首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Drought conditions are common in the northern Great Plains of the United States, affecting crop yield and quality. Phosphorus (P) fertilizer applications have been found to increase drought tolerance, although there is a lack of published work in this area. The goal of this study was to determine the effects of P fertilization on drought tolerance in malt barley (Hordeum vulgare). Here, 60 cm tall PVC columns were filled with either a silt loam that had a medium soil test phosphorus (STP) level or with the same soil diluted 1:1 (v/v) with coarse sand (low STP). Monoammonium phosphate was incorporated into the surface soil at rates equating to 0, 7.5, and 25 kg P ha? 1 (in triplicate), seeded with malt barley, and watered to maintain water contents either slightly above –1.5 MPa (dry treatment) or slightly drier than field capacity (wet control). Fertilization with P significantly increased plant biomass, root biomass, grain yield, and water-use efficiency (WUE) in the medium STP soil, but not in the low STP soil. Growth in the low STP, coarse, dry soil was apparently limited by water, not P, based on comparisons with the wet control. Fertilization of the dry medium STP soil with P increased grain yield by at least 20-fold, although this increase was not significant due to high variability. These results suggest that adequate soil P levels can substantially offset the impact of drought on barley growth and grain yield.  相似文献   

2.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

3.
Nitrogen (N)‐fertilizer applications to field‐grown maize may result in a dilution response whereby essential mineral‐element concentrations in shoots would decrease as shoot‐dry‐matter accumulation increased. To investigate this, the effect of N‐fertilizer treatments (no N or fertilizer rate based upon 5.3 or 8.5 t ha–1 yield goal) on maize (Zea mays L.) shoot dry weight and shoot mineral concentrations (N, P, K, S, Mg, Ca, and Mn) at the sixth leaf (V6), twelfth leaf (V12), and tassel (VT) development stages were investigated in a 2‐year study conducted at Brookings, South Dakota (USA). With increasing N‐fertilizer application rates, shoot dry weight was greater and shoot P and K concentrations decreased. A possible explanation of this dilution response is that planting‐time P and K fertilizers, which were applied in a band near the seed furrow, may have enhanced the uptake of P and K in a manner that was independent of N‐fertilizer treatments. Increased shoot‐dry‐weight production due to the application of N fertilizers, if P and K uptake were similar across N‐fertilizer treatments, would lead to decreased shoot P and K concentrations in N‐sufficient compared with N‐deficient plants. Conversely, N‐fertilizer‐induced increases in shoot dry weight were accompanied by increased shoot concentrations of N, Ca, and Mn. This synergistic response between dry‐weight accumulation and shoot N concentration was present at all leaf developmental stages studied, while that for Ca was present only at VT. Thus, N fertilizer applications that increase shoot dry weight can affect the dilution and synergistic responses of specific mineral nutrients in maize shoots. Crop developmental stage as well as the location of these specific mineral nutrients in the soil profile might play important roles in mediating these responses.  相似文献   

4.
Previous research showed that applying fertilizer phosphorus (P) to the soil in concentrated subsurface bands increased P availability to crops compared to a surface application. Early growth responses of corn (Zea mays L.) plants were measured after 28 days of growth in pots in a greenhouse for single band, two single bands, injection, and surface fertilizer P placement methods. Fertilizer P was applied at the rates of 0, 12, and 24 mg P/kg soil for each method for three different soils. Shoot dry matter weight and nitrogen (N) and P uptake increased for all placement methods regardless of initial soil test P level. However, growth parameters were greater for the banded and injection methods. Response parameters were minimally influenced by the surface P application, but some fertilizer P from the surface application leached through small desiccation cracks after daily additions of water. This probably increased P availability slightly. Shoot dry matter production efficiency and shoot N/P ratio were higher for the surface P placement method and for the unfertilized P treatments. Overall growth responses to fertilizer P rates were less effective in soils with higher initial soil test P levels.  相似文献   

5.
This study investigated the effects of vermicompost tea (aqueous extract) on yield and chemical quality of pak choi (Brassica rapa cv Bonsai, Chinensis group) grown in three media (two soils and a peat-perlite medium) under two fertilizer regimes (compost and synthetic fertilizer). The impacts of tea application on the chemical and biological properties of the growth media were also investigated. Vermicompost teas were prepared using various extraction methods (non-aerated, aerated, aerated with additives) with 1:10 (v:v) chicken manure-based vermicompost to water dilution and applied weekly at the rate of 200 mL plant?1 for 4 weeks. Application of vermicompost tea increased plant production, total carotenoids and total glucosinolates in plant tissue. This effect was most prominent under compost fertilization. Total phenolic was lower in vermicompost tea treated plants compared to those treated with only mineral nutrient solution and the water control. Vermicompost tea improved mineral nutrient status of plants and media, and enhanced the biological activity of the media. Variability in yield and chemical quality of plants across treatments was explained largely by variability in tissue N uptake and dry matter accumulation. Dehydrogenase activity and soil respiration of vermicompost tea-treated growth media were approximately 50% higher than untreated media. This study confirmed that vermicompost tea can positively influence plant yield and quality and increase soil biological activity in multiple soil types.  相似文献   

6.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

7.
研究苗期干旱胁迫下施氮对东北春玉米氮素吸收利用和土壤生物化学性质的影响,为区域玉米养分管理与逆境调控提供依据。研究设置水、氮二因素盆栽试验,土壤水分包括3个水平:田间持水量的30%(W0),50%(W1)和70%(W2);施氮量包括2个水平:不施氮(N0)和施氮0.24 g/kg(N1),测定不同水氮条件下玉米苗期的植株干重和氮素吸收、根际和非根际土壤的化学性质、微生物量碳、氮(MBC、MBN)及土壤酶活性。结果表明:干旱胁迫显著降低玉米苗期植株干重和氮素吸收量,其中W0条件降幅最大(分别为51.1%,43.8%)。施氮促进各水分条件下植株生长,且与水分存在显著交互作用,W2条件下施氮后植株干重和氮素吸收量的增幅最高(分别为53.7%,83.2%)。干旱胁迫提高植株的水分利用效率,但降低氮肥利用效率。施氮显著提高W2条件植株的水分利用效率,但干旱条件下则无显著影响。水、氮及其交互作用对土壤性质的影响较为复杂。总体上,苗期干旱胁迫暂时提高了根际和非根际土壤pH,显著增加根际土壤的铵态氮和硝态氮含量。MBC、MBN对干旱胁迫的响应在根际与非根际土壤之间存在相反趋势,根际土壤随干旱程度增加而提高,非根际土壤则随之下降。土壤酶活性方面,干旱胁迫显著影响根际土壤的硝酸还原酶和亚硝酸还原酶活性。施氮增加所有水分条件下根际和非根际土壤的pH和铵态氮、硝态氮含量,其中根际土壤的增幅高于非根际土壤。施氮显著增加各水分条件下根际和非根际土壤的MBC、MBN、脲酶和硝酸还原酶活性,但显著降低根际和非根际土壤亚硝酸还原酶活性。水氮交互作用显著影响根际土壤的亚硝酸还原酶、非根际土壤的脲酶、亚硝酸还原酶和FDA水解酶活性。根际、非根际土壤各生物化学性质之间均存在显著的相关关系,而且根际土壤除土壤亚硝酸还原酶外的各指标均与植株氮素吸收和氮肥利用效率呈正相关。苗期干旱显著抑制玉米植株生长和氮素吸收,并对土壤生物、化学性质造成显著影响。施氮对植株和土壤性质的影响在不同水分条件下存在差异,而且植株表现与土壤生物、化学性质之间存在显著相关关系。  相似文献   

8.
A. M. MAHDY 《土壤圈》2011,21(6):773-781
A greenhouse experiment was conducted to test and compare the suitability of saline compost and saline irrigation water for nutrient status amendment of a slightly productive sandy clay loam soil,to study the macronutrient utilization and dry matter production of wheat(Triticum aestivum c.v.Gemmiza 7) grown in a modified soil environment and to determine the effects of compost and saline irrigation water on soil productivity.The sandy clay loam soil was treated with compost of five rates(0,24,36,48,and 60 m 3 ha-1,equivalent to 0,3,4.5,and 6 g kg-1 soil,respectively) and irrigation water of four salinity levels(0.50(tap water),4.9,6.3,and 8.7 dS m-1).The results indicated that at harvest,the electrical conductivity(EC) of the soil was significantly(P < 0.05) changed by the compost application as compared to the control.In general,the soil salinity significantly increased with increasing application rates of compost.Soluble salts,K,Cl,HCO 3,Na,Ca,and Mg,were significantly increased by the compost treatment.Soil sodium adsorption ratio(SAR) was significantly affected by the salinity levels of the irrigation water,and showed a slight response to the compost application.The soil organic carbon content was also significantly(P < 0.05) affected by application of compost,with a maximum value of 31.03 g kg-1 recorded at the compost rate of 60 m 3 ha-1 and the irrigation water salinity level of 8.7 dS m-1 and a minimum value of 12.05 g kg 1 observed in the control.The compost application produced remarkable increases in wheat shoot dry matter production.The maximum dry matter production(75.11 g pot-1) occurred with 60 m 3 ha-1 compost and normal irrigation water,with a minimum of 19.83 g pot-1 with no addition of compost and irrigation water at a salinity level of 8.70 dS m-1.Significant increases in wheat shoot contents of K,N,P,Na,and Cl were observed with addition of compost.The relatively high shoot N values may be attributed to increases in N availability in the tested soil caused by the compost application.Similarly,significant increases in the shoot contents of Na and Cl may be ascribed to the increase in soil soluble K and Cl.The increases in shoot P,N,and K contributed to the growth stimulation since P supplied by the compost was probably responsible in saline and alkaline soils where P solubility was very low.  相似文献   

9.
This study aimed to evaluate the interaction between filter cake (FC), and phosphorus fertilizers with differing solubility on the growth and P nutrition of sugarcane. Effects of soil amendment with FC on different soil P fractions and influence on microbial community structure in the rhizosphere were also assessed. Two glasshouse experiments were conducted with completely randomized block designs. The first experiment evaluated rates of FC using a factorial design (5 × 2): 0, 2.5, 5, 10 and 15 g FC kg?1 soil applied as either broadcast in bulk soil or in the planting furrow. The second experiment used a factorial design (2 × 3): without and with FC (5 g kg?1 soil, dry basis), both without P (NP) and with P supplied as either triple superphosphate (TSP) or as rock phosphate (RP), both at the rate of 78.4 mg kg?1 based on total P. Microbial community structure was determined using TRFLP and dynamics of soil P by Hedley fractionation. Filter cake applied at increasing rates in the absence of P was effective in increasing shoot growth and P uptake by plant, particularly when applied to bulk soil as compared to furrow application. Also, FC improved P uptake and increased the availability of labile inorganic P in the rhizosphere and modified the structure of fungal and bacterial communities, whereas only bacterial and archaea communities were influenced by P fertilizer use. Filter cake was more effective when combined with RP, with increased growth and P utilization and thus can be considered as a feasible and practical option for farmer use in substitution to TSP, a more expensive source.  相似文献   

10.
Field experiments were conducted to assess the ability of rhizobacterial inoculants to enhance growth and yield of maize. Performances of two phosphorus (P)-solubilizing bacteria in combination with a fertilizer mixture containing rock phosphate and triple super phosphate (PFM), and five diazotrophs combining either with 150 kg or 100 kg nitrogen (N) ha?1 supplied as urea were compared with non-inoculated-fertilized controls. Shoot P and N and soil available P and N contents were assessed and shoot biomass and ear weights were recorded at harvest. Pseudomonas cepacia resulted in significantly higher available P (51 mg P kg?1 soil), P accumulation (3.6 g kg?1 dry matter) and 13% increase in shoot biomass over control. Azospirillum sp. and dual inoculant comprising Enterobacter agglomerans + Agrobacterium radiobacter led to significantly higher available N (74–94 mg kg?1 soil) and 19 to 26% increase in shoot biomass over the control. However, inoculants did not increase the yield significantly.  相似文献   

11.
The partial sterilization of soil eliminates useful microorganisms, resulting in the reduced growth of mycorrhizae-dependent citrus plants, which are often unresponsive to the application of fertilizer. Research was conducted to test the hypothesis that indigenous mycorrhizae (IM) inoculation is as efficient as selected mycorrhizal inoculation under sterile and non-sterile soil conditions. Rhizophagus clarus and indigenous mycorrhiza spores, isolated from citrus orchards, were used as arbuscular mycorrhizae fungi under greenhouse conditions with sterile and non-sterile Çanakçi series (Typic xerofluvent) soils with low phosphorus (P) fertility. Different P (0 and 100 mg kg?1) and zinc (Zn) (0, 5 and 10 mg kg?1) concentrations were used at the start of the experiments. The shoot, root dry weight (RDW), root colonization, and P, Zn, iron (Fe), copper (Cu) and manganese (Mn) concentrations of the shoot were determined; mycorrhizae dependency (MD) was also calculated.

The results indicate that R. clarus and indigenous mycorrhiza in sterile and non-sterile soil conditions considerably increased the growth of citrus plants. Owing to existing beneficial indigenous rhizosphere microorganisms, citrus plant growth without inoculation was better in non-sterile soils than in the sterile soils. In non-sterilized soil, the plant growth parameters of R. clarus-inoculated soils were higher than those of indigenous mycorrhiza-inoculated soils. Mycorrhizae infection increased certain citrus plant growth parameters, such as root infection, biomass and nutrient uptake (P, Zn, Fe, Mn and Cu). In sterile soil, the addition of up to 5 mg kg?1 soil Zn and the inoculation of R. clarus significantly increased plant growth; inoculation with indigenous mycorrhiza produced more dry weight upon the addition of up to 100 mg kg?1 phosphorus pentoxide (P2O5). Under sterile soil conditions, without considering fertilizer addition, MD was found to be higher than that of non-sterile soils. In general, the contribution of the indigenous soil spores is significant. However, indigenous soil mycorrhizae may need to be managed for better efficiency in increasing plant growth and nutrient uptake. The major finding was that the inoculation of citrus seedlings with mycorrhiza is necessary under both sterilized and non-sterilized soil conditions.  相似文献   

12.
Abstract

Tea (Camellia sinensis L.) grown in China often suffers from severe seasonal drought in the summer causing drastic effects on productivity. In a field trial, the effect of potassium (K) fertilization on summer tea yields during 1992–1994 was studied and related to the weather conditions of the respective years. Summer tea yields of 1994 (dry year) increased significantly at K2 (300 kg K2O‐ha‐1) compared to the Kl treatment (150 kg K2O ha‐1). In contrast, only marginal effects were observed by increasing K application from Kl to K2 in the years with adequate water availability (1992 and 1993). During the latter maximum tea yields were already achieved with Kl. In addition, a pot experiment was conducted in order to investigate the interaction between the soil water regime and K availability in the soil on tea biomass production. Soil moisture was maintained at 45, 55, 65, 75, and 85% of the field capacity (FC) and K levels were 0 and 500 mg K2Okg‐1. No tea plant survived at the 45% FC level whereas all tea plants survived at or above 75% FC. The survival rate increased substantially in the K treated tea plants under moderate drought stress conditions (55% and 65% FC). The dry matter production was significantly larger with increasing soil moisture and at the high K status in the soil. This observation was most pronounced under water stress conditions. The study indicates that under moisture stress, increased survival, improved dry matter production and yields of tea plants were due to improved K bioavailability following K application. Furthermore, larger amounts of K are required under moisture stress conditions compared to normal water supply.  相似文献   

13.
A greenhouse experiment was conducted to investigate the immediate effect of application of mono‐ammonium phosphate (MAP), single superphosphate (SSP), and triple superphosphate (TSP) fertilizers containing varying concentrations of Cd on (1) chemical speciation of Cd and Zn in soil solution by chemical‐equilibrium calculations (MINEQL+4.6 model), (2) growth of barley plants, (3) concentrations of Cd, P, and Zn in soil solution and plant tissue, as well as total plant accumulation of Cd, P, and Zn, and (4) monitoring pH and element changes during incubation periods following phosphate application. Results show that, in general, the pH of soil solution increased during the first 40 d of incubation, then declined. Also, at the end of incubation period, pH of soil solution was affected by fertilization source and fertilization rate. The concentration of Cd in soil solution changed with time. Phosphate fertilization (p < 0.05) or fertilizer source (p < 0.05) showed consistent effects. Also, the application of phosphate fertilizers with three rates significantly increased Zn concentrations in soil solution during the first half (0–30 d) of incubation period and then decreased but still more than in the control. In general, application of different sources of phosphate at 100 g kg–1 did not change the dominant forms of Cd in soil solution during all incubation time intervals. Speciation of Zn in the control after 30 d of incubation had changed, in comparison to 10 d of incubation, and the dominant forms were Zn2+, ZnOH+, ZnHCO3, ZnCO3(aq), and Zn(OH)2(aq). Adding phosphate fertilizer significantly increased both shoot and root dry weight compared to control, indicating P was a growth‐limiting factor in the control plants. The Zn concentrations in shoot and root were lower in the TSP‐ and SSP‐fertilizers treatment than those in the MAP and fertilizer treatments at all rates of fertilization. Adding phosphate increased the Cd : Zn and P : Zn ratios in the shoot and root tissue, with the effect being greater with increasing fertilization rate. Phosphate fertilization greatly increased the total accumulation of Cd of barley compared with the control plants (p < 0.001), with the effect being greater with increasing fertilization rate. Source and rate of fertilizers, and their interactions had significant effect (p < 0.05) on Cd accumulation in the whole plant.  相似文献   

14.
Because low-phosphorus (P) availability limits citrus growth, rootstocks with a relatively high capacity for P uptake are desirable. An experiment was conducted with trees on Cleopatra mandarin (CM) and Rangpur lime (RL). Treatments consisted of P rates (20, 40, and 80 mg kg?1 of soil) applied in soil layers of 0–0.30 m and/or 0.31–0.60 m, besides an unfertilized control. The P fertilization increased root and shoot growth, and P nutrition was improved as indicated by greater leaf P concentration, P uptake, and P root uptake efficiency (PUE). The P applied in both soil layers improved shoot growth, P uptake, and PUE. Trees on RL took up 23–126% more P and had root systems with greater growth and PUE compared to those on CM. Thus, P uptake by citrus trees in low-P soils can be improved by augmenting the depth of fertilizer application and the use of more adapted rootstocks.  相似文献   

15.
A field study was conducted at Beresford, SD, to examine how residual fertilizer phosphorus (P) bands influenced the distribution of Bray-1 extractable P in the soil profile and maize (Zea mays L.) shoot growth and P uptake in a ridge-till system. Liquid ammonium polyphosphate (10-34-0) was injected each fall for three consecutive years in either one or two concentrated subsurface bands in a 5 × 5 cm configuration with respect to the planted seed at rates to provide either 0, 10, 20, or 40 kg P/ha. Soil samples were removed once in the spring before planting with a rectangular block sampler along a 30 cm transect perpendicular to the ridge row to a depth of 15 cm after the third year of the P application. The large sample was separated into eight 7.5 × 7.5 cm × 7.5 cm block sections. Soil was analyzed for Bray-1-extractable orthophosphate-P in each of the sample blocks, composited for increasingly greater soil volumes, and compared with shoot growth and P uptake at the sixth and twelfth leaf and silking stage of growth. Applied-P rate had a strong effect on Bray-1-P levels, increasing them from 7.5 to 195.1 mg P/kg as P rate increased from 0 to 40 kg P/ha. The locations of the previously applied P bands were highly variable in the sampling profile. Coefficients of variation (c.v.) for Bray-1-P levels varied from 1.9 to 141.4 for sampling-block locations and increased as P rate increased. This result indicated that, within treatment replication, there was little consistency with fertilizer P-band placement with respect to the planted seed, and the variability increased with higher P applications. Applied-P rate influenced shoot dry weight, shoot P concentration, and shoot P uptake in the sixth leaf and twelfth leaf growth stages only. The band number had no influence on these parameters. When increasingly larger volumes were considered to improve the accuracy of sampling position with the predictability of the Bray-1 P levels and shoot parameters, the smallest soil volume and sampling position close to the planted seed was as accurate a predictor of shoot parameter responses as the Bray-1 P levels derived from soil composites of larger sampling volumes.  相似文献   

16.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

17.
ABSTRACT

A pot study was conducted on Gujranwala series (Udic Haplustalf) to compare zinc (Zn) requirement of maize hybrids (FHY- 456, FHY- 396, and FHY- 421) and indigenous varieties (EV-1089, Golden, and Soneri). Uniform rates of nitrogen:phosphorus:potassium (N:P:K) and four rates of Zn were applied in triplicate according to CRD. There was a significant (P < 0.05) main and interactive effect of maize genotypes and zinc application on shoot growth and Zn uptake. The three maize varieties uniformly produced maximum shoot dry weight at 3 mg Zn kg?1 soil. The maize hybrids produced maximum shoot dry weight at 9 mg Zn applied kg?1 soil. A 6.3 mg Zn kg?1 plant tissue was optimum for FHY-421 (hybrid) and 9.5 mg Zn kg?1 plant tissue was optimum for Soneri (variety). Hence, more pronounced response in maize hybrids than indigenous varieties require higher rates of Zn application. However, further verification of the results is warranted under field conditions.  相似文献   

18.
Water and fertilizer are the two main factors promoting the rapid growth of tea plants (Camellia sinensis). Using two-year-old rooted cutting of Wuniuzao (Camellia sinensis) as experimental materials, “311-B” D-saturation optimization design was carried out using 5, 4, and 4 levels of irrigation regimes, fertilizer nitrogen, and fertilizer phosphorus, with six replications. The raw date obtained was used of quadratic regression fitting for the plant height, new-tip length and dry matter weight. The coupling effects of these three factors [nitrogen (N0, water, and phosphorus (P)] on dry matter weight were significant. The effect order of single factor on dry matter weight was N>water>P, while the interactive effect order on the dry matter weight was N and water>P and water>N and P. An optimal combination with 0.485 g·pot?1 N, 0.274 g·pot?1 P, and once every 4-5 days of watering was proposed for the highest tea dry matter yield.  相似文献   

19.
A rhizobox experiment was conducted to compare the differences of soil potassium (K) distribution and absorption between two cotton (Gossypium hirsutum L.) genotypes under drought and K‐deficit conditions. Treatments included two levels of water (drought and optimum soil moisture: 25% and 35% volumetric water content) and K fertilizer rates (0 and 0.48 g potash kg?1 soil) applied to two cotton genotypes (namely HEG and LEG). Both the genotypes showed significant differences in total K accumulation without exogenous K addition. After absorption, soil content of the readily available potassium (RAK) decreased rapidly. This promoted the conversion of the mineral K into slowly available potassium (SAK). Drought significantly decreased the cotton growth and K use efficiency, and thereby reduced the effect of K fertilizer. Consequantly, the contents of RAK and SAK were greatly increased. However, K bioavailability was decreased under water stress conditions. Differences in root parameters and soil microorganisms between two cotton genotypes were significantly increased and had marked relations with available soil K contents. This study provides important information for understanding the mechanism of K use efficiency, especially under water and K stress.  相似文献   

20.
The boron (B) sufficiency range for plant growth is narrow and its management is problematic under brackish irrigation water. This study was conducted to evaluate the B requirement of mungbean at different sodium adsorption ratios of irrigation waters (SARiw) [control, 8 and 16 (mmolc L?1)1/2]. The boron adsorption characteristics of a loamy soil were first determined in the laboratory by equilibrating 2.5 g soil with 0.01 M CaCl2 solution containing different B levels. Boron rates for a pot study were computed against different soil solution levels by fitting sorption data in a modified Freundlich model [x/m = K f (EBC)1/n ]. The maximum increase in shoot dry matter was 11.9% when B was applied at 1.29 mg kg?1 soil at control SARiw. Visual leaf B toxicity symptoms appeared at higher B rates and became severe at higher SARiw. By contrast to Ca, shoot concentrations of B and Na increased significantly with B application and SARiw. For optimum shoot growth, internal and external B requirements were 25 mg B kg?1 shoot dry matter and 0.39 mg B L?1 soil solution, respectively, at control SARiw. At higher SARiw, a lower concentration of B in plant shoots and soil solution had an inhibitory effect on plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号