首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
小麦双线精播智能控制系统的设计   总被引:3,自引:3,他引:0  
为避免地轮打滑对播种均匀性产生的不利影响,保证较好的播种质量,该研究设计了一种播种机的自动控制系统,利用步进电机驱动排种器。系统以AT89C55单片机为控制核心,采用旋转编码器实时采集播种机作业时前进速度信息,微处理器(CPU)进行速度判断,并结合对种子粒距(或播量)的设置,实时调节步进电机的转速,以带动排种器按需播种。另外,该系统还能实现液晶显示、声光报警等辅助功能。试验结果表明,系统工作性能稳定可靠,能够满足播种时设定的要求。  相似文献   

2.
油菜精量排种器变量补种系统设计与试验   总被引:2,自引:1,他引:1  
针对油菜精量排种器的漏播问题,该文设计了油菜精量排种器变量补种系统。该补种系统由漏播检测装置、排种盘测速装置、变量补种装置及补种监测显示装置组成,各装置间指令和数据采用无线方式进行有序实时传输。漏播检测装置采用压电原理感应排种种子流序列,并利用MSP430单片机时间捕获中断功能实时采集排种种子流时间间隔序列和周期内排种数序列,接收排种盘测速装置测得的理论排种频率并确定检测周期,结合基于时变窗口的漏播实时检测方法计算漏播系数等参数,并根据变量补种策略获得对应补种转速,将其发送至变量补种装置及补种监测显示装置。变量补种装置由螺管式补种器、直流减速电机、单片机控制系统、PWM(pulse-width modulation)电机驱动系统、无线模块和电源组成,接收补种转速指令,并通过对应的占空比驱动电机实现变量补种。补种监测显示装置滚动刷新显示最近10个检测周期的漏播补种参数,便于对变量补种系统调试及监测系统运行状态。变量补种系统试验表明:在正常播种速率范围内,补种装置补种量与排种器当量漏播量比值稳定在1.2~1.4,补种后无漏播存在。该变量补种系统可为油菜等小粒径种子漏播补种技术与装置提供有效支撑。  相似文献   

3.
玉米精量排种器电驱PID控制系统设计与性能评价   总被引:2,自引:2,他引:0  
本文研究了一种基于PID的排种器电驱控制系统,取消了播种机采用地轮和链条驱动的方式,提高了播种机的播种质量和作业速度.采用PID算法控制排种盘转速,在目标转速与当前转速差异较大时,加入PID积分分离算法,以减少转速的超调量.通过整定后的PID参数为:Kp=16、Ki=0.05、Kd=36,在其排种盘转速范围为0~24r/min时,响应时间、超调量、稳态误差分别为0.4秒,1.56%和0.75%.试验结果表明,在12km/h的高速播种作业条件下,采用该电驱控制系统的排种器排种单粒率仍然可达到98.4%,其重播率和漏播率小于1%.采用本文研究的基于PID算法的排种控制系统可以获得良好的排种质量和更高的排种速度,使排种器更适宜高速精量播种.  相似文献   

4.
基于双闭环PID模糊算法的玉米精量排种控制系统设计   总被引:7,自引:5,他引:2  
黄淮海麦玉轮作区秸秆全量还田模式下,小麦秸秆韧性好、粉碎还田效果差以及土壤较为黏重,传统被动式地轮驱动易秸秆缠绕、拥堵及黏土量较大,播种作业易断条。为有效解决这些问题,该文以勺轮式玉米排种器为研究对象,设计一种主动式玉米电控精量排种系统。该系统作业时,通过USART HMI四线制触控串口屏人机界面向控制器输入理论期望株距,由GPS测速传感器采集机具作业速度,结合旋转编码器实时采集排种器作业转速,基于双闭环模糊算法对PID参数进行自整定,得到排种器目标转速,通过控制器调节相应PWM占空比,以实现通过机具作业速度实时控制电机转速,实现精密排种。台架试验结果表明:理论排种转速6~54 r/min时,实际转速的变异系数均小于10.0%,实际转速在理论转速附近波动范围小,符合控制要求;在设定株距值下,车速为3~5 km/h时,株距合格指数94.0%,漏播指数3.0%;车速为6~8 km/h时,株距合格指数≥90.0%,漏播指数≤4.5%。田间验证结果表明该玉米排种控制系统作业时,株距合格指数≥87.75%,平均值为90.89%,漏播指数均小于4%,平均值为2.54%,与市场上常见的勺轮式玉米排种器相比合格指数提高2.12个百分点、漏播指数降低4.32个百分点,播种性能良好,满足玉米农艺种植要求。该文研究的玉米电控精量排种系统可有效提高排种质量并可为研制高速精量主动排种控制系统提供参考。  相似文献   

5.
油菜机械离心式集排器排种量控制系统设计与试验   总被引:1,自引:1,他引:0  
为提升油菜机械离心式集排器的排种性能,实现排种量稳定可控可调,该研究设计了一套机械离心式集排器排种量控制系统。该系统以STM32F103C8T6单片机作为微控制器,利用以光电传感器PG-602为检测元件的落粒检测模块实时检测流经导种管的排种粒数,通过基于霍尔传感器的测速模块实时获取机具前进速度,结合排种粒数和机具前进速度反馈信息构建排种量控制策略,通过动态调节机械离心式集排器工作转速实现排种量均匀稳定控制。搭建了台架测试平台,确定了排种量调控模型为线性关系模型,系统对排种粒数的检测精度不低于96.17%,系统反馈时间为4 s。台架测试结果表明,该系统能够有效降低机具前进速度、内锥筒充种量、种子尺寸和播种株距变化对排种性能的影响。田间试验结果表明,该系统控制下的最大排种量误差为10.00%,平均排种量误差为5.77%,调控合格率为90.68%,田间出苗效果好。研究结果可为离心式集排器精量播种控制系统设计提供技术参考。  相似文献   

6.
针对机械式小麦射播排种器作业过程中存在的种子碰撞力较大、破损率高的问题,该研究采用TRIZ(Theory of the Solution of Inventive Problems)理论对小麦机械式射播排种器的关键部件参数进行优化,通过对种子在排种器内部的运动学分析,确定了影响小麦种子与排种器内部碰撞程度的因素为排种器转速、叶片后倾部分曲率半径与叶片安装角度,采用EDEM软件模拟小麦种子在排种器内部的运动情况,以种子破损率、平均排种速度与播种深度变异系数为试验指标,进行台架试验,结果表明,当排种器转速为1 000 r/min,叶片后倾部分曲率半径为40 mm,叶片安装角度为15°时,种子破损率为1.1%,平均排种速度为32.5 m/s,播种深度变异系数为8.9%,满足小麦播种作业要求。  相似文献   

7.
小区播种机电控系统设计与试验   总被引:8,自引:7,他引:1  
为了提高小区播种机的工作精度和工作效率,研制了小区播种机电控系统,既可保证育种试验的准确性和科学性,也有利于降低试验成本和提高作物育种试验的效率。针对锥体格盘式排种机构,使用步进电机精确控制格盘排种器的旋转角度,采用直流电机对离心式分配器进行控制。应用双传感器对比检测方法,减少因地轮打滑所引起的排种器播种长度不准确的问题。通过室内台架试验表明,格盘排种器旋转角度控制系统,能确保在不同的转速下排种格盘旋转一周的角度误差均小于0.24%;播种不同种子时最佳分配器转速分别为油菜种子1 560 r/min;白菜种子1 020 r/min;芝麻种子1 560 r/min ;绿豆种子780~1 020r/min,在此分配器转速下工作,行间一致性变异系数最小,行间一致性最好;机具行走速度在2.5 km/h以上时,行内一致性变异系数在15.4%以下。机具行走速度越低,行内一致性变异系数越大。  相似文献   

8.
膜下播种机的设计及排种装置的室内性能试验   总被引:2,自引:1,他引:1  
传统铺膜播种机在地膜上打孔播种容易形成板结,不利于发芽破土能力弱的作物生长。该文针对这一问题,分析了膜下播种机设计的要求,对主要工作部件排种装置的结构进行了分析并给出了结构参数,采用参数化造型软件Pro_E设计该膜下播种机。参照铺膜播种机试验方法,对玉米播种就机器前进速度和取种器个数进行了单因素试验。试验结果表明:当排种筒转速高于72 r/min时,空穴率明显增加;根据相关参数,推出排种筒的最佳转速为57 r/min;对于播种大株距作物,作业速度可加快;播种小株距作物,作业速度应放慢。  相似文献   

9.
舀勺式马铃薯播种机排种器的设计与试验   总被引:1,自引:11,他引:1  
为提高马铃薯种植机械化水平,针对目前马铃薯播种机排种器普遍存在的重漏播率高、人工劳动强度大、通用性差等问题,研究设计了一种舀勺式马铃薯排种器。阐述了该排种器主要结构、工作原理和相关结构参数;对排种器关键部件进行结构设计,理论分析主动轮和振动清种装置的性能特点;对排种器的排种性能进行台架试验,以主动轮转速、排种器倾角、清种装置的清种强度为试验因素,排种性能为试验指标进行正交试验,分析相关因素对排种性能参数的影响,获得合理参数组合,结果表明:电机驱动凸轮的清种系统较其它清种装置结构简单,作业状态更稳定,破拱装置增加种薯的流动性,提高充种率;主动轮转速为42 r/min,排种器倾角为0o,清种强度为0.75时,排种合格指数为92.6%,重播指数为4.5%,漏播指数为2.9%,排种质量较好,田间试验表明该作业参数组合下排种器性能满足马铃薯播种机播种性能要求,该研究为马铃薯播种机排种器的研究和设计提供了理论及技术参考。  相似文献   

10.
辣椒漂浮育苗具有占地面积小、育苗周期短和椒苗品质好的优点,播种环节要求一穴一粒精量播种,通常采用人工点播,存在劳动强度大和播种效率低的问题。针对以上问题,该研究以磁力回位型排种器为基础,设计了一种适于辣椒漂浮育苗的机械式自动精量排种器,并对关键机构进行设计,通过单因素试验获得曲柄直径、曲柄电机工作转速和种量的较优区间,以单粒合格指数、重播指数和漏播指数为指标进行三因素三水平正交试验,建立回归模型,并进行参数优化。试验结果表明,在排种器旋转倾角30°、旋转电机角速度0.07rad/s(即生产率240盘/h),曲柄直径为30mm、曲柄电机转速为230r/min、种量为4千粒时,排种器的播种效果较好,单粒合格指数为91.04%,重播指数为5.21%,漏播指数为3.75%,相比于人工操作磁力回位型排种器,单粒合格指数提升了5.81个百分点,重播指数降低了6.45个百分点,满足辣椒漂浮育苗的播种要求,可为辣椒育苗轻简化生产和小籽粒种子的机械式精量排种器研究提供参考。  相似文献   

11.
滑片型孔轮式水稻精量排种器排种性能数值模拟与试验   总被引:6,自引:5,他引:1  
针对现有水稻旱直播机排种器适应性差和排种精度低的问题,该文设计了一种滑片型孔轮式排种器。引用球度表示水稻种子三轴尺寸,利用EDEM软件对3种球度水稻种子在6种排种轮转速下的排种器排种过程进行仿真试验,得到不同球度水稻种子在不同排种轮转速下的排种性能变化规律,分析了排种轮转速和种子球度对排种性能的影响。仿真结果表明:当排种轮转速在15~40 r/min时,冈优898种子的排种性能优于国丰一号种子和冈优3551种子的排种性能;当排种轮转速在15~30 r/min时,3种球度水稻种子的排种合格率在84.01%~87.91%之间;当排种轮转速大于30 r/min时,随着排种轮转速增加,排种合格率显著下降。在此基础上,选用不同球度的5个水稻品种种子为试验材料,选取排种轮转速和种子球度为试验因素,以排种合格率、漏播率和重播率为评价指标,采用二次回归正交旋转组合设计,进行排种器台架试验。利用Design-Expert 8.0.6软件对试验结果数据进行分析,建立排种性能指标与排种轮转速和种子球度之间的回归方程,得到响应面图,并对仿真结果进行验证。根据回归方程进行优化,得到最佳工作参数:排种轮转速为27.12 r/min、种子球度为44.61%,此时,排种合格率为83.90%、漏播率为5.43%、重播率为10.67%,排种性能最佳;排种器台架试验结果与仿真结果基本相同,排种性能随排种轮转速和种子球度的变化规律一致。田间试验结果表明,排种器对各尺寸等级水稻种子的排种性能皆满足水稻精量穴直播的播种要求。研究结果可为滑片型孔轮式精量排种器的结构优化及排种性能提升提供参考。  相似文献   

12.
针对转轴型孔式棉花精量排种器在充种过程中由于型孔未囊取种子而造成漏播的问题,该研究通过建立棉种充填过程的运动学模型对相互抢位的棉种进行力学分析,研究取种轮运动参数与排种器转速对充种性能的影响。应用离散元仿真软件分析落入型孔的棉种速度的变化趋势,并分析取种轮振动频率对种群扰动的影响,以取种轮振动频率、取种轮振动偏移角、排种器转速为试验因素,以排种粒距合格率、重播率、漏播率为试验指标,进行三因素五水平的正交通用旋转组合试验,探究各因素对排种性能的影响,运用Design Expert 8.0.6软件对试验结果进行分析,并对回归模型进行优化验证。仿真分析结果表明,棉种瞬时速度随着排种轮转速的提高而增加,仿真标记的棉种在充入型孔时的瞬时速度小于取种轮速度,而相对取种轮速度较小的棉种具有更好的充种性能;在7 Hz时,种群法向力平均值最小,即种群的内摩擦力最小,棉种易于被型孔囊取;当排种器转速为12.59 r/min,取种轮振动偏移角度为8.06°,振动频率为6.08 Hz时,排种器的排种粒距合格率达到最大值94.5%。在此基础上,以新陆早61号棉花种子为试验对象进行台架验证试验,试验结果表明,当排种器转速为12 r/min时,排种器的排种粒距合格率达到最大值94.65%,漏播指数随着排种器转速的增加呈上升趋势,重播率随着转速的增加呈现下降趋势,与优化结果基本吻合,验证了仿真结果的准确性。该研究可为转轴型孔式棉花精量排种器关键部件结构优化设计提供参考。  相似文献   

13.
玉米变量播种机单体驱动器的设计   总被引:7,自引:5,他引:2  
国内电驱式玉米精量播种机所用电机驱动器和各类监测传感器大都直接连接在主控制器上,功能单一、播种行数难以拓展,无法满足变量播种作业对各个播种单体独立控制的要求。针对上述问题,搭建了基于STM32F103的单体驱动器硬件和软件架构,实现了排种器驱动电机的平稳驱动、转速调节、过流保护以及合格率、重播率、漏播率的播种质量检测;单体驱动器集成了CAN总线通讯模块,可通过增减单体驱动器便捷地实现播种机行数拓展。系统整体试验表明,单体驱动器和主控制器可以通过CAN总线完成转速指令和播种质量数据的交互;当作业速度在3~9 km/h之间时,单体驱动器驱动排种器播种合格率大于95.7%,重播率小于4.3%,漏播率小于1.4%,高于国标要求;播种质量检测模块与现有排种器性能检测仪的对比试验结果显示,在3km/h的作业速度,两者的检测结果最大差值为0.1个百分点,当前进速度逐渐上升时,两者的偏差逐渐增大,单体驱动器测得的3项指标都小于排种器检测仪,但在不同的速度梯度下,两者合格率相差不超过2个百分点,重播率不超过1.1个百分点,漏播率不超过0.9个百分点。综合而言,单体驱动器的整体功能良好。  相似文献   

14.
为提升新疆地区玉米精量播种机作业效率、稳定高速工况下播种质量,该研究以气吸圆盘式玉米排种器为研究对象,设计了一种基于模糊PID控制的玉米精量播种机单体驱动器。基于电机驱动排种控制系统硬件构成及工作原理,搭建了以STM32F103C8T6单片机为核心的功能电路。该单体驱动器工作时,由霍尔传感器采集播种机的作业速度,通过高精度光电旋转编码器实时反馈电机转速,利用增益调整型模糊PID算法使调速系统根据转速偏差和偏差变化率实时修正PID控制参数,使电机转速快速精准地跟随作业速度的变化。通过转速控制特性试验可知:脉冲宽度调制(Pulse Width Modulation, PWM)频率为60 kHz时,电机具有良好的启动特性;电机转速在307~10 441 r/min范围内,电机实际转速变异系数均小于6.29%,具有较好的稳定性和线性度。电机调速试验结果表明:在设定电机目标转速为1 500 r/min时,模糊PID调速系统相比传统PID调速系统超调量降低0.4%,上升时间和调节时间分别缩短0.12和0.49 s,稳态误差减小0.3%;在种床带速度反馈周期T=1.0 s时,模糊PID动态调速精度较高、鲁棒性好。电机驱动排种台架试验结果表明:作业速度为8、10 km/h时,两种控制方式的播种性能指标差异较小;作业速度为12 km/h时,模糊PID控制的播种合格指数大于93.04%,重播指数小于5.13%,漏播指数小于1.83%;与传统PID控制方式相比合格指数均值提高2.50个百分点,重播指数均值降低0.85个百分点,漏播指数均值降低0.88个百分点,各播种性能指标均优于传统PID控制方式,适于高速播种作业。研究结果可为玉米高速精量播种机的研发设计提供参考。  相似文献   

15.
加装导流板的舀勺式马铃薯播种机排种器性能分析与试验   总被引:6,自引:5,他引:1  
马铃薯播种机排种器的投种角度、速度、高度以及种薯与土壤接触后的弹跳等对马铃薯排种器播种质量影响较大,针对上述问题,该文研制了舀勺式马铃薯排种器的投种结构,设计加装了导流板。通过对导流板的性能分析、种薯投种过程及种薯与沟底碰撞过程的运动学分析,确定了影响播种效果的因素;以主动轮转速、机组前进速度、投种高度为主要因素,株距变异系数、漏播率、重播率为试验指标进行田间试验,并进行了旋转正交试验回归分析。试验结果表明:经参数优化后的马铃薯排种器具有较好的播种质量,当主动轮转速为42 r/min、前进速度为1.2m/s、投种高度为640mm时,其株距变异系数平均值为12.5%、漏播率平均值为2.21%、重播率平均值为3.56%,其标准均高于传统的舀勺式排种器,播种效果提升显著(P0.01)。该研究为马铃薯排种器技术进步提供了参考。  相似文献   

16.
间歇式自动取样条播排种器排种性能检测试验台研制   总被引:2,自引:2,他引:0  
针对条播作物排种器进行室内台架性能检测时,人工检测播种均匀性费时费力、自动化检测手段缺乏等问题,该文设计了一种条播排种器排种性能检测试验台,利用间歇式自动取样机构,实现定时定距自动化取样及排种均匀性检测。其工作原理是种子落入传送带上形成种子带,随传送带一起前进,当运动至取样板处时,气泵驱动取样板以均匀的速度往复运动,将特定距离的种子带推离出种带,并分散成弧形,采用数码照相机获取样本种子图像,利用Matlab图像处理技术,获取样本种子数量,判断所测试排种器的排种性能。采用单片机控制排种轴转速、取样板的启停及运动方向,并通过上位机显示。对试验台关键结构和参数进行设计,确定种带宽度为30 mm,护种板长度150 mm,与传送带之间距离控制在2~3 mm。为减少种子堆叠和黏连,保证样本种子带均匀排列,易于后期图像处理,设计了"一"、"T"和"工"字型3种结构的取样板,通过种子受力与运动规律分析,确定"T"型取样板为最优结构,取样长度L为40 mm。以外槽轮排种器播种小麦为研究对象,使用Design-Expert软件进行中心旋转组合设计试验,结果表明,传送带驱动电机转速分别为20、28.79和28.79 r/min时,样本种子堆叠率分别为100%、92.34%和75.21%;排种量6 g/s时,样本种子堆叠率最高,为40.15%。与人工定距取样检测方法的对比试验结果表明,间歇取样检测法利用图像批量处理获取样本种子数量的时间约为5 s;而人工定距测试的平均耗时为1 min,而且样本数量越多,耗时越长。试验结果表明,间歇式自动取样的条播排种器排种性能检测试验台设计合理,能够大大提高排种器排种性能检测效率,可为条播作物的排种器排种性能检测试验台的优化设计提供参考。  相似文献   

17.
为解决机收水稻地留茬对紫云英机械化播种的影响,针对目前紫云英开沟、播种环节独立作业时存在的作业质量不高、生产效率低等问题,该文研制了适用于机收水稻留茬地的紫云英开沟撒播机。设计了撒播高度可调装置,根据田间稻茬留量情况将撒播部件升降至适当位置;研制了紫云英专用排种轮和定量匀播装置,实现精量播种的同时提高撒播均匀性;采用双圆盘式开沟组件,确定圆盘直径为900 mm,测得平均开沟深度为22.3 cm,平均开沟宽度为31.2 cm,田间试验测定开沟宽度、深度变异系数均小于6%,满足紫云英种子生长期间的排水要求。通过多因素试验和回归分析,得出机具前进速度、排种轮转速、匀种圆柱直径等因素对撒播效果有显著影响,方差分析可知影响紫云英出苗率和播种均匀性变异系数的主次因素均为:排种轮转速匀种圆柱直径机具前进速度;影响排种量一致性变异系数的主次因素依次为:匀种圆柱直径机具前进速度排种轮转速;确定影响紫云英开沟撒播机撒播质量的因素最佳参数组合为:机具前进速度4.6 km/h,排种轮转速44 r/min,匀种圆柱直径6 mm。通过田间试验验证,最优参数组合条件下紫云英出苗率为95.87%,排种量一致性变异系数12.7%,播种均匀性变异系数8.07%,与模型预测优化结果的相对误差均小于3%,验证了所建模型与优化参数的合理性;与已有紫云英播种方式相比,本文所设计的双圆盘开沟撒播组合作业机作业效率可达1 hm~2/h,优于人工撒播作业效率0.1~0.125 hm~2/h、手摇撒播作业效率0.2~0.3 hm~2/h和机动喷播作业效率0.5~0.8 hm~2/h,低于无人机飞播作业效率3~4 hm~2/h,在撒播质量和组配方式上也明显优于其他播种方式,具有较好的推广应用前景。  相似文献   

18.
气力托勺式马铃薯精量排种器设计   总被引:1,自引:1,他引:0  
针对勺带式排种器播种前进速度进一步提高的限制以及气吸式排种器播种马铃薯所需功耗较大等问题,设计了一种气力托勺式马铃薯精量排种器。气力托勺式马铃薯精量排种器主要由滚筒、托勺、种箱、空心轴、气压隔板、压缩弹簧、链轮、清种气管等部件组成。通过理论分析与计算,确定了排种器关键部件参数。为了确定气力托勺式马铃薯精量排种器作业的优化参数,以负压、清种风速、型孔直径、滚筒转速为试验因素,以漏播率、合格率为试验指标,采用Box-Behnken试验设计原理进行了排种器性能试验,得到影响漏播率和合格率的主次顺序为负压、滚筒转速、型孔直径和清种风速。利用数据处理软件Design Expert 8.0.6进行参数优化,以漏播率、合格率为试验指标,得出负压为8.92 kPa,清种风速为32.25 m/s,型孔直径为18.34 mm,滚筒转速为19.92 r/min时,模型预测的漏播率为3.64%,合格率为91.9%。经过试验验证,与优化结果基本一致。论文相关研究可为马铃薯精量播种技术的研究提供参考。  相似文献   

19.
油菜成条飞播装置设计与试验   总被引:2,自引:2,他引:0  
为解决常见地面播种机器无法进入或进入经济效益不高场景下的油菜播种问题,基于极飞P20商用植保无人机平台,设计一种基于电驱离心条播式排种器的无人机油菜飞播装置,以实现类似地面机器条播而非撒播的效果。首先对已有倒置锥筒离心式排种器进行改进,设计上凸锥筒离心式排种器结构,并确定排种盘和排种口等关键部件的结构参数。在分析该款无人机下洗气流场分布规律的基础上,提出了一种与该离心排种器配合使用的辅助导种装置。排种性能台架试验表明,当排种转速在40~220 r/min范围逐渐增加时,单位时间总排量呈现先持续增加后趋于稳定,且在排种转速为190 r/min时达到最大单位时间总排量179.65 g/min,可满足无人机作业速度5 m/s所需的排量要求;各行排量一致性变异系数和总排量稳定性变异系数先减小后增大,分别分布在4.5%~12.6%和0.7%~6.2%范围内;种子籽粒破损率随排种转速增大逐渐增大,但均在2%以内。样机场地测试试验表明,导种装置高度在1.5~2.5 m范围内变化时,成条指数与其没有显著相关性(P=0.0769>0.05),且成条宽度不到设定行距的1/4。进一步的田间试验结果显示,成条指数为35.0%,播种均匀性变异系数为19.26%,满足油菜条播农艺技术要求。  相似文献   

20.
无人机点射式水稻播种装置控制系统设计与试验   总被引:1,自引:1,他引:0  
针对当前无人机水稻撒播难以成行成穴、落种易受旋翼风场干扰和播种均匀性不佳等问题,该研究结合点射式水稻播种装置和飞行控制器设计了一套播种控制系统,开发了配套的地面站功能,并制作了样机。控制系统基于PID算法实现排种器步进电机的转速闭环控制,通过标定模型对振动电机激振力和摩擦轮电机转速进行控制,并根据状态机设计播种控制程序。以3倍丸粒化稻种为对象,从播种量准确性、播种成行性和播种均匀性3个方面对样机的播种性能进行验证并优选合适的播种参数。试验结果表明:无人机模拟飞行的播种量准确性测试中,样机以1.0~2.5 m/s的作业速度进行播种时,播种量的平均相对误差小于4%,控制系统具有较好的动态调节能力。实地飞播测试中,样机以1.0和1.5 m的高度播种时,种子分布在12 cm种行宽度内的平均概率超过80%,成行性较好。考虑安全因素,优选1.5 m为样机的适宜作业高度。在作业高度为1.5 m,3倍丸粒化稻种的播种量为90~150 kg/hm2(对应裸种的播种量22.5~37.5 kg/hm2),作业速度为0.5~2.0 m/s时,播种均匀性变异系数为20.51%~35.52%。进一步分析发现,适当提升作业速度可提高播种均匀性。田间试验结果表明,播种量的相对误差分别为2.47%和4.12%,播种均匀性变异系数分别为22.17%和21.82%,种子破损率分别为0.34%和0.18%,满足相关标准的水稻飞播精度控制要求。研究结果可为无人机水稻直播技术提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号