首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A hydroponic experiment was conducted based on completely randomized design (CRD) to study the effects of Selenium (Se) on tomato (Lycopersicum esculentum L), cv. Foria with three replications. Treatments included 3, 5, 7, and 10 µM sodium selenite (Na2SeO3) and 0 as control. The results showed that selenium (Se) at 7 µM was beneficial to photosynthesis pigments. The highest relative water content was resulted from the 3 µM Se treatment. The membrane stability index was decreased with increasing Se concentration up to 10 µM Se. An increase in peroxidase (POD) activity occurred at the 3 µM Se level, and the catalase (CAT) activity was 80% higher than the control at the 7 µM Se level. In general, the highest root volume, leaf numbers, carotenoids content, and CAT activity were found at the 5 µM Se level, and Chlorophyll content increased at the 7 and 10 µM Se levels.  相似文献   

2.
硅对小麦生长及其抗氧化酶系统的影响   总被引:16,自引:0,他引:16  
本文研究了基施硅营养对小麦分蘖期的生长状况、叶片类脂脂肪酸组成及抗氧化酶系统的影响。结果显示 ,施硅促进了小麦的生长 ;降低了膜脂过氧化程度 ,提高了叶片类脂脂肪酸的不饱和度。但施硅处理对超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶 (APX)活性没有影响 ,却使过氧化物酶 (POD)与过氧化氢酶 (CAT )活性下降 ,暗示POD和CAT具备在较低活力水平上高效清除H2 O2 等强氧化剂的可能性。  相似文献   

3.
Selenium (Se), regarded as an antioxidant, has been found beneficial for plants growing under stressed conditions. To investigate whether the Se application helps to improve stress tolerance, sodium selenite (Na2SeO3 · 5H2O, 5–15 μM) was hydroponically applied to Zea mays variety OSSK-713-roots under heat and/or PEG-induced osmotic stress (25% PEG-6000) for 8 h. The individual/combined stress caused accumulation of reactive oxygen species (ROS). While only superoxide dismutase (SOD) increased with heat stress alone, the activities of SOD, catalase (CAT) and ascorbate peroxidase (APX) increased under PEG exposure. The combination of these stresses resulted in an induction of both SOD and CAT activities. Lipid peroxidation (TBARS) levels were also high in all the stress treatments, especially under the combination treatment. Addition of Se not only improved the activities of SOD, APX and glutathione reductase (GR) in stress-treated roots, but it also changed the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). The findings reveal that Se has a positive effect on heat and/or osmotic stress mitigation mainly by regulating the ascorbate-glutathione cycle, especially in PEG-treated plants. Under the combined stress treatment, addition of 5 µM of exogenous Se was most effective.  相似文献   

4.
Two cucumber cultivars (Cucumis sativus L.) exposed to three cadmium (Cd) concentrations (0, 1, and 5 μM) were supplemented or un-supplemented with silicon (Si) (1 mM). Exposure to 1 μM Cd had no effect on shoot and root dry mass, whereas exposure to 5 μM Cd significantly reduced plant growth. Addition of Si stimulated the growth of Cd-treated cucumber. Exposure to 5 μM Cd significantly increased shoot Cd concentration and decreased iron (Fe) and zinc (Zn) concentration. Plants supplied with Si had lower Cd and higher Zn and Fe compared with unsupplied plants. Exposure to Cd resulted in a higher production of malondialdehyde (MDA). Si nutrition partly ameliorated lipid peroxidation induced by Cd toxicity. Activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) decreased, whereas ascorbate peroxidase (APX) activity increased in response to 5 μM Cd. Induction of APX activity might play an important role in the response of cucumber to Cd toxicity.  相似文献   

5.
针对南方酸性红壤对作物的生长造成的不利影响,采用水培方式,研究酸铝环境0、100、300、500、1000μmol·L-1Al3+pH4.5,处理7d对长兴栝楼根系生长及铝积累的影响。测定指标包括根系活力、质膜透性、抗氧化酶类活性(过氧化物酶POD、过氧化氢酶CAT、抗坏血酸过氧化物酶APX、愈创木酚过氧化物酶GPX、超氧化物歧化酶SOD)及其同工酶、过氧化氢(H2O2)含量、根尖铝含量的影响。结果表明:随着铝处理浓度升高,根系活力增大,根系质膜透性无显著变化;POD、CAT、APX酶活升高,GPX和SOD活性降低,多种抗氧化酶都有多条同工酶谱带出现;根尖相对铝含量升高,桑色素染色情况显示,荧光梯度与铝含量测定结果一致,并观察到根尖以上根毛处细胞凸起较之平整排列的根细胞更容易积累铝。栝楼对南方酸性红壤具有较强的适应能力,其体内抗氧化酶系统及根尖吸收、积累铝的机制对缓解铝毒害起着重要作用。  相似文献   

6.
辐照对地被菊种子的生长效应   总被引:3,自引:0,他引:3  
研究不同剂量60Co γ射线辐照(10~50Gy)对地被菊种子发芽及相关生理指标的影响.结果发现:30Gy以上辐照剂量显著降低种子发芽率和幼苗成活率;随着辐照剂量的增加,20Gy以上剂量辐照造成了幼苗丙二醛(MDA)含量和过氧化物酶(POD)活性的显著升高,超氧化物歧化酶(SOD)和谷胱甘肽还原酶(GR)活性也呈升高趋...  相似文献   

7.
采用室内水培试验方法,研究了砷胁迫(0~50mgAs·L^-1)对砷超富集植物大叶井口边草(Pteris cretica vat.nervosa)和非砷超富集植物剑叶凤尾蕨(Pteris ensiformis)叶片的过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)活性以及丙二醛(MDA)含量和自由基0i·产生速率的影响,并研究了25mgAs·L^-处理下上述6种指标的时间动态。结果表明,随着砷浓度升高,除APX外,剑叶凤尾蕨叶片的CAT、POD和SOD活性受到很大抑制,而大叶井口边草叶片这3种酶的活性能够维持,特别是POD活性显著增加;大叶井口边草叶片的MDA含量降低,剑叶凤尾蕨则升高;剑叶凤尾蕨叶片中的O2^-·产生速率比大叶井口边草增加显著。从时间动态看,随处理时间的延长,大叶井口边草叶片中的CAT和APX活性先降低再升高,POD活性显著增加,SOD活性变化不显著;剑叶凤尾蕨叶片的POD和SOD活性显著降低,APX活性无显著变化,CAT活性则先降低后升高;两种供试植物叶片的MDA含量第6d时均出现明显下降,但大叶井口边草叶片中O2^-·的产生速率在第6d则显著增加,而后降至实验初始时的水平。总起来看,砷超富集植物大叶井口边草比非砷超富集植物剑叶凤尾蕨具有更强的抗氧化能力,并且POD在其抗氧化体系中起关键作用。  相似文献   

8.
水分条件对豌豆保护酶活性及膜脂过氧化的影响   总被引:3,自引:0,他引:3  
为探讨不同水分条件对豌豆保护酶系统和膜脂过氧化的影响,采用盆栽人工控水试验方法,模拟干旱胁迫及复水条件,研究了不同水分处理对花荚期豌豆叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性以及过氧化产物丙二醛(MDA)含量和脂膜相对透性(RC)的影响,并对花荚期豌豆抗氧化能力进行了综合评价.结果表明:不同程度干旱胁迫历时5 d时并未影响豌豆叶片SOD、CAT活性,但有明显的滞后效应.重度干旱胁迫历时10 d可显著降低豌豆叶片SOD、CAT活性,显著提高MDA含量.不同程度的干旱胁迫均导致豌豆叶片POD活性提高,膜脂相对透性加大.复水可对干旱胁迫所造成的CAT、POD活性变化产生显著补偿作用,对SOD活性变化产生超补偿作用.同时,可显著降低MDA含量和脂膜相对透性;干旱胁迫历时10 d内和复水历时10 d内,豌豆有较强的抗氧化能力,仅在重度胁迫10 d后复水历时达到10 d时抗氧化能力趋弱.  相似文献   

9.
《Journal of plant nutrition》2013,36(7):1259-1270
Abstract

The effect of cadmium (Cd) toxicity on growth, lipid peroxidation, and antioxidant enzymes was studied using two rice cultivars, Bing 97252 with low and Xiushui 63 with high grain Cd accumulation. Plants were exposed to 0–5 μ M Cd in hydroponic culture. Cadmium stress inhibited plant height and chlorophyll content and altered melondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Roots and shoots responded differently to Cd in terms of antioxidant enzyme activity. Generally, the activities of SOD, POD, and CAT decreased with increase in Cd level, while the activity of MDA increased with increase in Cd level. With the increase in Cd concentration in nutrient solution, MDA content in shoots and roots of Xiushui 63 increased at a much higher rate than did that of Bing 97252 at both growth stages. At booting stage, a decrease of 46%–52% in SOD activity was noted in plant roots grown under 5 μ M Cd, while at tillering stage the decrease was 13%–19% compared with the control. A significant decrease in chlorophyll content and plant height was noted under higher Cd treatment (1.0 and 5.0 μ mol) at two stages. The higher MDA and lower chlorophyll content in the cultivar Xiushui 63 showed that it is more sensitive to Cd than the cultivar Bing 97252.  相似文献   

10.
用50μmol/L硝酸铅对毛白杨组培生根苗进行不同时间的处理,测定叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)4种抗氧化酶活性水平和丙二醛(MDA)含量的变化;并通过间接免疫荧光染色法观察根尖分生区细胞的微管骨架。结果显示:铅能使毛白杨叶片APX和POD活性出现...  相似文献   

11.
To check the efficacy of potassium in alleviating oxidative stress under salt stress, salt-tolerant (Indent-1) and salt-sensitive (Red Ball) tomato (Lycopersicon esculentum Mill.) genotypes were exposed to three levels of sodium chloride (NaCl) (0, 75, 150 mM) and two levels of potassium (4.5 and 9 mM) in solution and foliar form. Thirty days of treatments revealed that increasing NaCl stress increased lipid peroxidation (malondialdehyde, MDA) and correspondingly the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione reductase GR) in both genotypes. However, higher potassium (K) level in solution or foliar spray during the salt-induced stress decreased MDA and antioxidant activity and increased the growth in salt-tolerant genotype than in the salt-sensitive genotype. Decrease in MDA concentration, activity of antioxidant enzymes, and increase in the growth of tomato plants by the application of potassium under salt stress suggest that potassium is an effective ameliorating agent against salt-induced oxidative damage.  相似文献   

12.
Black gram (Vigna mungo L.) var. Shyam plants were raised in refined sand at four levels of molybdenum (Mo), i.e., low (0.002 µM) to excess (2 µM) for 70 days. The molybdenum deficiency symptoms appeared as interveinal chlorosis of young and middle leaves. Compared to control (0.2 µM Mo), total dry matter, seed yield and seed protein decreased at low and excess Mo. The concentration of Mo in leaves and seed as well as activity of nitrate reductase increased with an increase in Mo supply. Low and excess Mo deteriorated the quality of seeds by lowering the content of starch, sugars, protein, and nitrogen and increasing electrical conductivity of seed leachate. Molybdenum deficiency and excess both resulted in production of lightweight immature seeds, poor in vigor and germination potential. The values of sufficiency and threshold of toxicity in leaves were 0.078 and 2.15 µg Mo g?1 dry matter of black gram.  相似文献   

13.
A 28-day pot (sand culture) experiment was carried to evaluate the effects of phosphorus (P) application in alleviating Cd phytotoxicity in wheat plants. Different levels of P (0, 10, and 20 kg ha?1) were applied without and with 100 µM Cd. The results showed that 100 µM Cd concentration decreased plant biomass, chlorophyll contents, gas exchange attributes, and mineral nutrients in wheat plants. Cadmium stress increased tissue Cd and H2O2 concentrations. The activities of superoxide dismutases (SOD), peroxidase (POD) enzymes, increased while the activities of catalase (CAT), ascorbic acid (AsA), α-tocopherol, and phenolics decreased under Cd stress. Phosphorus supply increased shoot biomass, leaf area, photosynthetic pigments, and mineral nutrients and decreased Cd and H2O2 concentrations in shoots. Phosphorus application improved antioxidant enzyme activities and gas exchange attributes which emerged as an important mechanism of Cd tolerance in wheat. We conclude that P application contributes to decreased Cd concentrations in wheat shoots and increased gas exchange attributes and antioxidant enzymes and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat for sustained production of this important grain crop.  相似文献   

14.
为探究干旱胁迫下H2S对板栗幼苗根系特性的影响,以黄棚板栗幼苗为试验材料,通过PEG模拟干旱并进行H2S供体硫氢化钠(NaHS)和清除剂次牛磺酸(HT)处理,分析板栗幼苗根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)等抗氧化酶活性及丙二醛(MDA)、H2O2等抗氧化物质含量,检测苹果酸脱氢酶(MDH)、磷酸果糖激酶(PFK)和葡萄糖-6-磷酸脱氢酶(G-6-PDH)等呼吸代谢相关酶活性。结果表明,0.5 mmol·L-1 NaHS+15% PEG协同处理24 h后,与15% PEG处理相比,根系SOD、POD、CAT、APX活性分别提高19.64%、24.67%、56.91%、16.29%,根系脯氨酸含量增加15.25%,根系MDA和H2O2含量分别降低26.52%和20.86%,MDH、PFK和G-6-PDH活性分别提高27.28%、23.14%和15.36%;而添加H2S清除剂HT则逆转了上述变化,说明适宜浓度的NaHS能够减轻干旱胁迫对板栗根系膜脂过氧化伤害和对呼吸代谢的抑制,从而有利于提高板栗幼苗对干旱逆境的适应能力。本研究结果为进一步探索H2S缓解板栗树干旱胁迫的机理提供了理论依据。  相似文献   

15.
Abstract

A salt-sensitive cucumber cultivar “Jinchun No. 2” (Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25?mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl? contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100?mmol?L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl? contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl? contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

16.
A pot experiment was conducted to evaluate the role of glycinebetaine (GB) in chromium (Cr) tolerance in mung bean (Vigna radiata L.) grown in Cr-stressed soil. Three concentrations of Cr (0, 250 and 500 µM) were tested with three (0, 50 and 100 mM) concentrations of foliar-applied GB. Cr alone led to a significant decrease in plant growth, biomass, and concentrations of chlorophyll a, b and carotenoids. Cr concentration and electrolyte leakage significantly increased in plants with increasing Cr levels in the soil. Lower Cr stress enhanced the activities of superoxide dismutase (SOD), peroxidases (POD) and catalase (CAT), while higher Cr concentrations decreased the activities of these enzymes. Foliar application of GB successfully alleviated toxic effects of Cr on mung bean and increased plant growth, biomass and chlorophyll contents under Cr stress. GB application reduced Cr accumulation and electrolyte leakage in plants and enhanced the activities of antioxidant enzymes in both shoots and roots as compared with Cr treatments alone. These findings suggest that foliar-applied GB alleviated Cr-induced oxidative stress in mung bean by reducing Cr uptake. The protective effect of GB against Cr stress varies with the concentrations of GB and Cr stress applied. Thus, further studies are still needed to specify the concentrations of GB required for detoxification of specific Cr concentrations under various climatic conditions.  相似文献   

17.
The effects of salt stress on plant growth parameters, lipid peroxidation and some antioxidant enzyme activities [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR; EC EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activity] were studied in the leaves of mustard. Plants were exposed to two different concentrations of NaCl stress (100 and 150 mM) for 45 days and were sprayed with GA3 (75 ml pot?1, conc. 75 mg l?1) once a week. Salt stress resulted in decrease in the growth and biomass yield of mustard but the exogenous application of GA3 enhanced these parameters significantly. Application of GA3 counteracted the adverse effects of NaCl salinity on relative water content, electrolyte leakage and chlorophyll (Chl) content. GA3 was sufficient to attenuate partially the stimulatory effect of NaCl supply on proline and glycinebetaine biosynthesis. GA3 reduced lipid peroxidation in the leaves, which was increased during salt stress. The activity of all the antioxidant enzymes was increased significantly during salt stress in mustard. The exogenous application of GA3 decreased the enzyme activity. The results of the present study indicate that usage of GA3 reduces the harmful effects of salinity and increases resistance to salinity in mustard plant.  相似文献   

18.
A salt-sensitive cucumber cultivar "Jinchun No. 2" ( Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25 mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100 mmol L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

19.
ABSTRACT

Silicon (Si) protects plants from multiple abiotic and biotic stresses The effect of exogenous Si levels (50, 75, and 100 mg kg?1) on the growth, boron (B) and Si uptake, lipid peroxidation (MDA), lipoxygenase activity (LOX; EC 1.13.11.12), proline, and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activities of major antioxidant enzymes (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6 and ascorbate peroxidase, APX, EC 1.11.1.11) of barley (Hordeum vulgare L.) were investigated under glasshouse conditions. Increasing levels of Si supplied to the soil with 20 mg kg?1 B counteracted the deleterious effects of B on shoot growth. Application of B significantly increased the B concentration in barley plants. However, Si application decreased B concentrations. Increasing application of Si increased the Si concentration in barley plants. The concentration of H2O2 was increased by B toxicity but decreased by Si supply. Boron toxicity decreased proline concentrations and increased lipid peroxidation (MDA content) and LOX activity of barley. Compared with control plants, the activities of AA, SOD, CAT, and APX in B stressed plants grown without Si decreased, and application of Si increased their activities under toxic B conditions. The LOX activity was decreased by Si. Based on the present work, it can be concluded that Si alleviates B toxicity by possibly preventing oxidative membrane damage, both through lowering the uptake of B and by increasing tolerance to excess B within the tissues.  相似文献   

20.
为探究葛根素(PUE)对小白菜镉(Cd)损伤的保护效果,采取外源添加不同葛根素处理,将小白菜植株随机分为7组,即对照组(CK)、PUE30组(葛根素30μmol·L-1)、Cd4组(镉4 mg·L-1)、Cd与PUE共处理组(4+15、4+30、4+45、4+60)。处理30 d后,观察小白菜植株生长状况、测定Cd富集量及抗胁迫生理活性物质,包括叶绿素、抗氧化酶(SOD、APX、CAT、POD)活性及过氧化氢(H2O2)、丙二醛(MDA)Vc、可溶性蛋白含量,并用实时荧光定量PCR(qRT-PCR)技术检测抗氧化酶基因(SOD、POD、APX及CAT)表达量。结果表明,与CK组相比,Cd4组小白菜根中Cd含量、H2O2和MDA含量显著升高,而地下部鲜重、地上部鲜重、抗氧化酶(SOD、POD和APX)活性和叶绿素含量整体显著降低(P<0.05)。与Cd4组相比,Cd+PUE共处理组小白菜氧化损伤程度减轻,H2O2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号