首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and "Jim", with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional factorial design with levels for BA concentrations of 0.20, 0.47, 0.95, 2.37, and 4.73 micromol/g of total EBC slurry and for DS in the slurries of 0.8, 2, 3, and 4% (w/w) was selected. The absolute amount of BA bound (micromol) was measured for each trial in the experiment design. The percentage (%) of BA bound based on the total amount of BA added and BA bound per gram of DS of the EBC (micromol/g) were also presented and discussed. N979 in vitro digestion slurries had greater BA binding (micromol) than Jim slurries at different DS and BA concentrations, with greater differences at DS of 3% or above and at BA concentrations of 2.37 micromol/g or above. No difference in the absolute amount of BA bound (micromol) and percentage (%) BA bound occurred between the EBC slurries made from the two oat types at the lowest DS of 0.8% or the lowest BA concentration of 0.20 micromol/g. The efficiency of BA binding by beta-glucan in these two EBC became more distinguishable at 3% DS or above and BA concentrations of 2.37 micromol/g or above, indicating that these two conditions can be employed to measure BA capacities for similar foods. Also, the beta-glucan in the EBC produced from the N979 oat line was more soluble than that from the EBC produced from the Jim oat line. Thus, greater BA binding capacity may have been caused by both a greater amount of beta-glucan and a greater solubility of beta-glucan in N979 than in Jim EBC.  相似文献   

2.
Organic passion fruit fiber is obtained from organic passion fruit rind and is an interesting source of dietary fiber with potential for use in food products such as breakfast cereals. However, various researchers have confirmed the presence of cyanogenic compounds in passion fruit. The objective of this study was to evaluate the effect of the thermoplastic extrusion process on the residual quantity of total cyanogenic compounds (TCC) in extruded organic breakfast cereal produced with corn flour and different levels of passion fruit fiber added to the formulation. For the production of the extrudates, a 23 complete factorial design was followed, that permitted the analysis of the results by response surface methodology. The effects of the quantity of passion fruit fiber (0–30%), feed moisture content (18–28%) and barrel temperature (120–160°C) on the residual quantity of TCC were studied. The raw passion fruit fiber presented 748.3 mg/kg of TCC. The extruded products presented TCC contents of 0–254.1 mg/kg, increasing significantly with the increase of the quantity of passion fruit fiber. The residual quantity of TCC was influenced by feed moisture, while temperature had no significant effect on this response. Nevertheless, only a small reduction of cyanogenic compounds was verified in the breakfast cereals produced by thermoplastic extrusion. Thus, it was concluded that the toxicity of the cereal blends was not improved by the extrusion process.  相似文献   

3.
A high‐performance size‐exclusion chromatography system (HPSEC) was set up with detection based on the specific binding of Calcofluor to β‐glucan for determination of amount and molecular weight of β‐glucan in different cereal extracts. To calibrate the HPSEC system, a purified β‐glucan was fractionated into narrow molecular weight ranges and the average molecular weight was determined before analysis on the HPSEC system. The detector response was similar for β‐glucans from oats and barley and appeared to be independent of molecular weight. Four different methods for extraction of β‐glucan from different cereal products were tested: two alkaline, one with hot water and added α‐amylase, and one with water and added xylanase. Inactivation of endogenous β‐glucanase was crucial for the stability of the extracts, even when extracting at high temperature or pH. Yields varied widely between the different extraction methods but average molecular weight and molecular weight distribution were similar. Extraction with sodium hydroxide generally gave a higher yield and molecular weight of β‐glucan in the extracts.  相似文献   

4.
Water‐soluble β‐glucan from native and extrusion‐cooked barley flours of two barley cultivars, Candle (a waxy starch barley) and Phoenix (a regular starch barley), was isolated and purified. The purity of β‐glucan samples was 85–93% (w/w, dry weight basis) for Candle and 77–86% (w/w, dry weight basis) for Phoenix. The water solubility of β‐glucan (at room temperature, 25°C) in the native and extruded flours (primary solubility) was different from that of the purified β‐glucan samples (secondary solubility). The solubility of β‐glucan in the native and extruded Candle flour was substantially higher than that of β‐glucan in Phoenix. For both cultivars, β‐glucan in the extruded flours had solubility (primary solubility) values higher than in their native counterparts. The solubility of β‐glucan in the purified β‐glucan samples differed depending on the barley cultivar and the extrusion conditions employed. The glycosidic linkage profiles of purified soluble β‐glucan from native and extruded barley flours were determined in order to understand the changes in the primary structure of β‐glucan and the effect of extrusion on the β‐glucan structure‐solubility relationship.  相似文献   

5.
This study was conducted to develop a ready‐to‐eat extruded food using a single‐screw laboratory extruder. Blends of Indian barley and rice were used as the ingredients for extrusion. The effect of extrusion variables and barley‐to‐rice ratio on properties like expansion ratio, bulk density, water absorption index, hardness, β‐glucan, L*, a*, b* values, and pasting characteristics of extruded products were studied. A central composite rotatable design was used to evaluate the effects of operating variables: die temperature (150–200°C), initial feed moisture content (20–40%), screw speed (90–110 rpm), and barley flour (10–30%) on properties like expansion ratio, bulk density, water absorption index (WAI), hardness, β‐glucan, L*, a*, b* values, and sensory and pasting characteristics of extruded products. Die temperature >175°C and feed moisture <30% resulted in a steep increase in expansion ratio and a decrease in bulk density. Barley flour content of 10% and feed moisture content of <20% resulted in an increased hardness value. When barley flour content was 30–40% and feed moisture content was <20%, a steep increase in the WAI was noticed. Viscosity values of extruded products were far less than those of corresponding unprocessed counterparts as evaluated. Rapid visco analysis indicated that the extruded blend starches were partially pregelatinized as a result of the extrusion process. Sensory scores indicated that barley flour content at 20%, feed moisture content at 30%, and die temperature at 175°C resulted in an acceptable product. The prepared product was roasted in oil using a particular spice mix and its sensory and nutritional properties were studied.  相似文献   

6.
Over the years, the β‐glucan of oats and barley has been the subject of study either because of the importance of the cholesterol‐lowering potential to health claims (FDA 1997, 2005) or, in the case of barley, because of the role of β‐glucan and β‐glucan‐rich endosperm cell walls in malting and brewing. β‐Glucan is also present in rye and in much lesser amounts in wheat. The most striking difference in these latter two sources is the difficulty in extractability; alkali rather than water is required for significant release from the cell walls. This review will discuss physicochemical properties of oat and rye β‐glucan and, where information allows, relate these to physiological effects. Viscosity, or more generally rheology, plays a central role in discussions of cereal β‐glucan functionality and physiological effects and will be the focus of this review.  相似文献   

7.
Germination can be used to improve the texture and flavor of cereals. However, germination generally causes breakdown of β‐glucans, which is undesirable with respect to the functional properties of β‐glucan. Our aim was to assess possibilities of germinating oat without substantial loss of high molecular weight β‐glucan. Two cultivars, hulled Veli and hull‐less (naked) Lisbeth were germinated at 5, 15, and 25°C and dried by lyophilization or oven drying. Elevated germination temperatures led to an increase in Fusarium, aerobic heterotrophic bacteria, Pseudomonas spp., lactic acid bacteria, enterobacteria, and aerobic spore‐forming bacteria. Therefore, the germination temperature should be kept low to avoid excessive growth of microbes. Of the samples germinated at 15°C, only one contained low amounts of the Fusarium toxin deoxynivalenol (52 μg/kg). Germination led to the breakdown of β‐glucans, but the decrease in the molecular weight of β‐glucan was initially very slow. A short germination schedule (72 hr, 15°C) terminated with oven drying was developed to produce germinated oat with retained β‐glucan content. Compared with the native oat, 55–60% of the β‐glucan could be retained.  相似文献   

8.
The in vitro bile acid binding by rice bran, oat bran, dehulled barley, and β‐glucan enriched barley was determined using a mixture of bile acids at a duodenal physiological pH of 6.3. Six treatments and two blank incubations were conducted testing substrates on an equal protein basis. The relative in vitro bile acid binding of the cereal brans on an equal total dietary fiber (TDF) and insoluble dietary fiber (IDF) basis considering cholestyramine as 100% bound was rice bran 45 and 49%; oat bran 23 and 30%; dehulled barley 33 and 57%; and β‐glucan enriched barley 20 and 40%, respectively. Bile acid bindings on equal protein basis for the respective cereals were 68, 26, 41, and 49%. Bile acid binding by rice bran may account to a great extent for its cholesterol‐lowering properties, while bile acid binding by oat bran suggests that the primary mechanism of cholesterol lowering by oat bran is not due to the bile acid binding by its soluble fiber. Bile acid binding was not proportional to the soluble fiber content of the cereal brans tested. Except for dehulled barley, bile acid binding for rice bran, oat bran, and β‐glucan enriched barley appear to be related to their IDF content. Highest relative bile acid binding values for rice bran and β‐glucan enriched barley were observed on an equal protein basis, whereas highest values for dehulled barley were based on IDF. Data suggest that of all four cereals tested, bile acid binding may be related to IDF or protein anionic, cationic, physical and chemical structure, composition, metabolites, or their interaction with active binding sites.  相似文献   

9.
The physiochemical characteristics of β‐glucan in oat and barley foods can affect human physiological response. A method for continuous measurement of β‐glucan viscosity with a Rapid Visco Analyzer (RVA) was developed to overcome the complexity of the common protocols based on in vitro digestion methods. The effects of several parameters on viscosity and solubility were considered. Oat cereal foods showed different RVA viscosity profiles depending on their physiochemical characteristics. Products high in starch exhibited a high initial viscosity that was reduced by α‐amylase action, whereas products with low amounts of starch exhibited a slow increase in viscosity. The viscosity of all samples reached a plateau in the viscosity curve after 1–2 hr, which is the key for obtaining reproducible results. Optimum digestion condition was achieved using sodium phosphate buffer (pH 6.9) and 1% β‐glucan dispersion at 37°C and 160 rpm. A particle size of <0.6 mm gave more consistent viscosities than did larger particles without affecting the solubility of β‐glucan. Pancreatin and α‐amylase concentrations affected the viscosity profile by influencing the digestion rate of protein and starch in the samples, but pepsin had limited influence at pH 6.9. Highly significant Pearson correlation between the in vitro digestibility protocol and RVA methods was achieved, indicting that the developed method could be used as an effective alternative for measurement of β‐glucan viscosity.  相似文献   

10.
Films for potential food use were prepared from aqueous solutions of β‐glucan extracted from hulled barley, hull‐less barley, and oats. The extracts (75.2–79.3% β‐glucan) also contained proteins, fat, and ash. Glycerol was used as a plasticizer. The films were translucent, smooth, and homogeneous in structure on both sides. Water vapor permeability of films prepared from 4% solutions of β‐glucan extracts were higher than those from 2% solutions, despite similar values for water vapor transmission rate. Mechanical properties were influenced by both β‐glucan source and concentration. The oat β‐glucan films showed higher tensile strength and water solubility, and lower color, opacity, and deformation values than those of barley. Films prepared from hull‐less barley cv. HLB233 remained intact upon immersion in water for 24 hr.  相似文献   

11.
Brown rice flour was mixed with a Chinese medical plant (Euryale ferox Salisb.) and processed to make ready‐to‐eat breakfast cereals using twin‐screw extrusion. Levels of 15 and 20% feed moisture in flour, and 200 and 250 rpm screw speed were set, and the physicochemical properties and content of α‐, β‐, γ‐, and δ‐tocopherols were determined. The data showed that 15% feed moisture gave a low bulk density and water absorption index but a high expansion ratio and water solubility index. High screw speed (250 rpm) produced a result similar to that of 15% feed moisture. A sample with 85% brown rice flour with 15% E. ferox Salisb. retained the highest content of α‐, β‐, γ‐, and δ‐tocopherols (125, 6, 78, and 9 μg/g), respectively. The optimum extrusion conditions determined were 15% E. ferox Salisb. mixed with brown rice at 15% feed moisture and at 250 rpm screw speed.  相似文献   

12.
Importance of β‐glucan in human nutrition is mirrored in numerous approval applications registering β‐glucan containing products as health beneficial products in accordance with forthcoming EU Health Claims Regulation. In comparison to other cereals, barley contains considerable amounts of β‐glucan. Naked barley is of particular interest because it circumvents the costs and loss of beneficial substances related to dehusking. In this study, the potential of near‐infrared spectroscopy as an accurate, fast and economic method of determination of β‐glucan in naked barley was appraised. Four different near‐infrared instruments were used to analyze 107 barley samples, in both whole grain and milled form. Importantly, both black and purple pericarp samples, which are of additional nutritional interest due to high anthocyanin content, and waxy samples, which show an extraordinary high β‐glucan content could be analyzed within the same calibration set as the normal samples. All tested dispersive near‐infrared reflection instruments showed suitability for supervision of breeding experiments and β‐glucan monitoring in food industries (R2 > 0.78). Common, industrially used near‐infrared transmission instruments also provided reasonable results, although only suitable for rough selection according to β‐glucan levels. On the other hand, the Fourier transform near‐infrared reflection instrument was able to perform analytical analyses (R2 = 0.96–0.98).  相似文献   

13.
Oats (Avena sativa L.) have received significant attention for their positive and consistent health benefits when consumed as a whole grain food, attributed in part to mixed‐linkage (1‐3,1‐4)‐β‐d ‐glucan (referred to as β‐glucan). Unfortunately, the standard enzymatic method of measurement for oat β‐glucan is costly and does not provide the high‐throughput capability needed for plant breeding in which thousands of samples are measured over a short period of time. The objective of this research was to test a microenzymatic approach for high‐throughput phenotyping of oat β‐glucan. Fifty North American elite lines were chosen to span the range of possible values encountered in elite oats. Pearson and Spearman correlations (r) ranged from 0.81 to 0.86 between the two methods. Although the microenzymatic method did contain bias compared with the results for the standard streamlined method, this bias did not substantially decrease its ability to determine β‐glucan content. In addition to a substantial decrease in cost, the microenzymatic approach took as little as 6% of the time compared with the streamlined method. Therefore, the microenzymatic method for β‐glucan evaluation is an alternative method that can enhance high‐throughput phenotyping in oat breeding programs.  相似文献   

14.
Food processing conditions may affect the extractability and molecular weight of β‐glucans and arabinoxylans in cereal products. This can dramatically affect the functional and physiological properties of the final products. Therefore, the purpose of this research was to explore the effects of jet cooking on the content, extractability, and molecular weights of these polymers in barley flour from a high β‐glucan, waxy barley genotype, Prowashonupana. Barley flours were jet cooked without pH adjustment or after adjusting to pH 7, 9, or 11. Jet cooking without pH adjustment increased the extractability of β‐glucans from 15.4 to 38.0% when extracted with water at 30°C. As pH during jet cooking increased, the extractability further increased to 63.5% at pH 11. Arabinoxylan extractability was only substantially affected when the pH of jet cooking was alkaline (extractability increased from 11.4 to 48.5% when jet cooked at pH 11). Jet cooking without pH adjustment resulted in slight increases in peak molecular weights for both polymers (β‐glucan increased from 420,000 to 443,000; arabinoxylan increased from 119,000 to 125,000); higher pH values during jet cooking resulted in minor decrease in molecular weights.  相似文献   

15.
The aim was to study the effect of concentration and molecular weight of four different β‐glucan preparations on the perceived sensory quality of a beverage prototype. The correlations between sensory and instrumental measures were investigated. Two of the preparations were brantype containing high molecular weight β‐glucan, two were more‐processed low molecular weight β‐glucan preparations. Twelve beverage samples containing 0.25–2% β‐glucan and one reference sample thickened with carboxymethyl cellulose (CMC) were profiled by a sensory panel and analyzed by instrumental measurements (viscosity and molecular weight). Sensory profiles of the beverages varied at the same concentration of β‐glucan, depending on β‐glucan preparation. Beverages made with the bran‐type preparations were more viscous and had higher perceived thickness than beverages made with more‐processed, low molecular weight preparations. Moderate correlations were obtained between perceived thickness and sliminess and instrumental viscosity at all shear rates between 26 and 100/sec (r = 0.63–0.78; P ≤ 0.001). Technologically, more‐processed β‐glucan preparations are easier to add into a beverage in amounts sufficient for achieving a physiologically functional amount of β‐glucan in a product.  相似文献   

16.
Use of saturated Ba(OH)2 to extract rye β‐glucan led to a depolymerized product. Similar depolymerization of β‐glucan was observed when oat bran was extracted with this reagent. Isolated oat β‐glucan, detarium xyloglucan, guar galactomannan, and wheat and rye arabinoxylan were also depolymerized by treatment with the barium reagent. The degree of depolymerization was related to time of contact with, and concentration of, the barium. Rye β‐glucan of two different molecular weights (MW) were isolated and characterized. The structure of rye β‐glucan, as evaluated from the ratio of (1→3)‐linked cellotriosyl to (1→3)‐linked cellotetraosyl primary structural units, most closely resembles barley β‐glucan. Analytical variability of this ratio is discussed. A freshly prepared solution (2%) of the higher MW sample showed shear thinning behavior typical of cereal β‐glucans. The lower MW sample at 2% was not shear thinning, but on further purification, after storage for seven days, a 6% solution had gelled as shown by the mechanical spectrum.  相似文献   

17.
Roller milling of hull‐less barley generates mill streams with highly variable β‐glucan and arabinoxylan (AX) content. For high β‐glucan cultivars, yields >20% (whole barley basis) of a fiber‐rich fraction (FRF) with β‐glucan contents >15% can be readily obtained with a simple short mill flow. Hull‐less barley cultivars with high β‐glucan content require higher power consumption during roller milling than normal β‐glucan barley. Recovery of flour from high β‐glucan cultivars was greatly expedited by impact passages after grinding, particularly after reduction roll passages. Pearling before roller milling reduces flour yield and FRF yield on a whole unpearled barley basis, but flour brightness is improved and concentration of β‐glucan in fiber‐rich fractions increases. Pearling by‐products are rich in AX. Pearling to 15–20% is the best compromise between flour and FRF yield and flour brightness and pearling by‐products AX content. Increasing conditioning moisture from 12.5 to 14.5% strongly improved flour brightness with only a moderate loss of flour yield on a whole unpearled barley basis. As moisture content was increased to 16.5%, flour yield declined without a compensating improvement in brightness, but the yield of fiber‐rich fraction continued to increase and concentration of β‐glucan in FRF also increased.  相似文献   

18.
《Cereal Chemistry》2017,94(3):625-632
Six Australian milling oat cultivars grown over two growing seasons were characterized for differences in (1,3)(1,4)‐β‐glucan (β‐glucan) viscosity, solubility, molecular weight (Mw), and the effect of processing. Oat cultivars grown in 2012 had significantly higher extracted β‐glucan viscosity from oat flour than the same oat cultivar grown in 2011 (P < 0.05, mean 137 and 165 cP, respectively). Noodle β‐glucan mean viscosity for 2012 (147 cP) was significantly higher than for 2011 (128 cP). β‐Glucan from ‘Williams’ and ‘Mitika’ oats had the highest viscosity (P < 0.05) in flour (5.92 and 5.25%, respectively) and noodles (1.64 and 1.47%, respectively) for both years, compared with the other oat cultivars. β‐Glucan (Mw) of Williams for 2012 and ‘Kojonup’ for both years were the least affected by processing, with an average drop of 33% compared with a maximum of 63% for other cultivars. Therefore, Williams showed superior β‐glucan properties to other oat cultivars studied, and can potentially provide improved health benefits. High and low β‐glucan Mw populations were found in the same elution peak after processing. Oat cultivars chosen for processing should be those with β‐glucans that are more resistant to processing, and that maintain their physiochemical properties and, therefore, bioactivity.  相似文献   

19.
Oats, different oat fractions as well as experimental and commercial oat‐based foods, were extracted with hot water containing thermostable α‐amylase. Average molecular weight and molecular weight distributions of β‐glucan in extracts were analyzed with a calibrated high‐performance size‐exclusion chromatography system with Calcofluor detection, specific for the β‐glucan. Oats, rolled oats, oat bran, and oat bran concentrates all had high Calcofluor average molecular weights (206 × 104 to 230 × 104 g/mol) and essentially monomodal distributions. Of the oat‐containing experimental foods, extruded flakes, macaroni, and muffins all had high average molecular weights. Pasteurized apple juice, fresh pasta, and teacake, on the other hand, contained degraded β‐glucan. Calcofluor average molecular weights varied from 24 × 104 to 167 × 104 g/mol in different types of oat bran‐based breads baked with almost the same ingredients. Large particle size of the bran and short fermentation time limited the β‐glucan degradation during baking. The polymodal distributions of β‐glucan in these breads indicated that this degradation was enzymatic in nature. Commercial oat foods also showed large variation in Calcofluor average molecular weight (from 19 × 104 g/mol for pancake batter to 201 × 104 g/mol for porridge). Boiling porridge or frying pancakes did not result in any β‐glucan degradation. These large differences in molecular weight distribution for β‐glucan in different oat products are very likely to be of nutritional importance.  相似文献   

20.
The beneficial role of soluble dietary fiber in human nutrition is well documented and has lead to a growing demand for the incorporation of β‐glucan, particularly from oats and barley, into foods. β‐Glucan with high solubility and high molecular weight distribution results in increased viscosity in the human intestine, which is desirable for increased physiological activity. Molecular weight, level, and solubility of β‐glucan are affected by genotype, environment, agronomic input, and the interactions of these factors and food processing methods. Available literature reveals that the level of β‐glucan in a finished product (e.g. bread, cake, muffins) depends upon several factors in the production chain, whereas food processing operations are major factors affecting molecular weight and solubility of β‐glucans. Therefore, to avail themselves of the natural bioactive compounds, food manufacturers must pay attention not only to ensure sufficient concentration of β‐glucan in the raw material but also to the processing methods and functional properties of β‐glucan, minimizing enzymatic or mechanical breakdown of the β‐glucans in end‐product and optimizing processing conditions. This review discusses the different sources of β‐glucan for use in human functional foods and factors affecting the levels and the molecular weight of β‐glucan at various pre‐ and postharvest operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号