首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Iron (Fe) availability is low in calcareous soils of southern Iran. The chelate Fe-ethylenediamine di (o-hydroxy-phenylacetic acid) (Fe-EDDHA), has been used as an effective source of Fe in correcting Fe deficiency in such soils. In some cases, however, its application might cause nutritional disorder due to the antagonistic effect of Fe with other cationic micronutrients, in particular with manganese (Mn). A greenhouse experiment was conducted to evaluate the influence of soil and foliar applications of Fe and soil application of manganese (Mn) on dry matter yield (DMY) and the uptake of cationic micronutrients in wheat (Triticum aestivum L. var. Ghods) in a calcareous soil. Results showed that neither soil application of Fe-EDDHA nor foliar application of Fe sulfate had a significant effect on wheat DMY. In general, Fe application increased Fe uptake but decreased that of Mn, zinc (Zn), and copper (Cu). Application of Mn increased only Mn uptake and had no significant effect on the uptake of the other cationic micronutrients. Iron treatments considerably increased the ratio of Fe to Mn, Zn, Cu, and (Mn + Zn + Cu). Failure to observe an increase in wheat DMY following Fe application is attributed to the antagonistic effect of Fe with Mn, Zn, and Cu and hence, imbalance in Fe to (Mn + Zn + Cu) ratio. Due to the nutritional disorder and imbalance, it appears that neither soil application of Fe-EDDHA nor foliar application of Fe-sulfate is appropriate in correcting Fe deficiency in wheat grown on calcareous soils. Hence, growing Fe-efficient wheat cultivars should be considered as an appropriate practice for Fe chlorosis-prone calcareous soils of southern Iran.  相似文献   

2.
The effects of conventional and organic (manure) fertilization on soils of vineyards were examined in the area of Nemea in southern Greece. The soil properties of the adjacent natural environment (maquis), which served as a control (considering the land use changes as treatments), were also examined and compared with those of the vineyards. The null hypothesis was that there was no difference among them. The results rejected the null hypothesis. It was found that the maquis top soil had the highest C concentration than both types of vineyards and the organic vineyard had significantly higher C concentration than the conventional one. The organic soil N followed the same pattern. The vine leaves (blades) in the conventional vineyards had significantly higher concentrations of Ca, Mg, Mn, and Zn. The average values of Mg and Zn concentrations in leaves in the organic vineyards were below the suggested ranges for nutrient sufficiency in vines and for this reason a foliar application of Mg and Zn is recommended for the organic vineyards. The average berry yield was significantly higher in the conventional vineyards.  相似文献   

3.
This study investigated the effect of high humic substance (HS) levels (0, 500, 1000, and 2000 mg HS kg?1) on growth and nutrient concentrations of corn grown on calcareous soils. For these, soil samples were collected from the six different provinces of Turkey. According to the average values, HS levels had no significant effect alone on dry weight, nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) concentrations. Soil differences significantly affected dry weight, N, Mg, and Cu concentrations (p ≤ 0.05). Looking at HSxsoil interactions on K, Ca, Fe, and Mn concentrations, it could be seen that there was no effect or that the effect was negative. Only plant Fe concentrations obtained from Konya and Urfa provinces were positively affected from HSxsoil interaction. It was concluded that high level of HS had no or negative effect on corn growth and some nutrient concentration under calcareous conditions.  相似文献   

4.
The impact of simulated acid rain on soil leachate and xylem chemistry in a young Jack pine (Pinus banksiana Lamb.) stand in the boreal forest of northern Ontario was evaluated. Permanent plots (5 × 2 m) were established in 1981 which were sprayed twice monthly with simulated acid rain, adjusted to pH 5.6, 4.0, 3.5, 3.0 or 2.5 with a 2:1 molar ratio of sulphuric (H2SO4) to nitric acid (HNO3) in addition to ambient rainfall. Sprays were applied between June and September for 5 yr. Unsprayed plots were also monitored. The pH of soil leachate collected between 1981–1985 was reduced significantly by the acid sprays and concentrations of sulphate (SO42-), nitrate (NO3-), calcium (Ca), magnesium (Mg), aluminium (Al), manganese (Mn), and zinc (Zn) increased in the A, B and C horizons. The soil recovered rapidly from the spray treatments, although residual effects were found in soil leachate samples collected during 1986–1987, particularly in the C horizon. Trees receiving spray acidified to pH 2.5 had higher concentrations of Ca, Mn, Cd and Rb in tree-rings formed between 1981–1985 compared to trees receiving spray acidified to pH 4.0 or to trees receiving ambient rainfall alone. Some of the changes in soil chemistry resulting from the application of acidic sprays are reflected in the chemistry of Jack pine tree rings and these chemical signals in tree rings may be used as indicators of soil acidification.  相似文献   

5.
Leaf and soil samples were taken and analyzed from two mature biological olive groves (Olea europaea L., cv. ‘Chondrolia Chalkidikis’), in Thessaloniki, Macedonia, Northern Greece, in order to determine the correlations between soil exchangeable cations and foliar calcium (Ca), magnesium (Mg) and potassium (K) concentrations, and the interrelations among leaf nutrients. Τhe nutritional requirements of trees for both biological groves were exclusively based on patent kali supply and nutrient recycling (via pruning material and weed cut recycling). Foliar K, Ca and Mg were positively correlated with soil exchangeable K, Ca and Mg, in the 40–60 cm layer, then in the 20–40 cm layer. Synergistic uptake mechanisms among Ca2+, Mg2+ and K+ probably exist. Leaf N was negatively correlated with foliar K, and positively with leaf Ca, Mg and manganese (Mn). Foliar P was negatively correlated with leaf Ca, Mg and Mn, while foliar Ca was positively correlated with leaf Mg and Mn. Foliar Mg was positively related with leaf Mn. High phosphorus (P) may decrease leaf Ca, Mg and Mn. Enhanced Ca may increase leaf Mg and Mn, while high Mg may also enhance foliar Mn. Finally, based on the determination of foliar nutrient concentrations, the nutritional requirements of olive trees in Ca, Mg, K, P, Fe, Zn were sufficiently (or over-sufficiently) satisfied. However, additional organic fertilization is needed, in order to achieve optimum levels of N, B and Mn (since their foliar concentrations were slightly insufficient). The correlations between leaf and soil exchangeable Ca, Mg and K, as well as among foliar nutrients should be taken into consideration, in order to achieve successful organic fertilization for mature biological olive groves, and to avoid nutritional imbalances and disorders.  相似文献   

6.
Tetraploid clones of Nilegrass (Acroceras macrum, Stapf.) develop a chlorosis resembling iron (Fe) deficiency on acid (pH 5.0) soils in the Midlands of KwaZulu, Natal, South Africa. Hexaploid and pentaploid clones appear more resistant to the disorder. Iron deficiency would not be expected in such acid soils, but foliar sprays of Fe sulfate reduce the symptoms within 24 hours. Aluminum (Al) toxiciry has been ruled out as a cause of this chlorosis on the basis of soil tests. Manganese (Mn)‐induced Fe deficiency has been postulated. Six Nilegrass clones, differing in ploidy levels, were grown under low Fe or high Mn levels in nutrient solutions, in Mn‐toxic soil, in calcareous soil and in a standard potting soil at pH 7.0. Differential chlorosis symptoms, similar to those observed in the field, were reproduced in plants grown in low Fe or high Mn solutions, in neutral potting soil and in calcareous soil at pH 7.8. Based on plant symptoms and dry weights, the tetraploids were generally more sensitive to these conditions than hexaploid or pentaploid clones. However, in Mn‐toxic soil, plants had leaf tip necrosis rather than the chlorosis typical of Fe deficiency. When grown in a standard potting soil at pH 7.0, plants showing chlorosis accumulated higher concentrations of phosphorus (P), Al, copper (Cu), Mn, Fe, and zinc (Zn) than non‐chlorotic plants. Differential susceptibility to chlorosis is apparently associated with interference of such elements in Fe metabolism, and not with differential Fe concentrations in plant shoots. Additional studies are needed to determine the chemical states of Fe and Mn in root zones and within plant shoots of these clones. Resolution of the differential chlorosis phenomenon would contribute to fundamental knowledge in mineral nutrition and could be helpful in tailoring plant genotypes to fit problem soils.  相似文献   

7.
Surveys conducted from 1987 to 1990 of Norway spruce [Picea abies(L.) Karst.] within 12 plantations across 4 northeastern states revealed symptoms of crown discoloration and defoliation on a site-specific basis. Foliar N. K. and Ca concentrations of most of the sampled trees were above deficiency ranges, while foliar Mg concentrations of most of the symptomatic trees were below the deficiency range within the plantations. Soil pH, exchangeable Mg, K, Ca, and their corresponding percent saturations in soils were lower, while soil Al concentrations were higher for most of the symptomatic trees in comparison to the healthy trees. Foliar concentrations of Mg, Ca, K, P, Al, Mn, Pb, and Zn were positively correlated with concentrations of corresponding soil elements. Knowledge of nutrient deficiency ranges may help diagnose foliar symptoms, but their exclusive use may overly simplify relationships between foliar symptoms and foliar elements. Principal component regression analysis of the data provided assessment of interactions and balances among foliar elements, and among soil elements and their possible influences on crown symptoms. Crown symptoms were not only associated with concentrations of individual elements of foliage and soils, but also associated with interactions and balances between these elements. The influences of individual soil elements on discoloration and defoliation may depend upon other elements in soils. Soil Al may induce crown discoloration and defoliation by interfering with Mg, Ca, and K uptake in acidic soils.  相似文献   

8.
Concentrations of chemical elements in tree roots including heavy metals from air pollution Total concentrations of P, S, Na, K, Mg, Ca, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb were measured in roots from beech, spruce, ash, maple and a forest herb (Mercurialis perennis). The root samples were taken from a site with an acid soil type (Saure Braunerde) and from a site with calcareous soil (Rendzina). All elements except Mn, Zn and Pb (on acid soils) and Ca (on calcareous soils) showed higher concentrations in finest roots (<1 mm diameter) compared to fine roots (1–2 mm). In the case of the toxic heavy metals, this is interpreted as a consequence of reduced root uptake due to physiological processes or to organic complexing, followed by an accumulation at the root surface. Compared with aboveground plant parts, roots show accumulation of Al, Pb, Cd and Zn, indicating reduced translocation from roots to shoots. Roots from acid soil show higher concentrations of P, Mn, and Pb than in calcareous soil. The concentrations of Al and heavy metals in the roots are considered to be a consequence of the contamination of the investigated forest sites by long-range transported air pollutants, i.e. acid precipitation and deposition of heavy metals.  相似文献   

9.
Ozone effects on Mediterranean forests were studied for 10 years in southern France. The aim of these studies was to understand the impact of the pollutant on foliar damage among Aleppo pine (Pinus halepensis Mill) and Arolla pine (Pinus cembra L) populations. During the summers of 2001 and 2002, ozone concentrations were measured using UV absorption analysers (4) and passive samplers (29) at two forest monitoring sites: Site 1 in the Nice coastal area for Aleppo pine and Site 2 in the Mercantour mountains for Arolla pine, in the vicinity of tree observation sites. AOT 40 values were quite high (25–33 ppm.h), especially in the Mercantour mountains, for the 5 months of measurement. Foliar damage (defoliation and discoloration) and specific symptoms (chlorotic mottle) were observed on 8 Aleppo pine and 13 Arolla pine plots. For Arolla pines, there was a significant correlation between defoliation and chlorotic mottles. There was also a correlation between mean ozone concentrations measured by passive samplers and chlorotic mottles. These correlations were less significant for Aleppo pine.  相似文献   

10.
Commercial fertilizers containing synthetic manganese (Mn) chelates and complexes are currently used to alleviate Mn deficiency in crops. However, studies conducted on Mn sources in order to evaluate their behavior maintaining Mn soluble in nutrient solution and soil have not been done. In this work, representative commercial Mn fertilizers based on chelates and complexes were characterized and their chemical stability in solution and interaction with soils has been evaluated. Fertilizers studied were two ethylene diamine tetraacetic acid (EDTA) Mn chelates, one N‐(1,2‐dicarboxyethyl)‐D,L‐aspartic acid (IDHA) Mn chelate, two lignosulfonates, one carboxylate, one fulvate, one gluconate, and one heptagluconate‐based Mn complex. Characterization consisted of the determination of the soluble and chelated or complexed Mn, and the ligand identification by nuclear‐magnetic resonance (NMR). Stability study included batch experiments in Ca solution at different pH and three batch experiments with soil comparing with MnSO4. Results indicate that most of the Mn fertilizers comply with the declared “soluble and chelated or complexed” metal content. At a usual pH range of calcareous soils (7.5–8.5), both chelates and complexes maintain more Mn in solution than MnSO4 in the presence of Ca. Several factors affect the Mn remaining in solution after the interaction with the soil, especially, the soil‐to‐solution ratio. All chelates and complexes are better alternatives to the use of MnSO4 in agronomical practices such as fertigation and soil application. Mn‐IDHA as chelate and Mn‐HGl or Mn‐Carb as complexes can be efficient, economical, and environmental friendly fertilizers for foliar application and hydroponic cultures. In soil application, Mn‐EDTA or Mn‐LS would be the best options. In this case, lignosulfonic acid represents a sustainable and low‐cost solution.  相似文献   

11.
Pyrite (FeS2) is usually a waste from complex sulfide ores. Yet, it may be a remediation additive for calcareous soils deficient in iron (Fe) and other micronutrients such as copper (Cu), zinc (Zn), and manganese (Mn). In this study, leaching experiments were conducted under laboratory conditions and a 30-day pot trial (with wheat) to evaluate the effect of applying different amounts of pyritic tailings on micronutrient and heavy-metal concentrations in a calcareous soil and on crop growth (dry-matter production). The application of pyritic tailings to the calcareous soils improved the levels of Fe, Cu, Zn, and Mn, and dry-matter biomass of wheat also significantly increased. The heavy-metal contents in soil and plant were well below the permissible limit for soil and plants.  相似文献   

12.
Mineral‐nutrient stress is one of the main factors limiting crop production, especially in arid lands. The mineral requirement of a crop is difficult to determine, and the interpretation of foliar chemistry composition is not easy. This study was conducted to compute the minimum yield target for fresh fruit of yellow pepper (Capsicum annuum L.) and the corresponding Compositional Nutrient Diagnosis (CND) as well as to identify significant nutrient interactions of this crop in desert calcareous soils. Preliminary CND norms were developed using a cumulative variance‐ratio function and the chi‐square distribution function. From a small database, we computed means and standard deviations of row‐centered log ratios, VX, of five nutrients (N, P, K, Ca, and Mg) and a filling value, R, which comprises all nutrients not chemically analyzed and quantified them in 54 foliar samples of the popular yellow pepper cv. ‘Santa Fé’. This cultivar is widely grown in northwest Mexico under arid conditions. These norms are associated to fresh fruit yields higher than 15.04 t ha–1. Principal‐component analyses, performed using estimated CND nutrient indexes, allowed us to identify four interactions: negative P‐Ca, P‐Mg, and N‐K, and positive Ca‐Mg. Pepper plants growing on calcareous soils tend to take up more Ca and Mg than considered as optimum in other soil conditions.  相似文献   

13.
Liming reduces acidity neutralizes aluminum (Al3+) and manganese (Mn2+) toxicities and increases calcium (Ca2+) and magnesium (Mg2+) concentrations in many acid soils of the world. However, it reduces the availability of other cationic micronutrients that are essential for plant growth. Therefore, an experiment was conducted in greenhouse conditions for assessing the effects of higher lime rates in foliar and grain boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations of 15 soybean genotypes [Glycine max (L) Merrill]. The lime rates were calculated to raise base saturation (V) to 40 and 70%. The soybean genotypes were classified as efficient and moderately efficient in lime-use, the most efficient cultivar was BRS 295RR, and the least efficient was TMG 7161RR and BMX Força RR. The lime rates × genotypes interaction was significant for foliar Cu. The grain the interactions were significant for B, Cu, Fe, and Mn concentrations. Foliar and grain B, Cu, Fe, Mn, and Zn concentrations varied significantly among the genotypes. The Ca and Mg concentrations in the leaf, grain, and soil showed a positive correlation with foliar B concentrations and a negative correlation with leaf and grain Cu, Mn, and Zn concentrations.  相似文献   

14.
Lime-induced iron (Fe) chlorosis is a nutritional disorder common in calcareous soils, which may result from a low level of Fe available or adverse factors that inhibit Fe mobilization and uptake by plants. Organic-matter amendments can prevent or correct Fe chlorosis in plants but the effect of endogenous soil organic matter (SOM) on this disorder is not known. The main subject of this work was to investigate the consequence of two contrasting levels of soil fertility on the nutritional status of an orange grove [Citrus sinensis (L.) Osb. cv. Valencia Late]. The field experiment was conducted in a commercial citrus grove using mature trees distributed in two plots with different values of SOM, phosphorus (P), and potassium (K), but with the same level of active lime. The concentration of nitrogen (N), P, K, magnesium (Mg), calcium (Ca), Fe, copper (Cu), zinc (Zn), and manganese (Mn) in young and mature leaves and flowers was evaluated. The level of Mg and the Mg/Zn ratio in flowers from both plots, although significantly different, only indicated moderate Fe chlorosis, as predicted by a previously developed model, and was consistent with the amount of chlorophyll present in the leaves. However, nutrient partitioning between leaves of contrasting age was very different. Mature leaves from trees grown in the high-fertility plot (HF) had larger concentrations of N, P, and K but lower concentrations of Ca, Fe, and Mn than did those from the low-fertility plot (LF). Young leaves from the LF had more N, P, Mg, Cu, and Mn and less Ca and Fe than did those from the HF. Flower analysis, although useful to predict Fe chlorosis, failed to detect differences in the nutritional status of plants resulting from contrasting levels of soil fertility. Furthermore, endogenous SOM had only a marginal effect on Fe chlorosis.  相似文献   

15.
The use of biochar in agriculture is a promising management tool to mitigate soil degradation and anthropogenic climate change. However, biochar effects on soil nutrient bioavailability are complex and several concurrent processes affecting nutrient bioavailability can occur in biochar‐amended soils. In a short‐term pot experiment, the concentration of N, P, K, S, Ca, Mg, Cu, Zn, Mn, B, Fe, and Na in the shoots of maize grown in three different soil types [sandy soil (S1), sandy loam (S2), and sandy clay loam (S3)] was investigated. The soils were either unamended or amended with two different biochars [wheat straw biochar (SBC) or pine wood biochar (WBC)] at two P fertilizer regimes (–/+ P). We used three‐way ANOVA and Principal Component Analyses (PCA) of transformed ionomic data to identify the effects of biochar, soil, and P fertilizer on the shoot nutrient concentrations. Three distinct effects of biochar on the shoot ionome were detected: (1) both biochars added excess K to all three soils causing an antagonistic effect on the uptake of Ca and Mg in maize shoots. (2) Mn uptake was affected by biochar with varying effects depending on the combined effect of biochar and soil properties. (3) WBC increased maize uptake of B, despite the fact that WBC increased soil pH and added additional calcite to the soil, which would be expected to reduce B bioavailability. The results of this study highlight the fact that the bioavailability of several macro and micronutrients is affected by biochar application to soil and that these effects depend on the combined effect of biochar and soils with different properties.  相似文献   

16.
Abstract

The present study investigated how foliar zinc (Zn) application affects seedling growth and Zn concentration of rice grown in a Zn-deficient calcareous soil with different soil Zn treatments. Seeds were sown in soil with five rates of Zn (0, 0.02, 0.1, 0.5 and 5.0?mg kg?1 soil) with and without foliar application of 0.5% ZnSO4. Seedlings were harvested at 35?days and separated into (i) the youngest leaves, (ii) the remaining shoot parts and (iii) roots. In soil with no Zn supply, shoot and root dry weight of the rice seedlings were significantly increased by foliar and soil Zn treatments. Plant growth was not clearly increased in low soil Zn treatments, while at each soil Zn treatment, foliar Zn application promoted growth of plants. Plants with adequate Zn supply had the highest Zn concentrations in the youngest leaf. Foliar Zn spray improved Zn concentration of the new growth formed after foliar spraying which shows that Zn is phloem mobile and moved from treated leaves into youngest new leaves. The results indicate clearly in rice seedlings that shoot growth shows more responsive to low Zn than the root growth. The results obtained in the present study are of great interest for proper rice growth in Zn-deficient calcareous soils but needs to be confirmed in other rice genotypes.  相似文献   

17.
Summary The legume Medicago sativa L. was grown in three calcareous soils supplied with increasing amounts of soluble phosphate, or a vesicular-arbuscular mycorrhizal (VAM) inoculum. The three test soils had high concentrations of extractable Ca. Analyses of dry-matter production and of the concentrations and content of the nutrients N, P, K, Ca, and Mg in plant tissues showed that, for each soil, a particular level of P application was able to match the VAM effects on N, P, and K levels. The Ca concentration and content in the VAM inoculated plants were, however, significantly lower than those in the P-supplied non-mycorrhizal treatments that matched the VAM effects. The N:P and the K:P ratios were about the same for mycorrhizal and non-mycorrhizal P-supplied control plants in all the three soils, but VAM inoculation lowered the Ca:P ratio in all soils. The mycorrhizae decreased Mg uptake in one of the soils, where non-mycorrhizal plants had high Mg concentrations in tissues. It is concluded that VAM depress the excessive acquisition of Ca by plants in calcareous soils.  相似文献   

18.
19.
Results from a factorial acid treatment and liming experiment in a stand of Scots pine planted in 1968 to 1970 are presented. Field plots, 75 m2 in size, were supplied with 50 mm of artificial rain 38 times from 1974 to 1981. “Rain” of varying acidities was produced using groundwater mixed with H2SC4. Lime was applied at four levels in 1974 in a factorial acid treatment-liming-design. Tree growth and foliar nutrient concentrations were measured annually from 1974 to 1988. The soil was sampled periodically from 1975 to 1988 at mainly 3 yr intervals. Tree growth was initially stimulated by increased acid loadings. Negative effects occurred after 5 yr. Positive effects of liming developed after 9 yr. No major signs of recovery from the most acid treatments have yet been found. Treatment effects appeared to be linear, indicating no threshold values for growth reactions. Treatment effects on foliar concentrations were found for a majority of elements analyzed. Increased acid loadings decreased the Mg, Ca and Mn concentrations, while K concentrations increased — especially during later years. Liming improved the nutrient status at increased acid loadings for Mg, Ca and Mn and decreased K concentrations. Soil sampling in 1984 showed major losses of Mg, Ca and Mn by increased acid loadings, while the K content was less affected. A link seems to exist between tree growth and the Mg situation in soil and foliage.  相似文献   

20.
Results from a factorial acid treatment and liming experiment in a stand of Scots pine planted in 1968 to 1970 are presented. Field plots, 75 m2 in size, were supplied with 50 mm of artificial rain 38 times from 1974 to 1981. "Rain" of varying acidities was produced using groundwater mixed with H2SO4. Lime was applied at four levels in 1974 in a factorial acid treatment-liming design. Tree growth and foliar nutrient concentrations were measured annually from 1974 to 1988. The soil was sampled periodically from 1975 to 1988 at mainly 3 yr intervals. Tree growth was initially stimulated by increased acid loadings. Negative effects occurred after 5 yr. Positive effects of liming developed after 9 yr. No major signs of recovery from the most acid treatments have yet been found. Treatment effects appeared to be linear, indicating no threshold values for growth reactions. Treatment effects on foliar concentrations were found for a majority of elements analyzed. Increased acid loadings decreased the Mg, Ca and Mn concentrations, while K concentrations increased — especially during later years. Liming improved the nutrient status at increased acid loadings for Mg, Ca and Mn and decreased K concentrations. Soil sampling in 1984 showed major losses of Mg, Ca and Mn by increased acid loadings, while the K content was less affected. A link seems to exist between tree growth and the Mg situation in soil and foliage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号