首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
数字图像技术在夏玉米氮素营养诊断中的应用   总被引:9,自引:5,他引:4  
基于6个不同水平的氮肥田间试验,采用数码相机获取夏玉米6叶期和10叶期的冠层图像,分析了不同供氮水平下夏玉米冠层图像色彩参数指标与施氮量、叶片SPAD值、植株硝酸盐浓度、植株全氮含量、0~90cm土壤硝态氮含量之间的关系。结果表明:在6叶期,玉米冠层数字图像色彩参数指标B/(R+G+B)、G/B、R/B、B/L均与施氮量、叶片SPAD值、植株硝酸盐浓度、植株全氮含量、0~90cm土壤硝态氮含量存在极显著的线性相关关系,其中B/(R+G+B)与各营养参数的相关关系最好,其次是B/L。因此,运用数字图像技术进行玉米的氮素营养诊断是可行的。夏玉米6叶期冠层图像色彩参数指标与上述营养参数间的相关性明显高于10叶期,可作为应用数字图像技术进行氮素营养诊断的关键时期,而蓝光标准化值[B/(R+G+B)]是进行夏玉米氮素营养诊断的最佳冠层图像色彩参数指标。  相似文献   

2.
本文利用手机相机获取玉米6叶期和9叶期的冠层图像,对图像进行色彩参数的提取与处理,分析了不同生长时期、不同品种间色彩参数的差异性,以及色彩参数与传统玉米氮素营养指标的相关性,选择出适宜的敏感色彩参数,对色彩参数与氮素营养指标进行拟合建模,建立了玉米氮素营养诊断体系,并推荐了不同产量目标下的施肥量,为实现利用智能手机田间拍照进行氮素营养诊断和精准推荐施肥提供参考。结果表明,在玉米6叶期,冠层图像色彩参数与传统氮素营养指标间的相关性优于9叶期,可作为应用数字图像分析技术进行氮素营养诊断的诊断时期;不同品种玉米的冠层图像色彩参数间无显著差异。B/(R+G+B)和G/(R+G+B)与传统氮素诊断指标——叶片SPAD值、第1完全展开叶叶脉硝酸盐浓度均显著相关,且B/(R+G+B)更为敏感,因此可作为玉米氮素营养诊断的色彩参数指标,诊断方程为:玉米叶脉硝酸盐浓度=1.73×10~(10)×[B/(R+G+B)]~(9.43)。并依此给出了不同B/(R+G+B)值下的玉米营养状况以及不同目标产量下的推荐施氮量。本研究结果可为基于手机相机开展玉米氮素营养诊断与推荐施肥技术的推广与应用提供技术支撑。  相似文献   

3.
数字图像诊断技术在冬小麦氮素营养诊断中的应用   总被引:8,自引:3,他引:5  
本文应用数码相机获取冬小麦冠层图像并对其进行相应色彩参数处理, 结合土壤、植株快速测试技术, 分析了色彩参数与传统氮素营养参数之间的数量关系, 研究了应用数字图像技术进行冬小麦氮素营养诊断的可行性, 建立了应用数字图像技术诊断冬小麦氮素营养状况的图像获取方法, 筛选出了适宜于冬小麦氮素营养诊断的最佳色彩参数以及最佳诊断时期, 建立了冬小麦氮素营养诊断指标体系和推荐施肥方程。研究结果表明, 数字图像技术可以作为冬小麦氮素营养诊断的方法。数字图像获取时, 可将数码相机与冬小麦冠层呈30°~60°角度进行拍摄。在冬小麦拔节期和孕穗期多数冠层图像色彩参数与施氮量、叶片SPAD 值、植株硝酸盐浓度、植株全氮含量、0~90 cm 土壤硝态氮含量之间存在显著或极显著相关关系; 在众多色彩参数中, 拔节期冠层图像绿光标准化值G/(R+G+B)与各项氮素指标的相关性最好, 可作为冬小麦氮素营养诊断的最佳色彩参数指标;拔节期可作为应用数字图像技术进行氮素诊断的关键时期。  相似文献   

4.
【目的】 近年来应用无人机进行作物生长、营养和植保信息的快速提取受到广泛关注,但其对作物全生育期营养状况的动态诊断需要明确适宜的色彩参数。本研究通过田间氮水平试验,以无人机为平台利用可见光光谱对夏玉米不同生育期的冠层氮素营养进行监测,对基于可见光RGB图像的色彩参数与传统氮素诊断指标的相关性进行分析,并比较色彩参数的变异系数以探明夏玉米不同生育时期氮素营养诊断的最佳色彩参数。 【方法】 于2015年6—10月,在河北省中国农业大学曲周试验基地设置不同氮水平田间试验,以夏玉米郑单958为供试作物,设5个施氮水平:0、102、145、189和250 kg/hm2 (分别以CK、70%OptN、OptN、130%OptN、ConN表示),4次重复。分别在夏玉米六叶期 (V6)、十叶期 (V10)、吐丝期 (VT)、籽粒建成期 (R2)、乳熟期 (R4) 应用无人机可见光遥感技术获取夏玉米冠层图像,采用Adobe Photoshop软件经过一些图像处理后选用直方图程序提取图像的红光值R、绿光值G、蓝光值B、亮度值L,研究由此计算的12个色彩参数与传统氮素诊断指标 (植株氮浓度、生物量和吸氮量) 的相关性,结合相关系数和变异系数的大小综合分析筛选夏玉米不同生育时期氮素营养诊断的最佳色彩参数。 【结果】 红光值 (R)、绿光值 (G)、亮度值 (L)、绿光标准化值[G/(R + G + B)]、蓝光标准化值[B/(R + G + B)]、绿光与红光的比值 (G/R)、绿光与蓝光的比值 (G/B)、绿光与亮度的比值 (G/L)、红绿蓝植被指数 (RGBVI) 等在不同生育时期均与夏玉米的植株氮浓度、生物量和吸氮量有很好且一致的相关性,结合图像色彩参数的变异系数综合分析后,G/(R + G + B)、G/L在各生育时期与夏玉米常规的氮营养诊断指标有极显著的相关性 (P < 0.01),相关系数介于0.641~0.944之间,且变异系数小而稳定,介于0.93%~4.30%之间,优于其他光谱参数,可作为基于无人机可见光技术用于各时期氮素营养动态诊断的最佳色彩参数。 【结论】 应用无人机可见光遥感进行夏玉米氮素营养动态诊断具有结果可靠、便捷、高效、非破坏性的优点,本研究结果对应用该技术进行较大区域的作物氮素营养动态诊断提供了科学依据。   相似文献   

5.
本文利用不同型号手机、通过不同拍摄角度获取冬小麦拔节期冠层图像,并对其图像进行色彩参数的提取、处理与分析,与传统小麦氮素营养指标进行相关性分析,筛选出敏感色彩参数,对二者进行拟合建模,建立了冬小麦氮素营养诊断指标体系和推荐施肥指标体系,为作物精准施肥提供参考。研究结果表明,在获取冬小麦冠层图像时,适宜从逆光俯视的角度拍摄,不同型号的手机拍照获取的冠层图像色彩参数没有明显差异,冠层图像色彩参数中可见光大气阻抗植被指数(VARI)及红光标准化值[R/(R+G+B)]与传统诊断指标叶片SPAD值、茎基部硝酸盐浓度均有显著的相关关系;其中VARI最为敏感,可作为冬小麦氮素营养诊断的色彩参数指标,诊断方程为冬小麦茎基部硝酸盐浓度=1.481×106×VARI4.987,依据此给出了不同VARI值下的冬小麦营养状况以及推荐施氮量。并基于此研究成果进行了手机软件开发,建立了一款针对冬小麦氮素营养诊断与推荐施肥的软件,为基于手机相机开展冬小麦氮素营养诊断与推荐施肥技术的推广与应用提供了技术支撑。  相似文献   

6.
应用数字图像技术进行水稻氮素营养诊断   总被引:12,自引:1,他引:11  
【目的】研究田间试验条件下水稻不同生育期冠层图像色彩参数(G、NRI、NGI、NBI、G/R和G/B)及植株氮素营养指标(叶片含氮量、植株全氮含量、生物量、氮素累积量和冠层NDVI值)的时空变化特征,并分析两者间的相关性,确立水稻氮素营养诊断的最佳色彩参数和方程模型,为探明数码相机在水稻上的适宜性及精确诊断水稻氮素营养状况提供理论基础。【方法】于2013年5月9月在湖北省武汉市华中农业大学试验基地(30°28'08'N,114°21'36'E)采用不同施氮处理的田间试验,以籼型两系杂交稻"两优6326"为供试作物,设置4个施氮水平:0、75、150和225 kg/hm2(分别以N0、N75、150和N225表示),3次重复,随机区组排列。分别在水稻分蘖期、拔节期、孕穗期和灌浆期采用数码相机(Nikon-D700,1200万像素)获取水稻冠层图像,应用Adobe photoshop7.0软件直方图程序提取图像的红光值R、绿光值G和蓝光值B,研究数码相机进行水稻氮素营养诊断色彩参数,确定植株氮素营养指标诊断模型。【结果】较对照(N0)相比,分蘖期、拔节期、孕穗期和灌浆期3个施氮处理水稻地上部生物量、叶片含氮量、植株全氮含量、氮素累积量、冠层NDVI值和成熟期产量增幅分别平均为40.7%98.0%、42.4%72.4%、36.2%85.3%、125.5%209.1%、51.3%60.6%和60.1%117.0%,差异显著。水稻不同生育期各冠层数字化指标G、NRI、NGI、NBI、G/R和G/B与上述氮素营养参数相关性差异较大,且以数字图像红光标准化值NRI表现最佳,建议作为应用数码相机进行水稻氮素营养诊断的最佳冠层图像色彩参数指标。进一步分析表明,可以用统一的线性回归方程来描述不同生育期、不同氮素水平下水稻植株氮素营养指标随冠层色彩参数NRI的变化模式。【结论】数码相机进行水稻氮素营养诊断测试结果稳定,具有快速、便捷、非破坏性等优点,冠层色彩参数NRI与水稻氮素营养指标和产量之间均表现出较好的相关性,满足氮素营养无损诊断的需求,对实时、快速监测水稻长势状况及氮素营养丰缺水平具有较高的可行性,有望发展成为新时期作物氮素营养无损诊断技术的潜力。  相似文献   

7.
于2018和2019年在宁夏平吉堡农场进行滴灌水肥一体化氮肥梯度试验,以天赐19为试验材料,设6个氮素水平,即 0 (N0)、90(N1)、180(N2)、270(N3)、360(N4)和450(N5)kg·hm−2,在玉米拔节期(V6)、小喇叭口期(V10)、大喇叭口期(V12)、吐丝期(R1)和乳熟期(R3)利用无人机搭载数码相机获取玉米冠层图像,利用Matlab编写代码开发的数字图像识别系统提取玉米冠层图像红光值R、绿光值G、蓝光值B,研究基于此计算的10个冠层图像参数指标与氮素营养指标间的相关性,筛选出稳定性好且敏感度高的图像色彩参数,构建玉米氮素营养诊断指标与图像参数间关系模型并进行验证,以探究利用无人机图像进行宁夏引黄灌区滴灌玉米拔节-乳熟期氮素营养动态估测的可行性。结果表明:冠层图像参数指标绿光与红光比值(G/R)、绿光标准化值(NGI)、红绿蓝植被指数(RGBVI)与植株氮含量和叶片氮含量相关性高且变异系数小,可作为氮素营养诊断的潜在最佳色彩参数;将最佳色彩参数与植株氮含量和叶片氮含量分别进行回归模型构建,幂函数模型可以更好地预估玉米氮素营养状况;利用2019年相同氮素试验进行模型验证,发现NGI与植株氮浓度和叶片氮浓度实测值与估测值的R2分别为0.738和0.689,检验指标RMSE为2.594和3.014,nRMSE为13.125%和13.347%,预测精度和准确性高于G/R和RGBVI。故选择NGI作为滴灌玉米拔节−乳熟期氮素营养动态诊断的最优参数,参数NGI与植株氮浓度的关系模型(NP=4.967×106NGI14.26)R2为0.707,与叶片氮浓度的关系模型(NL=1.707×106NGI12.88)R2为0.654。说明应用无人机图像技术可以较好地对宁夏引黄灌区玉米拔节−乳熟期氮素营养状况进行动态估测,构建的氮素营养诊断模型可为宁夏引黄灌区滴灌玉米氮肥精准配施提供理论依据。  相似文献   

8.
应用数字图像分析技术进行棉花氮素营养诊断的研究   总被引:19,自引:3,他引:16       下载免费PDF全文
本文利用图像分析技术并结合常规观测手段,研究应用图像分析技术诊断棉花氮素营养状况的可行性及获取的光谱参数与表征棉花氮素营养状况的生物学参数之间的关系.结果表明:棉花在不同时期特征光谱参数与棉花含氮量及叶片含氮量呈显著相关,其中盛蕾期棉花全氮含量与光谱参数的相关性最好,在盛花期棉花叶片含氮量与光谱参数的相关系数最高,G/(G R B)可作为氮素营养诊断的指标.在棉花全生育期内,地面覆盖度与棉花叶面积指数、生物量及吸氮量呈显著相关,在出苗至盛花期之间达极显著相关.经检验,地面覆盖度可很好地预测棉花的叶面积指数、生物量及吸氮量,相对误差分别为26.2%、3.46%和3.37%.  相似文献   

9.
精准施肥是减少农业面源污染的重要技术之一,而土壤养分测试与作物营养诊断是其实施的技术保障,特别是在农业规模化经营方式下,急需发展快速、经济、无损的作物氮素营养诊断技术。本文在应用数字图像进行冬小麦、夏玉米氮素营养诊断研究的基础上,将数码相机搭载到无人机上,利用无人机航拍技术采集作物冠层数字图像,研究不同航拍高度下冠层图像相关色彩参数反演冬小麦和夏玉米氮素营养状态的差异,以确定适宜的航拍高度与敏感的色彩参数,建立利用无人机航拍数字图像诊断冬小麦和夏玉米氮素营养状态模型。研究结果表明:在冬小麦拔节期适宜的航拍高度是16 m,敏感的色彩参数是可见光大气阻抗植被指数(VARI),诊断模型为:冬小麦茎基部硝酸盐浓度=2.103 4e18.874VARI;夏玉米大喇叭口期适宜的航拍高度是50 m,敏感色彩参数是蓝光标准化值[B/(R+G+B)],诊断模型为:夏玉米第1完全展开叶叶脉硝酸盐浓度=1.526?1032?[B/(R+G+B)]50.445。依据建立的航拍方法与诊断模型,分别对冬小麦、夏玉米进行了氮素状态监测的验证,结果表明诊断结果与冬小麦、夏玉米实测数据的决定系数分别为0.80和0.85,且均在P0.01水平显著相关。最后将研究结果进行应用,生成了冬小麦、夏玉米氮肥追肥作业图。利用无人机搭载数码相机对冬小麦、夏玉米进行氮素营养诊断简单、可行,但仍有一些技术细节需要完善,以提高该技术的实用性。  相似文献   

10.
关中地区玉米临界氮浓度稀释曲线的建立和验证   总被引:5,自引:4,他引:5  
基于临界氮浓度稀释曲线推导的氮素营养指数既可以诊断出氮素供应不足也可以诊断出氮肥供应过量。该文在整理分析关中平原8 a氮肥大田试验的基础上,分别构建了关中灌区夏玉米和渭北旱塬春玉米的地上部生物量的临界氮浓度稀释曲线模型。结果表明,关中玉米地上部临界氮浓度与生物量符合幂函数关系。利用独立试验资料对建立的临界氮稀释曲线模型进行检验,结果表明:该模型能准确诊断该区玉米植株的氮营养状况,施肥量和施肥时期对玉米植株的氮素营养状况影响较大,一般随着施氮量的增加氮素营养指数值会增大,只基施氮肥或前期施氮过多都会使玉米在生长过程中营养失衡。该研究建立的关中地区玉米的临界氮稀释模型为该区玉米氮素营养诊断和优化管理提供了较好的技术途径和理论参考。  相似文献   

11.
应用多光谱图像技术进行锦橙叶片氮含量监测   总被引:1,自引:0,他引:1  
以蓬安100号锦橙为试材,运用多光谱图像技术建立快速监测叶片氮含量的方法。利用多光谱相机MS3100采集蓬安100号锦橙叶片图像,运用Adobe Photoshop软件提取叶片图像的颜色特征参数,对其进行数学变换和归一化处理后的颜色特征参数与叶片氮含量值进行相关分析,并建立二者回归模型。结果表明:6个颜色特征参数G-B、G/(R+B)、(G-B)/(G+B)、G/(R+G+B)、g-b值与叶片氮含量的相关较好,综合评价得出G-B、(G-B)/(G+B)、g-b值所建立的蓬安100号锦橙叶片氮含量监测模型较好,其相关系数均为0.84,决定系数为0.70,预测误差为3.7%。研究结果表明,利用计算机视觉技术进行锦橙叶片氮含量监测是可行的。  相似文献   

12.
基于无人机数码影像的冬小麦叶面积指数探测研究   总被引:18,自引:1,他引:17  
叶面积指数(LAI)是评价作物长势的重要农学参数之一,利用遥感技术准确估测作物叶面积指数(LAI)对精准农业意义重大。目前,数码相机与无人机系统组成的高性价比遥感监测系统在农业研究中已取得一些成果,但利用无人机数码影像开展作物LAI估测研究还少有尝试。为论证利用无人机数码影像估测冬小麦LAI的可行性,本文以获取到的3个关键生育期(孕穗期、开花期和灌浆期)冬小麦无人机数码影像为数据源,利用数字图像转换原理构建出10种数字图像特征参数,并系统地分析了3个生育期内两个冬小麦品种在4种氮水平下的LAI与数字图像特征参数之间的关联性。结果表明,在LAI随生育期发生变化的同时,10种数字图像特征参数中R/(R+G+B)和本文提出的基于无人机数码影像红、绿、蓝通道DN值以及可见光大气阻抗植被指数(VARI)计算原理构建的数字图像特征参数UAV-based VARIRGB也有规律性变化,说明冬小麦的施氮差异不仅对LAI有影响,也对某些数字图像特征参数有一定影响;在不同条件(品种、氮营养水平以及生育期)下的数字图像特征参数与LAI的相关性分析中,R/(R+G+B)和UAV-based VARIRGB与LAI显著相关。进而,研究评价了R/(R+G+B)和UAV-based VARIRGB构建的LAI估测模型,最终确定UAV-based VARIRGB为估测冬小麦LAI的最佳参数指标。结果表明UAV-based VARIRGB指数模型估测的LAI与实测LAI拟合性较好(R2=0.71,RMSE=0.8,P0.01)。本研究证明将无人机数码影像应用于冬小麦LAI探测是可行的,这也为高性价比无人机遥感系统的精准农业应用增添了新成果和经验。  相似文献   

13.
黄瓜初花期叶片光合色素含量与颜色特征的初步研究   总被引:7,自引:3,他引:7  
基于不同氮素营养水平的栽培试验,采用数码相机拍照,利用图像处理技术提取叶片的颜色特征,通过线性拟合和逐步回归分析,建立了黄瓜初花期叶片光合色素含量的颜色特征估算模型,并对其精度进行了评价和验证。结果表明:R/(R+G+B)可以作为叶绿素含量估算的主要颜色特征参数;G/R和R/(R+G+B)是类胡萝卜素含量估算的主要颜色特征参数。该研究为黄瓜生长的快速检测提供了依据。  相似文献   

14.
基于图像处理的冬小麦氮素监测模型   总被引:6,自引:1,他引:5  
为探索基于数字图像处理技术的冬小麦氮素无损诊断图像评价指标及构建方法,设计拍摄2012-2014年度不同种植方案下冬小麦冠层图像,基于归一化的H分量K均值聚类分割算法提取基础颜色特征值,与同期叶片氮含量(leaf nitrogen content,LNC)进行线性拟合,调优并确定三原色分量最佳拟合系数,提出RGB空间下的颜色组合标准化指数(normalized color mix index,NCMI)。对比深绿色指数(dark green color index,DGCI)、红光标准化值(normalized redness intensity,NRI)和绿光与红光比值G/R发现,3个采样期NCMI与LNC的决定系数R~2均高于3个对比指标,分别为0.77、0.79、0.94,均方根误差(root mean square error,RMSE)相较同期最低的指标,分别降低了0.18%、0.37%和1.67%;生选6号和扬麦18号NCMI与LNC的相关性,在一定冠层覆盖度下均优于其他3个指标;D2密度(3×106株/hm~2)N1(纯氮150 kg/hm~2)处理下NCMI效果明显优于其他3个指标,R~2和RMSE较NRI分别改善了7.69%和4.11%,该研究可为一定冠层覆盖度下的冬小麦氮素营养诊断图像评价指标提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号