首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
草覆盖影响了沙地土壤的水文物理学参数和水流的异质性   总被引:2,自引:0,他引:2  
Vegetation cover has a major effect on water flow in soils.Two sites,separated by distance of about 50 m,were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot,dry period.A control soil(pure sand)with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area,and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses.The persistence of water repellency was measured using the water drop penetration time test,sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer, and saturated hydraulic conductivity using a double-ring infiltrometer.Dye tracer experiments were used to assess the heterogeneity of water flow,and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles.Most hydrophysical parameters were substantially different between the two surfaces.The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand. Water and ethanol sorptivities in the grassland soil were 7% and 43%,respectively,of those of the pure sand.Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16%of those of the pure sand, respectively.Dye tracer experiments revealed a stable flow with"air-draining"condition in pure sand and well-developed preferential flow in grassland soil,corresponding to individual grass tussocks and small micro-depressions.The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand.The results of this study reinforce our view that the consequences of any change in climate,which will ultimately influence hydrology,will be markedly different between grasslands and bare soils.  相似文献   

2.
土壤污染物优势流的数学模拟   总被引:2,自引:0,他引:2  
A simple modeling approach was suggested to simulate preferential transport of water and contaminants in soil.After saturated hydraulic conductivity was interpolated by means of Krige interpolation method or scaling method,and then zoned,the locations where saturated hydraulic conductivity was larger represented regions where preferential flow occurred ,because heterogeneity of soil,one of the mechanisms resulting in prefeential flow,could be reflected through the difference in saturated hydraulic conductivity,The modeling approach was validatd through numerical simulation of contaminant tansport in a two-dimensional hypothetical soil profle.The results of the numerical simulation showed that the approach suggested in this study was feasible.  相似文献   

3.
可耕种坡地的土壤水力参数非均质性变化   总被引:3,自引:0,他引:3  
The spatial variations of the soil hydraulic properties were mainly considered in vertical direction. The objectives of this study were to measure water-retention curves, θ(ψ), and unsaturated hydraulic conductivity functions, K(ψ), of the soils sampled at different slope positions in three directions, namely, in vertical direction, along the slope and along the contour, and to determine the effects of sampling direction and slope position of two soil catenas. At the upper slope positions, the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content, 0, at a certain soil water potential (-1 500 kPa 〈 ψ 〈 -10 kPa) and had the greatest unsaturated hydraulic conductivity, K, at ψ 〉 -10 kPa. At the lower slope positions, K at ψ〉 -10 kPa was smaller in the vertical direction than in the direction along the slope. The deep soils (100 110 cm) had similar soil hydraulic properties in all the three directions. The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity. These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.  相似文献   

4.
扩散率与吸水率关系的解析方法   总被引:1,自引:0,他引:1  
A simple method was developed to relate soil sorptivity to hydraulic diffusivity and water absorption experiments were conducted utilizing one-dimensional horizontal soil columns to validate the relationship. In addition, an estimation method for hydraulic diffusivity with disc infiltrometer was developed. The results indicated a favorable fit of the theoretical relation to the experimental data. Also, the experiment with disc infiltrometer for estimating the diffusivity showed that the new method was feasible.  相似文献   

5.
土壤物理性质对供水能力的影响   总被引:1,自引:0,他引:1  
The water-supplying capacity of two agricltural soils red soil in Jiangxi Province and meadow sol in Henan Province,was assessed mainly using physical investigations.The reticulated mottling horizon in the red soil was a horizon limiting roots distribution due to its high density and hardness in structure and low pH(pH5.05),The reistance of the red soil to drought hazard was poor because of its low water-supply capacity and poor hydraulic conductivity.The meadow soil had superior profile infiltration to that of the red soil and great available water-storage capacity,which resulted in low run-off loss,espectially in the wheat-growth season.It was difficult for water stored in the deep layers of the meadow soil to reach the surface due to the low unsaturated hydraulic conductivity of its clay-rich horizon in subsoil,Howver,water stored in deep layers was still available because the roots could extend to the deep layers due to the relatively low density in soil structure.  相似文献   

6.
An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited. The purpose of this study was to evaluate the long-term impact of fire on the effective thermal conductivity of soils by directly comparing fire-heated and no-fire control soils through a series of laboratory studies. The thermal conductivity was measured for ten soil samples from two sites within the Manitou Experimental Forest, Colorado, USA, for a range of water contents from saturation to the residual degree of saturation. The thermal conductivity measured was compared with independent estimates made using three empirical models from literature, including the Campbell et al.(1994), Cté and Konrad(2005), and Massman et al.(2008) models. Results demonstrate that for the test soils studied, the thermal conductivity of the fire-heated soils was slightly lower than that of the control soils for all observed water contents.Modeling results show that the Campbell et al.(1994) model gave the best agreement over the full range of water contents when proper fitting parameters were employed. Further studies are needed to evaluate the significance of including the influence of fire burn on the thermal properties of soils in modeling studies.  相似文献   

7.
The pH effect on the sorption kinetics of heavy metals in soils was studied using a constant flow leaching method.The soil samples were red soil collected from Yingtan,Jiangxi,and yellow-brown soil from Nanjing,Jiansu,The heavy metals tested were zinc and cadmium.Assuming that the experimental data diffed to the following kinetic rate equation:1/c.dx/dt=kx∞-kx,the rate constant k of sorption could be determined from the slope of the straight line by plotting of 1/c,dx/dt vs.x.The results showed that the pH effect on the rate constants of heavy mental sorption in soils was very significant.The values of k decreased with increasing pH.The sorptions were more sensitive to pH in red soil than in yellow-brown soil.  相似文献   

8.
Salt balance in simulated soil coulumns was calculated on the basis of a large amount of long term observation data.The results showed that under the climate conditions of semi-arid region of the Huang-Huai-Hai Plain,the soils in the columns were under salt accumulation conditions when the groundwater depth was controlled at less than 2.0m,and under desalinization conditions when at larger than 2.5m.In the soil columns with clay soil and silty loam soil intercalated with a clay layer,the amount of salt accumulated was far less than that in the soil column with silty loam soil throughout the whole profile.Under no irriagtion conditions crop planting may increase groundwater evaporation and hence salt accumulation in soil,making the soil columns under desalinization be under salt accumulation conditions.  相似文献   

9.
电析土壤微粒悬浮液的维恩(Wien)效应及其影响因子   总被引:5,自引:0,他引:5  
The electrical conductivity of suspensions and their supernatants from the electrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated with nitrate solutions were determined at different field strengths using a short high-voltage pulse apparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affecting it. It was found that Wien effect was much stronger in suspensions with a clay content of 30 g kg-1 from the soils equilibrated with a 1 × 10-4 KNO3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., the Wien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 g kg-1) equilibrated with different nitrate solutions of a concentration of 1 × 10-4/z mol L-1 , where z is the valence, varied with the type of nitrates, being lowest for NaNO3 (47 kV cm-1) and highest for Ca(NO3)2 (98 kV cm-1). At high field strengths (larger than 130 kV cm-1), the relative conductivities of yellow-brown soil suspensions containing different nitrates diminished in the order: NaNO3 > KNO3 > Mg(NO3)2 > Zn(NO3)2 > Ca(NO3)2. The rates and intensities of the Wien effect in the suspensions of the three soils equilibrated with 5 × 10-5 molL-1 Ca(NO3)2 solution were in the order of the yellow-brown soil > the latosol > the black soil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg-1) equilibrated with KNO3 solutions of various concentrations clearly demonstrated that the more dilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensions at high field strengths. The results for yellow-brown soil suspensions with different clay concentrations indicated that as the clay concentration increased, the low field electrical conductivity, EC0, also increased, but the TFS decreased, and the Wien effect increased.  相似文献   

10.
Bioavailability is a key parameter in assessing contaminant transfer to biota. However, the input patterns and soil use types may impact the metal bioavailability. Several soil parameters were measured including chemical properties, such as pH, organic C, and Cu solution/solid speciation, and biological properties, such as soil microbial biomass C (SMBC), seed germination, and root elongation, to evaluate the bioavailability of Cu contaminated soils from three different sources, i.e., non-ferrous metal mining, Cu-based fungicides, and Cu-smelting. The results revealed that free Cu2+ ion in soil solution and the ratios of Cu fractions to total Cu content in the solid phase could not be used to predict total Cu content in soils. The indexes of seed germination and root elongation appeared not to be good biomonitors of Cu contamination in soils, which were more sensitive to soil pH and soil organic carbon (SOC). Relationships between SMBC and soil Cu forms or the ratio of SMBC/SOC and soil Cu forms showed that free Cu2+ ion and humie acid-complexed Cu could significantly inhibit soil microbial activities. Our findings suggested that both metal chemical forms and biological bioassays should be considered as a complementary technique rather than an alternative to evaluate the metal bioavailability from different pollution sources.  相似文献   

11.
不同含盐土壤圆盘入渗特征试验   总被引:3,自引:1,他引:2       下载免费PDF全文
不同含盐土壤水分入渗特征是获得准确的土壤水力参数的基础。该文通过圆盘入渗试验,分析了4种土壤在5个(-1、-3、-6、-9和-12 cm)负水头下的入渗特征。结果表明,随着水头的减小,4种土壤的吸湿率线性减小,稳定入渗率和非饱和导水率呈不同程度减小。随土壤含盐量增加稳定入渗率和导水率呈增大规律。根据实测资料确定了不同负水头下非饱和导水率的Gardner指数模型参数,为盐渍化土壤水力参数的确定提供理论参考。  相似文献   

12.
4种土壤入渗测定方法的比较   总被引:9,自引:5,他引:4  
入渗是土壤的基本物理性状,与降雨产流、侵蚀、非点源污染等过程密切相关,快速、准确测定土壤入渗速率具有重要的意义。以黄土高原沟壑区安塞水土保持综合试验站大豆地的黄土为测试土壤,利用双环、单环、圆盘入渗仪、Hood入渗仪4种方法测定了土壤入渗性能,并以双环法测定的稳渗速率、Hood仪测定的饱和导水率、单环/双环和圆盘测定的累积入渗量为基础,比较分析了4种方法各自的优劣。结果表明,单环、圆盘、Hood测定的稳渗速率分别为双环的116%,111%和225%,双环、单环、圆盘测定的饱和导水率分别为Hood的65.8%,75.1%和105%,双环、单环、圆盘达到稳渗时间分别为100,80和30min。说明圆盘测得的稳渗速率、饱和导水率最接近标准值,而且省时省力省水,更适合于野外实验。  相似文献   

13.
盘式吸渗仪测定土壤导水率的两种新方法   总被引:5,自引:2,他引:3  
应用盘式吸渗仪测定田间土壤导水率具有快速简单的优点,但是测定结果的计算处理比较繁琐,寻求简单的计算方法是广泛应用盘式吸渗仪的关键问题。该文改变盘式吸渗仪测定土壤导水率的三维入渗过程为一维入渗过程,简化了测定结果的计算处理。结果显示:两种不同的一维入渗过程达到的稳定入渗率和导水率之间有很好的线性关系,但是三维过程计算的导水率大于一维过程。双套盘吸渗仪一维过程计算导水率与稳定入渗率一致性较好,但是和三维稳态、瞬态方法计算结果之间差异明显,因此在应用这些方法时需要适当调整参数,建议使用双套盘吸渗仪快速测定田间土壤导水率。  相似文献   

14.
利用圆盘入渗仪推求含碎石土壤饱和水力传导度(英)   总被引:1,自引:0,他引:1  
在模拟土柱中,利用圆盘入渗仪对碎石对土壤饱和水力传导度的影响进行了分析。结果表明:含碎石土壤饱和水力传导度可以通过对不同负压下土壤稳定入渗速率进行非线性回归获得。含碎石土壤饱和水力传导度与去除碎石后的土壤饱和水力传导度及碎石形状指数密切相关。试验中含碎石土壤的饱和水力传导度随碎石含量的增加而呈指数降低趋势。  相似文献   

15.
Hydraulic conductivity at and near saturation is difficult to predict. We investigated, for the first time, the potential of boosted regression trees to identify the key factors that determine saturated and near‐saturated hydraulic conductivities in undisturbed soils with a global meta‐database of tension infiltrometer measurements. Our results demonstrate that pedotransfer functions developed from meta‐databases may strongly over‐estimate prediction performance unless they are validated against each individual data source separately. For such a source‐wise cross‐validation, we estimated the hydraulic conductivity at a tension of 10 cm (K10) and the saturated hydraulic conductivity (Ks) with coefficients of determination of 0.36 and 0.15, respectively. The most important predictors for K10 were the average annual precipitation and temperature at the measurement location, which are key variables for pedogenesis and constrain soil management. More research is required for the in‐depth interpretation of their influence on hydraulic conductivity. The soil clay and organic carbon contents were also important predictors of K10, with hydraulic conductivity decreasing as organic carbon contents increased up to 1.5% and as clay contents increased between about 10 and 40%. The direction of the tension‐sequence with which the infiltrometer data were collected was also a significant predictor. Land use and bulk density were the most important predictors for Ks. The direction of the tension‐sequence and the soil texture class were also important, with both coarse and fine‐textured soils generally having larger Ks values than medium‐textured soils.  相似文献   

16.
入渗水水质对土壤导水特性影响的试验研究   总被引:4,自引:2,他引:2       下载免费PDF全文
为探究不同入渗水水质对土壤导水特性的影响,采用圆盘负压入渗法进行试验研究,选取两种水质(蒸馏水和自来水)对黄壤和红壤进行4个压力水头(0,-3,-6,-9cm)下的圆盘入渗试验。结果表明,随着入渗水电导率的增大,土壤入渗率、吸渗率及导水率均随之增大,且红壤在不同电导率的入渗水作用下土壤吸渗率的变化差异显著(P0.05)。在低水头压力下,两种水质入渗条件下测得的土壤导水率差异显著(P0.05);在高水头压力下,两种水质入渗下测得土壤导水率差异不显著,表明入渗水水质对土壤导水率的影响主要发生在低压力水头下即在细孔隙下的导水特性上。两种土壤的大孔隙与中等孔隙对水流贡献率随入渗水电导率的增大而增大,而小孔隙对水流贡献率随入渗水电导率的增大而减小,入渗水水质对红壤土不同级别孔隙水流贡献率的影响显著(P0.05)。研究分析相关参数的变化有利于探讨野外试验时入渗水水质对试验结果的影响,对于正确认识农田水文过程、开发利用劣质水资源、提高农业灌溉灌水质量和灌水效率等具有重要意义。  相似文献   

17.
18.
田间测定土壤导水率的方法研究进展   总被引:17,自引:0,他引:17       下载免费PDF全文
 土壤导水率是决定坡地降水入渗与径流比例的关键,也是水分循环和土壤侵蚀模型中的重要参数,国内外对相关理论与方法进行了大量研究。综述田间测定土壤导水参数的几种方法的原理及应用,并对各种方法的优缺点进行对比分析。人们趋向于应用简单快速的测定仪器,降水头方法因为用水少,测定快速,有很大发展空间。盘式入渗仪是一种既简便又可以获得较多信息的测定仪器,可以应用于坡地土壤导水率的测定,应当广泛开展相关研究。  相似文献   

19.
Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0.25%, and 0.50%), bentonite (0.5%, 1.0%, and 2.5%), and biochar (1.0%, 2.5%, and 5.0%) as soil amendments (weight:weight). Three methods (extended multistep outflow (XMSO), evaporation (EVA), and WP4 dewpoint potentiometer) were used to measure soil hydraulic properties from saturation to oven dryness. The cumulative XMSO results were more uniform across all the applied pressure steps for the amended soils. The EVA exhibited a shorter linear decrease during the first evaporation stage and a lower evaporation rate during the second evaporation stage. The WP4 results also exhibited that soil amendments increased the soil water content of the amended soils at low matric potentials. The results of soil water retention curves revealed that the unamended soil retained less water at any matric potential compared to the amended soils. Soil hydraulic conductivity decreased with increasing amount of soil amendments. The saturated hydraulic conductivity was higher for the unamended soil than the soils amended with 2.5% bentonite, 0.50% hydrogel, and 5.0% biochar by 11, 3, and 18 times, respectively. These results suggested that soil amendments improved soil water retentivity, which confirmed the appropriateness of these soil amendments for potential use in sandy soil improvements. However, field experiments and economical perception studies should be considered for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号