首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

Although sunflower (Helianthus annus L.) is an Fe efficient plant, tumorous crown gall tissue development and tissue ability to reduce Fe3+ to Fe2+ were both diminished by Fe‐deficiency stress. Crown gall also develops readily on Fe‐efficient and Fe‐inefficient tomato cultivars (Lycopersicon esculentum Mill.). The objective of this study was to determine if the effect of a limited Fe supply on the growth, nutrition and reduction of Fe3+ to Fe2+ by tumorous crown gall would differ between Fe‐efficient T3238FER and Fe‐inefficient T3238fer tomato. Healthy green 25‐day‐old plants were either stem‐inoculated with Agrobacterium tumefaciens to induce tumorous crown gall tissue development or were left uninoculated for comparison. Plants were grown in modified Hoagland nutrient solutions containing 0.0, 0.15, 0.6 and 2.0 mg Fe L?1. Yield of tumorous crown gall tissue was not diminished by low solution Fe in T3238FER, but was in T3238fer. This was attributed to inability of the T3238fer tomato to make Fe available to itself. Tumor tissue from both cultivars contained more Fe, Cu and P than normal stem tissues, which confirms a modified metabolism in these tissues previously observed in sunflower. An abundant supply of Fe enhances the development and growth of the tumorous crown gall tissue, but a deficient supply of Fe retards its growth.  相似文献   

2.
Moderate B deficiency in plants has been reported to enhance Cu deficiency by keeping these plants in the vegetative growth stage. In this study, ascorbate oxidase activity was used as an index of the effect of B stress on Cu activity. When T3238FER (B‐inefficient) and Rutgers (B‐efficient) tomatoes (Lycopersicon esculentum Mill.) were grown in nutrient solutions at various B levels, B‐stressed plants had higher ascorbic acid oxidase activity than B‐sufficient plants. This activity was significantly higher in T3238FER than in Rutgers. Ascorbic acid oxidase activity may be directly or indirectly related to the role of B in plant growth and may be responsible for the more efficient use of B by Rutgers than by T3238FER tomato.  相似文献   

3.
Abstract

Heavy metals are often added indiscriminantly to soils in pesticides, fertilizers, manures, sewage sludges, and mine wastes, causing an imbalance in nutrient elements in soils. Heavy‐metal toxicity causes plant stress in various degrees dependent on the tolerance of the plant to a specific heavy metal. The objectives of this study were (i) to show that plant species and soils respond differently to heavy metals and (ii) to show the necessity for proper quantity and balance of heavy metals in soils for plant growth.

Three Fe‐inefficient and three Fe‐efficient selections of soybean, corn, and tomato were grown on two alkaline soils with Cu and Zn ranging from 14 to 340 and Mn from 20 to 480 kg/ha. Heavy‐metal toxicity caused Fe deficiency to develop in these plants. The Fe‐inefficient T3238fer tomato and ys1/ys1 corn developed Fe deficiency on all treatments and both soils. T3238FER tomato (Fe‐efficient) did not develop heavy metal toxicity symptoms on any treatment or soil. The soybean varieties and WF9 corn were intermediate in their response.

The unpredictable response of both the soil and the plant to heavy metals make general recommendations difficult. In order to maintain highly productive soils, we need to know what we are adding to soils and the consequences. Without some control, the continued addition of heavy metals to soils is a crisis in embryo.  相似文献   

4.
Some plants respond to Fe‐deficiency stress by inducing Fe‐solubilizing reactions at or near the root surface. In their ability to solubilize Fe, dicotyledonous plants are more effective than monocotyledonous plants. In this study we determined how representative plants differ in their response when subjected to Fe‐deficiency stress in a calcareous soil and in nutrient solutions. Iron‐inefficient genotypes of tomato, soybean, oats, and corn all developed Fe chlorosis when grown in soil, whereas Fe‐efficient genotypes of these same species remained green. The same genotypes were grown in complete nutrient solutions and then transferred to nutrient solutions containing N (as NO3 ) and no Fe.

The T3238 FER tomato (Lycopersican esculentum Mill.) Fe‐efficient) was the only genotype that released significant amounts of H from the roots (the pH was lowered to 3.9) and concomitantly released reductants. Under similar conditions, Hawkeye soyhean [Glycine max (L.) Merr.] released reductants but the solution pH was not lowered. Both Fe‐inefficient and Fe‐efficient genotypes of oats (Avena sativa L.) and corn (Zea mays L.) released insufficient H or reductant from their roots to solubilize Fe; as a result, each of these genotypes developed Fe‐deficiency (chlorosis).

The marked differences observed among these genotypes illustrate the genetic variability inherent within many plant species. A given species or genotype may accordingly not be adapted to a particular soil. Conversely, a given species or genotype may be found (or developed) that is precisely suited for a particular soil. In this event, the need for soil amendments may be reduced or eliminated.  相似文献   

5.
Iron‐efficient T3238FER tomatoes (Lycopersicon esculentum Mill.) did not respond to Fe‐deficiency stress by releasing hydrogen ions and reductants from their roots when the plants were grown in a K‐deficient nutrient solution with or without sodium. When increments of K were added to the nutrient solution, the plants responded proportionally to Fe‐deficiency stress, Fe was transported to plant tops and the chlorophyll concentration in plant tops increased. As the leaf Fe concentration was increasing, root K concentration was increasing and root Mn concentration was decreasing. The K and Mn in tops did not show the marked differences observed in roots.

In the presence of adequate K, renewing the solutions each time the pH was lowered to near 4 (days 7 and 11) caused an increased concentration of most elements in the plant, especially Mn in both tops and roots. These plants had the same Fe concentration as plants grown in unchanged solutions but they contained much less chlorophyll. Balance of nutrient elements to some degree seems required in order for iron to be made available to function properly in the plant.  相似文献   


6.
Onion (Allium sativum) plants grown without iron (Fe) in sterile nutrient solutions readily developed chlorosis symptoms. Iron deficiency in the sterile‐grown plants stimulated the rates of root extracellular reduction of Fe3+, copper (Cu2+), manganese (Mn4+), and other artificial electron acceptors. While rapid reduction occurred with the synthetic chelate Fe3+HEDTA, no short‐term reduction occurred with the fungal siderophore Fe3+ferrioxamine B (FeFOB). In addition to the increased rate of extracellular electron transfer at the root surfaces, the Fe‐deficient plants showed greater rates of Fe uptake and translocation than the onion plants grown with Fe. The rates of uptake and translocation of Fe were sharply higher for the Fe‐deficient plants supplied with FeHEDTA than for similar plants supplied with FeFOB. Inhibition by BPDS of the Fe uptake by the Fe‐deficient onion plants further supported the importance of Fe3+ chelate reduction for the uptake of Fe into the roots. Rates of Fe uptake and translocation by Fe‐deficient onion plants supplied with 55FeFOB were identical to the rates of uptake of ferrated [14C]‐FOD; a result that gives evidence of the uptake and translocation of the intact ferrated siderophore, presumably by a mechanism not involving prior extracellular Fe3+ reduction. Differences in the rates of transport of other micronutrients into the roots of the Fe‐deficient onion plants were evident by the significantly higher Zn and Mn levels in the shoots of the Fe‐deficient onion.  相似文献   

7.
Abstract

Iron‐inefficient TAM 0–312 and Fe‐efficient Coker 227 oats (Strategy II plants) differ in their release of phytosiderophore in response to iron‐deficiency stress—the Fe‐efficient Coker 227 releases a phytosiderophore whereas the Fe‐inefficient TAM 0–312 does not. The phytosiderophore released by Coker 227 oats in response to Fe‐deficiency stress does not appear to transport Fe into the plant as Fe phytosiderophore. When the Fe‐inefficient TAM 0–312 and Fe‐efficient Coker 227 oats were subjected to Fe supplied as Fe2+(BPDS)3, Fe3+HEDTA, as Fe3+EDDHA, Coker 227 utilized the Fe more efficiently than TAM 0–312 in every case. Both cultivars reduced Fe3+ as FeCl3 to form Fe2+(BPOS)3 and responded better to this form of Fe than Fe supplied as the ferric chelate. Reduction of Fe3+ at the root appears to be a factor that facilitates iron uptake by Coker 227 oats and the release of a phytosiderophore appears to make more Fe available at the root that can be reduced and transported to plant tops.  相似文献   

8.
Sorghum (Sorghum bicolor L. Moench) cv. CSH‐7, an Fe‐efficient hybrid was grown and subjected to Fe‐deficiency stress. The nutrient medium was extracted for isolation of reductant chemicals. By means of thin layer chromatography, I.R. spectrum and HPLC analysis, dibutyl phthalate was identified as the principal component. This chemical was not found in the nutrient medium extracted before the onset of chlorosis or in that after the plants recovered from chlorosis. Furthermore, synthetic dibutyl phthalate and that obtained from the exudate when supplied to the nutrient medium caused greening of chlorotic sorghum in 24 hours. Evidence that the root medium of the Fe‐efficient sorghum can induce recovery of an Fe‐inefficient sorghum grown together, has also been obtained. It is concluded that dibutyl phthalate released by the Fe‐efficient sorghum subjected to stress, is responsible for making Fe available for utilisation. The mechanism of action of dibutyl phthalate on chlorosis recovery is still an open question.  相似文献   

9.
The objective of this study was to establish whether the iron‐stress responses observed in T203 soybean (Fe‐inefficient) with active nodules are products of the nodules or of the entire root system. A split‐root system was used in which half the roots of each plant were inoculated and actively fixing nitrogen and the other half were not. Soybean cultivar T203 is normally Fe‐inefficient and does not exhibit the Fe‐stress responses, however an iron‐stress response did occur during active N2 fixation in earlier studies. This implies that the active nodules influenced the plant's ability to respond to Fe‐deficiency stress. In this study, the Fe‐stress response (H+ and reductant release) observed in T203 soybean was limited to the inoculated side of the split‐root system. The severe Fe chlorosis which developed in these plants was overcome in a manner similar to Fe‐efficient cultivars undergoing normal Fe‐stress response and the T203 plants completely regreened. Exudation of H+ ions was similar in both the presence and absence of Fe, and was generally limited to inoculated roots. Reductant release was nearly nonexistent from the non‐inoculated roots and was greater for the Fe‐stressed (‐Fe) plants than for non‐stressed (+Fe) plants. Thus, the response observed, which alleviated Fe chlorosis, appeared to be associated with N2 fixation of the active nodules.  相似文献   

10.
The development of stinging nettle (Urtica dioica L.) grown on culture solution containing with either ammonium or nitrate ions, or urea, was investigated under iron deficiency conditions, and with added FeEDTA or FeCto. Both seed‐cultured and vegetatively‐cultured stinging nettle plants produced normally developed green shoots when nitrate and 4 μM FeEDTA or FeCto were supplied. Stinging nettle plants were able to utilize Fe‐citrate, Fe‐ascorbate, and Fe‐malate effectively at the same concentration as well. When K3Fe(CN)6 was supplied, which is impermeable to the plasmalemma, and therefore is used to measure the reductive capacity of the roots, stinging nettle plants became chlorotic because the complex was stable at the pH of the culture solution. Urea did not induce chlorosis but inhibited growth. The plants died when ammonium was supplied as a sole N source. Applying bicarbonate and ammonium together prevented the plants from dying, but the plants became chlorotic. Total exclusion of iron from the culture solution resulted in iron‐deficiency stress reactions as has been described for other dicotyledonous plants (Strategy II).  相似文献   

11.
Two Ca‐efficient and 3 Ca‐inefficient tomato lines selected on the basis of dry matter production, Ca concentrations in tissues, and severity of Ca deficiency symptoms were grown in nutrient solutions containing 6 levels of total Ca ranging from 15 to 365 mg in 70 mg increments. All lines responded to increased Ca supply by increasing in dry weight and by accumulating Ca. The critical Ca concentrations in the shoots were 0.25% and 0.40% on a dry weight basis for the efficient and inefficient lines, respectively. Concentrations of Ca, K, Mg, P, and NO3 were lower in shoots and except for Mg were lower in roots of efficient plants than in the inefficient plants. For all lines as more Ca was available in the media and as Ca increased in the shoots and roots, the concentrations of the nutrients other than Ca declined. The declines in concentrations of K and Mg were not due to dilution by higher dry matter production in the efficient lines relative to the inefficient ones, although the total accumulation of Ca, P, and NO3 did not vary with Ca supplied. Antagonism among cations may account for differences in efficiency among lines of tomato.  相似文献   

12.
One of the most efficient fertilizers to correct Fe deficiency in calcareous soils and waters with high bicarbonate content is based on ferric ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid [Fe(o,o-EDDHA)]. Fe(o,o-EDDHA) forms two groups of geometric isomers known as meso and D,L-racemic. To determine the Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA), four iron-efficient plants, two plants representative of strategy I (tomato and pepper) and two plants representative of strategy II (wheat and oats), were grown in hydroponic culture. Results indicated that strategy II plants took up iron from both Fe(o,o-EDDHA) isomers equally. However, strategy I plants took mainly the iron associated with the meso form (the lowest stability isomer).  相似文献   

13.
Plants can mobilize iron (Fe) in the rhizosphere by non-specific and specific (adaptive) mechanisms. Non-specific mechanisms are, for example, rhizosphere acidification related to high cation-anion uptake ratios, or citric acid excretion. The specific mechanisms are root responses to Fe deficiency and can be classified into two different strategies. The Strategy I is typical for dicots and monocots except for grasses (graminaceous species) and is characterized by increased plasma membrane-bound reductase activity, enhanced net excretion of protons and enhanced release of reducing compounds, mainly phenolics. The reductase activity is stimulated by low pH, and with supply of FeIII chelates, ferric reduction at the plasma membrane takes place prior to uptake. In contrast, in graminaceous species (Strategy II) these root responses are absent, but enhancement of release of FeIII chelating compounds - phytosiderophores - takes place. These phytosiderophores are very efficient in mobilizing FeIII from artificially prepared sparingly soluble inorganic compounds (e.g. FeIII hydroxide) and from calcareous soils. The ferrated phytosiderophores are taken up by grasses at rates 102 to 103 times higher than Fe supplied either as synthetic chelate or microbial siderophores (e.g. ferrioxamine B), indicating a specific membrane transport system for ferrated phytosiderophores in roots of grasses. In calcareous soils phytosiderophores not only mobilize Fe, but also Zn, Mn, and Cu by chelation. However, only the FeIII phytosiderophores are taken up preferentially by Fe deficient grasses. The ecological advantages and disadvantages of Strategy I and Strategy II for Fe acquisition from calcareous soils are discussed.  相似文献   

14.
The expression of two barley genes, Ids1 and Ids2, that were induced specifically by iron (Fe) deficiency stress in solution culture, was examined in two barley genotypes differing in manganese (Mn) efficiency. Plants were grown in a calcareous soil supplied with two levels of Mn (15 and 100 mg/kg soil). Ids1 was expressed at equal levels in the roots of both genotypes, and this expression was not affected by Mn supply. These results suggest that the expression of Ids1 probably does not contribute to Mn efficiency. A contrasting result was obtained for Ids2, which was expressed at a higher level in the roots of the Mn‐inefficient genotype than in the Mn‐efficient genotype. However, the expression levels also were not affected by Mn supply. The differential expression of Ids2 may indicate that this gene plays a role both in the Fe deficiency response and in the Mn efficiency mechanism. An interesting observation made on the time course of expression of the two genes. Initially, both genes had low expression in two week old plants and then much higher expression in three week old plants. The timing of this increase probably relates to the exhaustion of the seed Fe reserves. Therefore, our results indicate a need to consider the effect of seed nutrient content in research on the molecular basis for micronutrient acquisition.  相似文献   

15.
Young maize plants, grown hydroponically, were supplied with different amounts (7.5, 0.75, 0.15, 0.075, and 0 mg Fe/L) of iron (Fe). At 14, 21, and 28 days, parameters characterizing growth and photosynthesis were determined. Iron‐deficiency resulted in significant changes in biomass accumulation and distribution between vegetative organs as well as changes in the content of chlorophyll a, chlorophyll b, and the carotenoids. The photosynthetic rate per leaf area was decreased. Part of 14C incorporated in low molecular compounds was increased and the share of amino acids and organic acids in them was increased. Plants supplied with 1/10th of the optimum Fe required partially adapted to the Fe deficiency. Plants with visual symptoms of Fe deficiency showed some peculiarities as compared to those plants severely Fe‐deficient.  相似文献   

16.
Cool white fluorescent (CWF) light reduces Fe3+ to Fe2+ while low pressure sodium (LPS) light does not. Cotton plants grown under CWF light are green, while those yrown under LPS light develop a chlorosis very similar to the chlorosis that develops when the plants are deficient in iron (Fe). It could be that CWF light (which has ultra violet) makes iron more available for plant use by maintaining more Fe2+ in the plant. Two of the factors commonly induced by Fe‐stress in dicotyledonous plants‐‐hydroyen ions and reductants released by the roots‐‐were measured as indicators of the Fe‐deficiency stress response mechanism in M8 cotton.

The plants were grown under LPS and CWF light in nutrient solutions containing either NO3‐N or NH4‐N as the source of nitrogen, and also in a fertilized alkaline soil. Leaf chlorophyll concentration varied significantly in plants grown under the two light sources as follows: CWF+Fe > LPS+Fe > CWF‐Fe ≥ LPS‐Fe. The leaf nitrate and root Fe concentrations were significantly greater and leaf Fe was generally lower in plants grown under LPS than CWF light. Hydrogen ions were extruded by Fe‐deficiency stressed roots grown under either LPS or CWF light, but “reductants”; were extruded only by the plants grown under CWF light. In tests demonstrating the ability of light to reduce Fe3+ to Fe2+ in solutions, enough ultra violet penetrated the chlorotic leaf of LPS yrown plants to reduce some Fe3+ in a beaker below, but no reduction was evident through a yreen CWF grown leaf.

The chlorosis that developed in these cotton plants appeared to be induced by a response to the source of liyht and not by the fertilizer added. It seems possible that ultra violet liyht could affect the reduction of Fe3+ to Fe2+ in leaves and thus control the availability of this iron to biological systems requiring iron in the plant.  相似文献   

17.
The jute (Corchorus capsularis L.) cv. 3RC‐212 which is Fe‐efficient, was subjected to Fe‐deficiency stress, and the nutrient medium was examined for chemicals, when the plants became chlorotic and the pH was lowered to about 4. While phenolic acids could not be detected, DBP (dibutyl phthalate) was identified in the extract by means of TLC and HPLC. The effect of DBP and caffeic acid was studied in JRC‐212 and DBP was found to cause recovery of the plants from chlorosis in 5 days. The chemicals, PA (phthalic acid), a derivative of DBP (50 mg/1) were supplied to chlorotic plants of JRO‐632, an Fe‐inefficient jute cultivar, and both the chemicals were effective in chlorosis recovery. PA application caused more rapid greening than DBP.

Jute is the second crop species in which DBP is identified in the root exudate. The detection of DBP was first recorded in sorghum CSH‐7.  相似文献   


18.
《Journal of plant nutrition》2013,36(10-11):2137-2148
Abstract

The present work is aimed at evaluating some effects induced by different levels of iron availability in the growth medium for two different tomato (Lycopersicon esculentum Mill.) genotypes, the T3238fer (Tfer), unable to activate mechanisms for iron mobilization and uptake known as “strategy I,” and its correspondent wild‐type T3238FER (TFER). By using different iron concentration in the growth solution, the most suitable iron level to induce phenotypic differences between the two genotypes without being lethal for the mutant was found to be 40 µM Fe‐Na‐EDTA. The analyses were carried out also on plants grown with 80 µM Fe‐Na‐EDTA, an iron concentration at which the two genotypes showed no phenotypic differences. A significant decrease in total leaf iron and chlorophyll content was detected in both genotypes following reduction of iron concentration in the nutrient solution, and was particularly evident in Tfer40, which showed symptoms of chlorosis. The photo‐electron transport rate of the whole chain was significantly affected by growth conditions as well as by genotype, the lowest activity being detected in Tfer40 plants. Chlorophyll a fluorescence analysis revealed an increase in non‐photochemical quenching (q NP) of Tfer plants grown at both iron concentrations, indicating the activation of photoprotective mechanisms, which, however, were not sufficient to prevent photoinhibition when plants were grown at 40 µM iron, as indicated by significant reduction in PSII photochemistry (F v/F m) and photochemical quenching (q P). The actual quantum yield of PSII (ΦPSII) and the intrinsic PSII efficiency (ΦEXC) showed the same behavior of q P and F v/F m ratio. A significant effect of mutation and iron supply on all the pigments was detected, and was particularly evident in the mutant grown at 40 µM iron. A different behavior was shown by the three pigments involved in the xantophyll cycle, violaxanthin being less affected than chlorophylls and the other carotenoids, and zeaxanthin even increasing, due to the xanthophyll cycle activation. In conclusion, the interaction between iron deprivation and fer mutation induced functional alterations to the photosynthetic apparatus. Anyway, as far as concerns the photo‐electron transport activity, the influence of fer mutation seemed to occur independently from iron supply.  相似文献   

19.
In comparison studies (11, 12), monocotyledonous corn (Zea mays L.) and oats (Avena byzantina C. Koch) did not respond to Fe stress as effectively nor to the same degree as the dicotyledonous soybeans (Glycine max (L.) Merr.) or tomatoes (Lycopersicon esculentum Mill.). Both the Fe‐inefficient and Fe‐efficient corn and oats developed Fe chlorosis; the Fe‐efficient dicotyledonous plants were green. In the present study, the method of inducing Fe stress was changed to make it less severe. Instead of using only NO3‐N and no Fe to induce Fe stress (11, 12), both NH4‐N and NO3‐N were used along with varied concentrations of Fe. Iron stress was induced with BPDS (4,7‐diphenyl‐l, 10‐phenan‐throline disulfonic acid) and phosphate; both competed with the plant for Fe. Phosphate also inhibits reduction of Fe3+ to Fe2+ (12). This method of inducing Fe stress in the plants was less severe than using only NO3‐N and no Fe in the nutrient solutions and we were able to measure a difference in Fe‐stress response for all four plant species (Fe‐inefficient and Fe‐efficient). At the lower Fe treatments, the roots of Fe‐efficient plants usually reduced more Fe3+ to Fe2+ than did the roots of Fe‐inefficient plants. The ‘inefficient’ ys1 corn and TAM 0–312 oat roots did not compete with BPDS or phosphate for Fe as effectively as did the ‘efficient’ WF9 corn and Coker 227 oat roots. The same type mechanism for solubilization, absorption, and transport of Fe seems to function in both monocotyledenous and dicotyledenous plants but it is more effective and more readily detected in the dicot than in the monocot plants. The reactions involved in reduction of Fe3+ to Fe2+ seemed to be confined inside or at the root surface for the inefficient genotypes; the efficient genotypes alter the ambient medium to a greater degree.  相似文献   

20.
In soil, iron (Fe) solubility depends on complex interactions between Fe minerals and organic matter, but very little is known about plant availability of Fe present in Fe oxides associated with humic substances. For this purpose, this study investigates the effect of Fe mineral crystallinity in the presence of humic acids (HA) on Fe availability to plants. Four Fe–HA mineral coprecipitates were prepared, either in the presence or absence of oxygen, i.e., two goethite (G)‐HA samples containing large amounts of Fe as nanocrystalline goethite and ferrihydrite mixed phases, and two magnetite (M)‐HA samples containing crystalline magnetite. Bioavailability studies were conducted in hydroponic systems on cucumber plants (Cucumis sativus L.) grown under Fe deficient conditions and supplied with the Fe–HA coprecipitates containing goethite or magnetite. Results showed that plants grown in the presence of Fe–HA coprecipitates exhibited a complete recovery from Fe deficiency, albeit less efficiently than plants resupplied with Fe‐chelate fertilizer used as control (Fe‐diethylene triamine penta acetic acid, Fe‐DTPA). However, the supply with either G‐ or M–HA coprecipitates produced different effects on plants: G–HA‐treated plants showed a higher Fe content in leaves, while M–HA‐treated plants displayed a higher leaf biomass and SPAD (Soil–Plant Analysis Development) index recovery, as compared to Fe‐DTPA. The distribution of macronutrients in the leaves, as imaged by micro X‐ray fluorescence (µXRF) spectroscopy, was different in G–HA and M–HA‐treated plants. In particular, plants supplied with the poorly crystalline G–HA coprecipitate with a lower Fe/HA ratio showed features more similar to those of fully recovered plants (supplied with Fe‐DTPA). These results highlight the importance of mineral crystallinity of Fe–HA coprecipitates on Fe bioavailability and Fe uptake in hydroponic experiments. In addition, the present data demonstrate that cucumber plants can efficiently mobilize Fe, even from goethite and ferrihydrite mixed phases and magnetite, which are usually considered unavailable for plant nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号