极,利用高密度电阻率成像法(ERT)对降雨前后土壤二维剖面进行电阻率数据测量,实现对土壤二维剖面电阻率值和含水量监测,解释不同条件下土壤含水量变化的原因,建立陇中半干旱区农田土壤电阻率和含水量之间的相关关系。结果表明:降水入渗使得二维剖面土壤电阻率整体呈明显降低趋势,反演得到的电阻率图像局部电阻值"高-低-高"的变化过程,与一次降水过程前后"干-湿-干"的循环过程一致。土壤含水量实测值与估计值之间有较为显著的线性关系(R2=0.651 8,n=96)。在0~2.0 m深度范围内,总体估计偏差较小,为0.74%;土壤含水率的估计精度较高,为2.64%。0~0.5 m土层(H1)含水量监测探头分布密集,数据采集较为准确,故H1层估计精度略高于0.5~2.0 m层(H2)。相比之前利用实测工具进行野外测量,ERT测量方法精度较高。本文提供了一个高分辨率的土壤结构二维分布与水分运移过程的图像,同时为实现精确和高效的农业用水管理提供一种新途径。  相似文献   

15.
The central moments of soil water content (SWC) variability at the field scale are determined by soil texture, considering both smooth topography and groundwater table position. The characteristics of variability are governed by other soil factors like soil structure, micro relief, preferred water flow paths, root system characteristics, rock content, etc. This paper shows the integral effect of all these hardly quantifiable factors on SWC variability simulated by the processes of evapotranspiration and groundwater–root zone interaction using the HYDRUS ET model. SWC and soil hydraulic characteristics were spatially determined over a 4.5 ha field during two sampling campaigns under different atmospheric and groundwater conditions, and data distributions were compared to SWC distributions provided by mathematical modeling. The entire spring–summer period of 2003 was then examined for changes of SWC spatial variability. It was found that evapotranspiration influences SWC spatial variability only if SWC is under the critical value when wetter parts of the field evaporate more water than drier parts, resulting in smoothed SWC variability. Under wet conditions the spatial variability of SWC increases by drainage, as those parts of the soil with coarser texture drain faster than finer-textured parts.  相似文献   

16.
鸡西矿区采石废弃地植被恢复技术   总被引:3,自引:0,他引:3       下载免费PDF全文
以鸡西矿区采石废弃地为研究区,采取客土、保水剂、营养袋等栽培方式进行造林,选择樟子松、兴凯赤松、中国沙棘、紫穗槐和小叶锦鸡儿等树种进行植被恢复。结果表明:1)客土栽培方式下,中国沙棘成活率最高,达95.2%,平均高度(179.1 cm)、冠幅(130.6 cm)和盖度(65.3%)均为最高,林下土壤全N、水解N含量最高,分别为1.97 g/kg和294.01 mg/kg,有机质含量为0.91%;樟子松成活率为67.3%,平均高度为70.5 cm,但土壤全N、水解N和有机质含量均为最低,分别为0.45 g/kg、52.36 mg/kg和0.46%;兴凯赤松和紫穗槐成活率分别为64.1%和50.1%,小叶锦鸡儿成活率仅有9.4%。2)在不同栽培方式中,保水剂栽培方式对兴凯赤松影响最大,成活率达85.3%,比对照提高103%,林下土壤N、P、K和有机质含量都有很大程度的提高,有机质和水解N含量分别是对照的2.6和3.1倍;营养袋栽培方式对樟子松影响最大,成活率达88.3%,成活率和高生长分别比对照提高116%和23%,土壤有机质、全N和水解N含量分别是对照的1.8、1.8和1.4倍。3)保水剂和营养袋栽培方式可有效增加林下草本植物数量和盖度。  相似文献   

17.
通过对黄土高原薪炭林地土壤的对比分析表明:试区土壤为黄绵土土体构型,质地为轻壤土或中壤土质;随着林木生长年限的增加,薪炭林地土壤水稳性团粒结构含量比农地对照提高了7.5%;土壤有机质也有明显地改善和提高;土壤水解氮的含量,以豆科柠条、刺槐、紫穗槐等树种林地含量高于山杏、沙柳等其它树种林地的含量;还对林地有效水的含量及利用状况、土壤的渗透特征进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号