首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
A long-term field experiment (1984–2011), was conducted on a Calcic Haploxeralf from semi-arid central Spain to evaluate the combined effect of three treatments: farmyard manure (FYM), straw and control without organic amendments (WOA) and five increasing rates of mineral N on: (1) some energetic parameters of crop production, and (2) the effect of the different treatments on soil organic carbon (SOC) and total N stocks. Crop rotation included spring barley, wheat and sorghum. The energy balance variables considered were net energy produced (energy output minus energy input), the energy output/input ratio and energy productivity (crop yield per unit energy input). Results showed small differences between treatments. Total energy inputs varied from 9.86 GJ ha?1 year?1 (WOA) to 11.14 GJ ha?1 year?1 in the FYM system. For the three crops, total energy inputs increased with increasing rates of mineral N. Energy output was slightly lower in the WOA (33.40 GJ ha?1 year?1) than in the two organic systems (37.34 and 34.96 GJ ha?1 year?1 for FYM and straw respectively). Net energy followed a similar trend. At the end of the 27-year period, the stocks of SOC and total N had increased noticeably in the soil profile (0–30 cm) as a result of application of the two organic amendments. Most important SOC changes occurred in the FYM plots, with mean increases in the 0–10 cm depth, amounting an average of 9.9 Mg C ha?1 (667 kg C ha?1 year?1). Increases in N stocks in the top layer were similar under FYM and straw and ranged from 0.94 to 1.55 Mg N ha?1. By contrast, simultaneous addition of increasing rates of mineral N showed no significant effect on SOC and total N storage.  相似文献   

2.
A field experiment was conducted during 2008 and 2009 at the Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India, to study the effect of organic sources of nutrient on yield, nutrient uptake, fertility status of soil, and quality of stevia crop in the western Himalayan region. The experiment comprised eight different combinations of organic manure [farmyard manure (FYM), vermicompost (VC), and apple pomace manure (AP)]. Total leaf dry biomass increased by 149% over the control with application of VC 1.5 t ha?1 + AP 5 t ha?1. Application of organic manures enhanced organic carbon and available nutrient status of soil more than the control. Nitrogen (N) and phosphorus (P) content in stem were significantly affected by the application of organic manures over the control. Stevia plants supplied with FYM 10 t ha?1 + AP 2.5 t ha?1 recorded more total glycoside than other treatments. Stevioside yield (kg ha?1) was greater with application of FYM 10 t ha?1 + AP 2.5 t ha?1.  相似文献   

3.
The present investigation was carried out to evaluate the effect of integrated nutrient management (INM) on crop yield sustainability and soil quality in a long-term trial initiated during the wet season of 1971 under a humid subtropical climate. Over 41 years of study, 100% nitrogen, phosphorus, and potassium (NPK) + farm yard manure (FYM) at 15 t ha?1 recorded the most sustainable grain yields. Optimal and superoptimal NPK fertilizers gave quite similar crop yields to that of 100% NPK + FYM at 15 t ha–1 up to two decades but thereafter yields declined sharply due to emergence of zinc (Zn) deficiency. The sustainable yield index (SYI) values indicated that wheat yields were more sustainable than rice. Soil organic carbon and available N, P, K, and Zn in the control plot decreased the most, whereas 100% NPK + FYM at 15 t ha–1 improved available N, P and K, maintained soil organic carbon, and decreased Zn over initial levels. Grain yield and SYI were more significantly correlated with Soil Organic Carbon (SOC). Continuous application of FYM contributed the maximum Soil Quality Index (SQI) (0.94), followed by Zn.  相似文献   

4.
Abstract

Contribution of sesbania green manure, rice straw, and FYM (farm yard manure) was studied along with that of urea and A/SO4 (ammonium sulphate) for the cultivation of lowland rice and for the residual soil fertility. The results revealed that A/SO4 application resulted in a larger number of productive tillers, higher straw production, and higher grain yield compared to urea. Among the organic manures, sesbania green manure and FYM exerted almost similar effects on the number of productive tillers and paddy yield while the yield increase compared to the incorporation of rice straw. A similar affect of these organic manures on nitrogen uptake by rice straw, grain, and straw + grain was observed. Additional uptake of N due to the application of sesbania green manure, FYM and rice straw amounted to 15, 13, and 2.85 kg ha?1, respectively. Residual N fertility was the highest when of sesbania green manure was applied followed by FYM and rice straw. Residual P fertility was higher in the case of FYM than other treatments whereas the residual K fertility was the highest in the case of rice straw incorporation.  相似文献   

5.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

6.
ABSTRACT

Low concentrations of P and organic manure in savanna soils limit cowpea response to rhizobia. The study was conducted to determine the combined effect of P and organic manure on cowpea response to rhizobia in a factorial experiment arranged in randomized complete block design with three replications on smallholder farmers’ fields in northern Ghana in 2015. The factors were two levels of Bradyrhizobium inoculant, two levels of P fertilizer, three treatments of manure (fertisoil, cattle manure, and no manure). Addition of Bradyrhizobium inoculant to P and fertisoil significantly increased shoot biomass yield from 1677 kg ha?1 in the plots without Bradyrhizobium inoculation to 1913 kg ha?1. Likewise, the addition of Bradyrhizobium inoculant to P and cattle manure significantly increased shoot biomass from 1437 kg ha?1 to 1813 kg ha?1. Grain yield increases of 1427 and 1278 kg ha?1 were obtained over the control when either fertisoil or cattle manure and P, respectively, were added to Bradyrhizobium inoculant. The value cost ratio for adding Bradyrhizobium inoculant to phosphorus and fertisoil was two indicating that it could be attractive to risk-averse smallholder farmers. The study demonstrated the potential of the combined application of organic matter and P to improve cowpea response to Bradyrhizobium inoculation.  相似文献   

7.
A field experiment was conducted during the kharif season of the crop year 2001 at the Indian Agricultural Research Institute, New Delhi, to study the comparative effects of organic and conventional farming on scented rice. Grain yield of rice increased significantly with increasing rate of fertilizer application only up to 60?kg N?+?13?kg P?+?17?kg K ha???1. The effect of 10 t ha???1 farmyard manure (FYM) was found to be similar to 60?kg N?+?13?kg P?+?17?kg K ha???1, whereas the effect of Sesbania green manuring (SGM) was similar to 120?kg N?+?26?kg P?+?34?kg K ha???1. Inoculation of BGA (Blue green algae) with FYM or SGM had no additional advantage over FYM or SGM alone. The highest yield (5.2 t/ha) of rice was obtained when FYM?+?SGM?+?BGA?+?PSB (Pseudomonas striata) were applied together. The yield obtained with this combination was significantly more than that obtained with 180?kg N?+?39?kg P?+?51?kg K ha???1. A similar trend was observed in N, P, and K uptake of rice. Inorganic nutrients had no significant effect on grain quality parameters like head rice recovery (HRR), kernel length (KL), kernel breadth (KB) and KL?:?KB ratio, whereas organic manures and biofertilizers resulted in an increase in HRR, KL and KL?:?KB ratio. A combination of FYM?+?SGM?+?BGA?+?PSB also resulted in highest organic C and available N content in soil and thus holds a promise for sustainable production.  相似文献   

8.
In an ongoing field experiment, organic and conventional farming (control) were compared for onion bulb yield, biochemical quality, soil organic carbon (SOC), and microbial activity after the sixth cropping cycle. The treatments used for organic production were farmyard manure (FYM, 20,000 kg ha?1), poultry manure (PM, 10,000 kg ha?1), vermicompost (VC, 10,000 kg ha?1), neem cake (NC, 5000 kg ha?1), and a combination of FYM (5000 kg ha?1), PM (2500 kg ha?1), VC (2500 kg ha?1), and NC (1250 kg ha?1); all treatments were compared with the control. Organic treatments produced 24.6–43.6% lower yield consistently for 6 years than the control treatment. No significant difference was observed between PM, FYM, and VC treatments for the bulb yield. Bulb analysis during the sixth year indicated that plants that received FYM, PM, or VC had higher levels of total phenol, total flavonoid, ascorbic acid, and quercetin-3-glucoside than the control plants. All the five organically treated sets had significantly higher values of SOC, microbial population, fungal-to-bacterial ratio, and dehydrogenase activity than the control and the initial values in each treated set. The results indicate that FYM, PM, or VC application enhances biochemical quality and organic farming is more sustainable than conventional farming.  相似文献   

9.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

10.
Effects of continuous cropping and addition of organic manures (farmyard manure, FYM, and groundnut shells, GNS) along with inorganic fertilizers on nonexchangeable potassium (K) release kinetics in a K-deficient Alfisol were studied in a 20-year manurial experiment under arid conditions. There was a depletion in available K under continuous cropping without K input (control) as compared to other treatments such as 100% nitrogen–phosphorus–potassium (NPK), 50% NPK + 4 metric tons (MT) groundnut shells ha?1, 50% NPK + 4 MT FYM ha?1, and 100% organic (i.e., 5 MT FYM ha?1). Over 20 years of cropping without K input, available K was reduced from 155 kg ha?1 (in 1985) to 82 kg ha?1 (in 2005), showing a negative balance of 73 kg ha?1. Soil in control plots showed available K in the deficient range (<50 mg kg?1), whereas four other fertilizer and manurial treatments were greater than the critical limit. Considerable improvements in nonexchangeable K-release parameters such as step K and cumulative K release were observed in manured plots over control. Parabolic diffusion and first-order kinetic equations explained K release from soils. Potassium-release rates were drastically reduced in control plots, and there were increased release rates with continuous addition of manures. Results suggest that soils with groundnut shells or FYM (4 MT ha?1) along with 50% inorganic fertilizer additions could maintain greater K release rates after 20 years of cropping as compared to cropping without K input.  相似文献   

11.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

12.
ABSTRACT

Field experiments were carried out for three consecutive years (2003–2006) at Bangladesh Sugarcane Research Institute farm soil on plant (first crop after planting) and subsequent two ratoon crops of sugarcane. The main objectives of the study were to assess the direct and residual effects of organic and inorganic fertilizer on growth, yield, and juice quality of plant and ratoon crops. The plant crop consisted of four treatments. After harvesting of plant crop to evaluate the residual effects on ratoon crop the plots were subdivided except the control plot. Thus, there were seven treatments in the ratoon crop. Application of recommended fertilizer [nitrogen (N150), phosphorus (P52), potassium (K90), sulfur (S35), and zinc (Zn3) kg ha? 1] singly or 25% less of it either with press mud or farmyard manure (FYM) at 15 t ha? 1 produced statistically identical yield ranged from 67.5 to 69.0 t ha? 1 in plant crop. In the ratoon experiment when the recommended fertilizer was applied alone or 25% less of its either with press mud or FYM at 15 or even 7.5 t ha? 1 again produced better yield; it ranged from 64.8 to 69.2 in first ratoon and 68.2 to 76.5 t ha? 1 in second ratoon crops. Results showed that N, P, K, and S content in leaf progressively decreased in ratoon crops over plant crop. Juice quality parameters viz. brix, pol, and purity % remained unchanged both in plant and ratoon crops. Furthermore, organic carbon (C), available N, P, K, and S were higher in post harvest soils that received inorganic fertilizer in combination with organic manure than control and inorganic fertilizer treated soil. It may be concluded that the application of 25% less of recommended fertilizer (N112, P40, K68, S26, and Zn2.2.5 kg ha? 1) either with press mud or FYM at 15 t ha? 1 was adequate for optimum yield of plant crop. Results also suggest that additional N (50% extra dosage) keeping all other fertilizers at the same level like plant crop i.e. N168, P40, K68, S26, and Zn2.25 kg ha? 1 either with press mud or FYM at 7.5 t ha? 1 may be recommended for subsequent ratoon crops to obtain good yield without deterioration in soil fertility.  相似文献   

13.
Agricultural productivity is increasingly becoming dependent upon soil fertility, which is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The present study aims to characterize the soil physical environment in relation to long-term application of farmyard manure (FYM) and inorganic fertilizers in a maize–wheat cropping system. The treatments in both the maize and wheat systems included a control (without any fertilizer or FYM), FYM (farmyard manure at 20 t ha?1), N100 (nitrogen at 100 kg ha?1), N100P50 (nitrogen and phosphorus at 100 and 50 kg ha?1), and N100P50K50 (nitrogen, phosphorus, and potash at 100, 50, and 50 kg ha?1). The treatments were replicated four times in a randomized complete block design in sandy loam soil. The root mass density in surface layers of both the crops was lower in FYM and higher in inorganic fertilizer plots. The root length density was found to be highest in FYM-treated plots and lowest in control plots. The periodic soil matric suction during wheat following maize remained highest in FYM plots followed by that in N100 plots in all the layers. The soil water storage of wheat at harvest (rice–wheat) was highest (21.1 cm) in control and lowest (17.8 cm) in FYM-treated plots. The soil water status, root growth, and crop performance improved with balanced fertilization.  相似文献   

14.
A long-term soil fertility experiment (1988-1999) at the Regional Agricultural Research Station, Bhairhawa, Nepal, was analysed to determine: (1) how long the yields of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) can be sustained without K but with N and N+P (NP) applied with or without farmyard manure (FYM) and green manure, and (2) the impact of K application on yields. Starting from the 1995 wheat season, the experiment was modified to accommodate K at 0, 42, and 84 kg ha-1 in plots receiving NP to study the response of rice and wheat to K. Both rice and wheat responded to K application but the response of wheat was substantially higher, indicating that the availability of native K may have been lower in wheat. Rice yields were lower in treatments without P than with P, and yields declined significantly (0.11-0.20 Mg ha-1 year-1) in all the treatments except in NP and NP+FYM. Wheat yield was more adversely affected than rice yield when P and K were not applied. In addition, wheat yields were low (average 0.5-2.1 Mg ha-1 in various treatments). Wheat yields declined (0.08-0.12 Mg ha-1 year-1) in all but FYM treatments indicating the role of FYM in sustaining yields. The interaction of K deficiency with Helminthosporium leaf blight (spot blotch and tan spot) is also suggested as one of the factors limiting wheat yields. The estimated K balance in soil was highly negative. Results suggest that farmers should apply adequate amount of K for higher and sustainable rice and wheat yields.  相似文献   

15.
The present paper summarizes the results from a long-term experiment setup in 1980 in the Taihu Lake region, China, to address the yield sustainability, the dynamic changes of soil organic carbon (SOC) storage, and soil fertility in the rice–wheat ecosystem. Treatments in three replicates comprising manure-treated and chemical fertilizer-treated groups (two factors), each having seven sub-treatments of different combinations of inorganic nitrogen (N), phosphorus (P), potassium (K), and rice straw, were randomly distributed. Results showed that the treatments of manure (pig manure from 1980 to 1996 and oil rape cake thereafter) + N + P + K (MNPK) and chemical fertilizer + N + P + K (CNPK) produced the highest and the most stable yields for both rice and wheat within the respective fertilizer treatment group. Potassium fertilization was necessary for yield sustainability in the ecosystem. Treatments of straw (as rice straw) + N (CRN) and manure + straw + N (MRN) produced more stable yield of rice but less stable of wheat. It was therefore recommended that straw should be only incorporated during the rice season. SOC contents in all treatments showed increasing trends over the period, even in the control treatment. Predicted SOC in chemical fertilizer-treated plots (mostly yet attainable) ranged from 16 to 18 g C kg−1, indicating the high carbon (C) sequestration potential of the soil as compared to the initial SOC. SOC in manure- or straw-treated plots ranged from 17 to 19 g C kg−1, which had been attained roughly 10 years after the experiment was initiated. Nutrient balance sheet showed that there was P surplus in all P-treated plots and a steady increase in Olsen-P over a 24-year period in 0–15 cm soil, which contributed little to crop yield increases. It was therefore suggested that P fertilization rate should be decreased to 30–40 kg P ha−1 year−1. Comparison of yields among the treatments showed that wheat was more responsive to P fertilizer than rice. Thus P fertilizer should be preferably applied to wheat. Soil pH decrease was significant over the 24-year period and was not correlated with fertilizer treatments. The overall recommendation is to incorporate straw at 4,500 kg ha−1 year−1 during the rice season only, with additional 190 kg N ha−1 year−1, 30–40 kg P ha−1 year−1 mainly during the rice season, and 150–160 kg K ha−1 year−1. Further research on the unusual P supply capacity of the soil is needed.  相似文献   

16.
Alarming climate change, rainfed upland farming, and low resource-use efficiency of conventional fertilizer management practices are major production constraints detrimental to rice productivity in the northwestern (NW) Himalayas. Recent agronomic intervention of direct-seeded rice (DSR) coupled with suitable rice germplasm well suited to rainfed upland ecosystems in combination with appropriate integrated nutrient-management (INM) technology can enhance the rice productivity in the region. Thus, a field experiment with seven treatments replicated three times in a randomized block design was conducted on INM technology in rainfed upland rice cv. HPR-1156 (Sukaradhan-1) to harness the potential of DSR technology in order to boost rice productivity in the NW Himalayas. Results on INM in direct-seeded upland rice revealed that nitrogen, phosphorus, and potassium (NPK) at 90:45:45 kg ha?1 + farm yard manure (FYM) at 5 t ha?1 (oven dry-weight basis) significantly resulted in the greatest magnitude of growth and development (plant height, tillers m?2) and yield-contributing characters (panicles m?2, panicle length, grains panicle?1 and 1000-grain weight), resulting in significantly greatest grain, straw, and biological yield followed by sole use of NPK at 90:45:45 kg ha?1 and NPK at 60:30:30 kg ha?1 + FYM at 5 t ha?1, respectively, in rainfed upland rice. Application of NPK at 90:45:45 kg ha?1 + FYM at 5 t ha?1 again resulted in significant improvement in soil organic carbon and available NPK status over other treatments and initial soil fertility status in an acidic Alfisol. Overall, it is inferred that INM technology with judicious use of NPK at 90:45:45 kg ha?1 + FYM at 5 t ha?1 in rainfed upland rice under DSR technology can enhance the rice productivity and resource-use efficiency in NW Himalayas.  相似文献   

17.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

18.
Abstract

Field experiment was conducted for 7 years continuously to evaluate the influence of combined application of organic and inorganic fertilizer on soil fertility buildup and nutrient uptake in mint (Mentha arvensis) and mustard (Brassica juncea) cropping sequence. Maximum organic carbon was observed under full supply of organic manure (T2; FYM at 20 t ha?1) averaged across all the Stages of cropping sequence. It was increased by 38, 50, and 51% in T2 in Stages I (after mint harvest/presowing of dhaincha), II (after incorporation of dhaincha (Sesbania aculeata)/presowing of mustard), and III (after harvest of mustard/preplanting of mint), respectively, over their respective controls. In general, magnitude of organic carbon was recorded higher in Stage II after green manuring of Sesbania compared with Stages I and III. Nitrogen availability in treated plots was increased by 26.0–89.9, 15.2–64.5, and 4.9–52.0% in Stages I (after mint harvest/presowing of Sesbania), II (after incorporation of dhaincha/presowing of mustard), and III (after harvest of mustard/preplanting of mint), respectively, over their respective control. Average across all the three Stages showed a positive balance of nitrogen (N), phosphorus (P), and potassium (K) in soil under different treatments. Mean of the three Stages indicated that maximum available N, P, and K were increased by 36.1, 129.0, and 65.20% in T4 (N:P:K: 133:40:40 and FYM at 6.7 t ha?1), T4 (N:P:K::133:40:40 and FYM at 6.7 t ha?1), and T3 (N:P:K::100:30:30 and FYM at 10 t ha?1), respectively, over their initial status. Supply of organic and inorganic fertilizer (T4; N:P:K::133:40:40 and FYM at 6.7 t ha?1) was found most suitable combination with respect to N, P availability in soil, and productivity of mint and mustard crop.  相似文献   

19.
ABSTRACT

The objective of this study was to study the influence of three organic manures, farm yard manure (FYM), poultry manure (PLM), and pigeon manure (PGM), on soil physical and chemical properties on tuber yield of Jerusalem artichoke in a newly reclaimed saline calcareous soil. A field experiment was conducted applying the three manures, alone and/or in different combinations. Soils were investigated at surface (0–30 cm) and subsurface (30–60 cm) layers before and after planting, and analyzed for physical and chemical properties. The results indicated that the application of 31.5 kg ha?1 of PLM+10.5 kg of PGM T7 recorded highest available nitrogen, zinc, copper, and moisture content at the surface layer. The same results were obtained for iron and manganese at both layers. While, applying 21.0 kg ha?1 FYM+21.0 kg ha?1 PLM T10 recorded the best treatment for pH, phosphorus, zinc, copper, moisture content, and saturation percentage at the subsurface layer. Applying 21.0 kg ha?1 PGM + 10.5 kg ha?1 FYM+10.5 kg ha?1 PLM T15 recorded the best treatment for organic matter content and bulk density at surface layer and reduced the electrical conductivity and inulin tuber content at both layers. On the other hand, calcium carbonate and sodium adsorption ratio were reduced in both layers by applying 21.0 kg ha?1 PLM+10.5 kg ha?1 FYM+10.5 kg ha?1 PGM T14. The best treatment for tuber nitrogen content and total yield was obtained with applying 42.0 kg ha?1 PLM T2 only and 31.5 kg ha?1 FYM+10.5 kg ha?1 PLM T4, respectively.  相似文献   

20.
ABSTRACT

A 6-year field experiment was conducted at Maharashtra, India, from 2011 to 2017 on a silty clay soil, to study the impact of organic manure prepared from common weed Trianthema portulacastrurm Linn. on soybean-fodder maize crop system and soil organic carbon (SOC) sequestration. Organic manures were prepared from Trianthema as compost, vermicompost, dry leaf powder and were compared with application of Farm Yard Manure (FYM), chemical fertilizer treatment (NPK), and control. All treatments were repeated to same earlier treated plots every year for subsequent 6 years. Soil samples were analyzed before experiment and after harvesting of crops at the end of 6 years. All organic manures prepared from Trianthema and FYM increased SOC, nitrogen, phosphorus, and potassium content in the soil as compared to chemical fertilizer treatment and control. The overall increase in SOC content in the 0–60-cm soil depth in vermicompost treatment was 3.51 Mg C ha?1 as compared to control at the end of this 6 years experiment at the carbon sequestration rate of 585 kg ha?1 year?1. Preparation and use of different manures from Trianthema will increase the carbon sequestration in soil, a measure to mitigate global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号