首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The order of aluminum (Al) tolerance in triticale lines (ST2>ST22) after re-elongation in an Al-free 0.2 mM calcium (Ca) solution for 9 h (Ca period) following 1 h pretreatment with 20 μM Al (Al period) agreed with that after 24 h of Al treatment. Permeability of the plasma membrane (PM) of root-tip cells after the Ca period was significantly increased in Al-sensitive ST22. Al was accumulated more heavily in the root-tip portion of ST22 than in that of ST2, although similar amounts of malic and citric acid anions were released from both triticale lines. We established a new system examining lipid permeability using synthesized nylon-2,8 ultrathin and porous capsules trapped previously with 0.1% (w/v) methylene blue solution and coated thereafter with PM lipid isolated from root tips by a newly developed technique. Permeability of the PM lipid measured with time in 0.2 mM Ca with or without 50 μM Al photometrically ( A 680) was significantly greater in Al-sensitive ST22 after 5 min of Al treatment. This is the first report to directly show the primary and early role of PM lipid in Al tolerance in triticale.  相似文献   

2.
Alleviation by calcium (Ca) of inhibition of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation by hydrogen (H) and aluminum (Al) was evaluated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment containing nutrient solution with treatments consisting of factorial combinations of either pH (4.0, 4.6, and 5.5) and Ca (0.2, 2.0, 10, and 20 mM), Al (7.5, 15, and 30 μM) and Ca (2.0,10, and 20 mM) at pH 4.6, or Ca (2, 7, and 12 mM) levels and counter ions (SO4 and Cl) at pH 4.6 and 15 μM Al. Length of tap roots and their laterals increased with solution Ca concentration and pH value, but decreased with increasing Al level. Length of both tap and lateral roots were greater when Ca was supplied as CaSO4 than as CaCl2, but increasing Ca concentration from 2 to 12 mM had a greater effect on alleviating Al toxicity than Ca source. In the absence of Al, relative root length (RRL) of tap and lateral roots among pH and Ca treatments was related to the Ca:H molar activity ratio of solutions (R2≥0.82). Tap and lateral RRL among solutions with variable concentrations of Al and Ca at pH 4.6 were related to both the sum of the predicted activities of monomeric Al (R2≥0.92) and a log‐transformed and valence‐weighted balance between activities of Ca and selected monomeric Al species (R2≥0.95). In solutions with 15 μM Al at pH 4.6, response of tap and lateral RRL to variable concentrations of CaSO4 and CaCl2 were related to predicted molar activity ratios of both Ca:Al3+ (R2≥0.89) and Ca:3 monomeric Al (R2≥0.90), provided that AISO4 and AI(SO4)2 species were excluded from the latter index. In all experiments H and Al inhibited length of lateral roots more than tap roots, and a greater Ca:H or Ca:Al concentration ratio was required in solutions to achieve similar RRL values as tap roots.  相似文献   

3.
Effects of calcium (1, 2 and 5 mM) and aluminum (0, 15 and 45 μM) on growth and internal nutrient concentrations were examined with 12 sorghum genotypes (Sorghum bicolor (L.) Moench) in a nutrient solution experiment with a factorial design. At 1 (or 2) mM Ca the severity of root damage induced by Al well reflected the genotypical variation in growth response to Al toxicity. Severity of Al‐induced root damage slightly decreased with increasing Ca level. Moreover, Ca at 5 mM amplified the Mg deficiency induced by Al, as seen from both heavier deficiency symptoms and lower internal Mg concentrations. Under conditions of Al stress at a high Ca supply, induced Mg deficiency apparently predominated the genotypical differentiation in growth response to Al toxicity. An antagonism between Al‐ and Ca ions for uptake was hardly found with the sorghum genotypes. However, the genotypes differed in Ca efficiency, a characteristic which may be relevant in assessing their sensitivity to Mg deficiency.  相似文献   

4.
Abstract

Cotton (Gossypium hirsutum L.) is extremely sensitive to Al toxicity. Increasing Si concentration in solution has been reported to alleviate AI toxicity. In this investigation the effects of varying Si concentrations (700, 1400, and 2800 μM Si) on reactive Al (defined as Al reactive with aluminon during 10‐s reaction time, without acidification and heating) was studied in solutions containing either 50, 100 or 200 μM Al during 50 d of aging. An increase in Si concentration had negligible effects on the reactive Al in solutions with 50 or 100 μM Al. However, in solutions with 200 μM Al the reactive Al decreased by 6 to 15% with an increase in Si concentration from 0 to 2800 μM.

The effects of either 700, 1400 or 2800 μM Si on root growth of Coker 208, Coker 315, DPL 90, McNair 235, Stoneville 506 and Tifcot 56 cotton cultivars were investigated in solutions containing either 0, 10, 20 or 40 μM Al with 500 μM Ca at pH 4.5. In solutions containing no Al, addition of 700 μM Si improved root growth by 69–87% in Coker 315, DPL 90 and McNair 235 cultivars but not in the other cultivars. In solutions containing 10 μM Al, an increase in Si concentration from 0 to 2800 μM improved the root growth by 15–17% in DPL 90 and McNair 235 cultivars only. An increase in Si additions failed to improve root growth of any of the cultivars in solutions with 20 or 40 μM Al.  相似文献   

5.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

6.
Abstract

This study was conducted to evaluate the effect of vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus etunicatum on growth, absorption, and distribution of calcium (Ca), magnesium (Mg), phosphorus (P), and aluminum (Al) in one Al‐tolerant and one Al‐sensitive barley cultivar. The plants were grown in sand daily irrigated with nutrient solution containing 0 or 600 μM Al at pH 4.8. Significant interaction (P=0.05) among variety, mycorrhiza, and aluminum (VxMxAl) were noted for both shoot and root dry matter (DM); shoot concentration and content of Al, P, Ca, and Mg; root concentration of Al, P, and Mg; and root content of Al, P, Ca, and Mg. With VAM inoculation: i) root colonization degree was about 50% in all treatment, ii) shoot DM yield increased between 30 and 70%, iii) Al concentration and content decrease down to a half both in shoots and roots of sensitive barley, iv) Ca concentration in shoots of sensitive barley showed a high increase at 600 μM Al, and v) P concentration and content in shoots of both varieties increased significantly.  相似文献   

7.
The present study was conducted to investigate the cell-wall polysaccharides and hydroxycinnamates in wheat plants (Triticum aestivum L.) under aluminum (Al) stress at a higher level of calcium (Ca) supply. Seedlings were grown in nutrient solution for 7 d and then subjected to treatment solutions containing Al (0 or 100 μM) and Ca (0 or 2500 μM) in a 500 μM CaCl 2 solution at pH 4.5 for 8 d. Calcium treatment (2500 μM) improved root growth significantly under Al-stress conditions. The contents of pectin and hemicellulose in roots were increased under Al-stress conditions, and this increase was conspicuous in the hemicellulosic fraction. The increase in the hemicellulose was attributed to increases in arabinose, xylose, and glucose in neutral sugars. High Ca treatment decreased these contents in Al-stressed cell walls. Aluminum treatment increased the content of ferulic acid, whereas Ca treatment with Al reduced the content. These results suggest that Al may modify the mechanical properties of cell-wall polysaccharides by enhancing the synthesis of arabinoxylan, β-glucan, and ferulic acid in the cell wall. High Ca treatment may maintain the normal synthesis of these materials even under Al-stress conditions.  相似文献   

8.
Two separate experiments were conducted to investigate the aluminium (Al) and calcium (Ca) effects on wheat seedling growth and on seed germination. Wheat (Tritcum aestivum L, cs Yangmai No. 5) seedlings were grown for a 15‐day period and treated with 0.5 mM Al with low Ca (1 mM Ca) or high Ca (5 mM Ca). The growth of seedlings was signficantly inhibited by Al. Supplement of Ca improved the growth of Al‐treated plants, increased dry matter weight of plant and leaf area, and decreased shoot/root ratio. This showed that Ca ameliorated Al toxicity in wheat. In experiments on seed germination, Al concentrations less than 2 mM in the germinating medium had little or no visible effect on length of shoot and root of germinating seed. The germinating rate of seed was not affected significantly by Al, when Al concentrations lower than 5 mM Al. The addition of 3 mM Ca did not increase the length of shoot and root and germination rate of seeds. Both pretreatments with 6 mM Ca and 1 μM GA had no significant effect on the length of shoot and root and amylolytic activity of Al‐treated germinating seeds. No significant differences were found in the total amylolytic activity in Al‐treated and control seeds two days and five days after germination. The results of Al and Ca effects on seedlings and seed germination showed that Al‐toxicity on germinating seeds was different from on seedling growth. The high concentrations of Al inhibit growth of roots and shoots of germinating seeds by other toxicity mechanism rather than interaction of Al with Ca and mobilization of carbohydrate reserves.  相似文献   

9.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   

10.
Soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation under varying concentrations of solution hydrogen (H) and aluminum (Al) was investigated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment with solutions adjusted to either different pH values from 3.7 to 5.5 or a factorial combination of pH (4.0,4.6, and 5.2) and Al (0,7.5, 15, and 30 μM) levels. Ionic forms of Al were estimated with GEOCHEM and solution Al was determined with ferron. Boron (B) (18.5 μM) and zinc (Zn) (0.5 μM) were supplied to all solution treatments, in addition to 2000 μM Ca, after preliminary studies at pH 5.2 without Al indicated that their omission inhibited length of tap roots and their laterals in the subsurface compartment. Both H+ and Al inhibited the length of lateral roots more than tap roots. Lateral roots failed to develop on tap roots at pH<4.3 or in treatments with 30 μM Al. Relative tap root length (RRL) among treatments receiving Al correlated with Al as measured by reaction with ferron for 30s. Ferron‐reactive Al was correlated to GEOCHEM‐predicted Al3+ activity (r=0.99). A 50% reduction in RRL occurred with either 2.1 μM Al3+ activity or 4.9 uM ferron‐reactive Al. The absence of shoot and soil‐root biomass differences among solution treatments in the split‐root system indicated that differences in root growth in the subsurface compartment were not directly confounded with differences in top growth.  相似文献   

11.
Three experiments were conducted in which roots of two species of Lotus were immersed for up to 40 min in complete nutrient solutions containing 6, 15 or 25 μM Al. The two species tested were L. pedunculatus cv. Grasslands Maku (Al‐tolerant) and L. corniculatus cv. Maitland (Al‐sensitive). There was an initial rapid (< 5 min) decrease in solution Al at 25 μM Al. The effect was less marked with solution Al ≤ 15 μM. The decrease in solution Al was greater in the Al‐sensitive Maitland than in the Al‐tolerant Grasslands Maku, particularly when expressed on the basis of root fresh mass and root length. Root cation‐exchange capacity (CEC) was lower in Grasslands Maku than in Maitland, viz. 23.9 vs 36.5 mmol kg‐1 dry mass. Maitland roots removed more Al from solution than did those of Maku on the basis of total exchange capacity.

We propose a mechanism of Al tolerance on the basis of the results of this study and of other published information, viz. that differential Al tolerance results from differences in root CEC. Aluminum‐tolerant genotypes have roots with low CEC, and high Al activities (> 20 μM in the case of Grasslands Maku) are required to precipitate the relatively highly methylated pectins associated with low CEC. In contrast, relatively low activities of Al would precipitate the pectins in plants with roots of high CEC. This would decrease the protective capacity of the pectins, enabling the toxic, monomeric Al ions to come in contact with a number of Al‐sensitive compounds or processes in the cell wall, plasmalemma, or cell cytoplasm.  相似文献   

12.
13.
Screening cultivars for aluminum (Al) tolerance is often conducted in acid soils or in complete nutrient solutions. The former method lacks precise measurements of Al, and the second requires high Al concentrations because of precipitation and chelation of the Al and is less representative of the actual environmental stresses to which plants must adapt. These experiments were designed to determine Al tolerance of wheat (Triticum aestivum L. em Thell) and sorghum (Sorghum bicolor L. Moench) using incomplete solutions with very low Al concentrations. Six wheat and five sorghum cultivars were screened for Al tolerance in solution culture with 0 to 10 μM Al and only Ca, K, Mg, NO3, and Cl in the solutions. Plants were subjected to the solutions for 4 d, and the change in relative root length was measured. Solution Al levels and pH were measured after the termination of the experiments. ‘Atlas’ 66 and ‘Stacy’ were the most tolerant wheat cultivars ('Atlas 66’ = ‘Stacy’ ≥ ‘Monon’ ≥ ‘Scout 66’ ≥ ‘Arthur 71’ = ‘Oasis'). The wheat cultivars were effectively separated on a genetic response basis at 2 μM Al. Sorghum cultivars were uniform in their Al tolerance, but did show some separation at 1 μM Al (SC56 > Tx430 > ‘Funk GS22DR’ > SC283 = SC599). The pH and Al variations did not account for any of the differences observed, indicating that root length differences were caused by genetic control of response to high Al.  相似文献   

14.
Abstract

Growing evidence of positive crop responses to gypsum or phosphogypsum (PG) application in acid soils strongly support the use of these amendments as an ameliorant of subsoil acidity. Although gypsum improves Ca availability in subsoils, its role in alleviation of Al toxicity needs careful attention. In the current study, either PG, CaSO4.2H2O or CaCl2.2H2O was added (to supply 12 mM Ca) to solutions containing 40 μM Al at pH 4.1 + 0.1. Solution pH was gradually raised to 4.5, 4.8 and then to 5.3 at various time intervals during 25 d aging of the solutions at 25 + 1OC.

Concentration of Al measured by aluminon method without preacidification and preheating, referred to as “reactive Al”; in this paper, was 16 μM in 2 g L‐1PG solution without added Al. This accounted 38% of total soluble Al in PG solution. Addition of 2 g L‐1PG to solution containing 40 μM Al, resulted in only 42% of total Al in solution present in forms reactive with aluminon. According to MINTEQ speciation model, Al in solution was present as an entirely complexed form with F. An increase in solution pH up to 5.3 had no effect on measured concentration of reactive Al or predicted distribution of Al species.

Addition of CaSO4.2H2O to 40 μMAl solutions had no effect on the concentration of reactive Al within pH 4.1 ‐4.8, however, up to 62% of total Al was in a form complexed with SO4 2‐, as predicted by MINTEQ model. The concentration of reactive Al decreased by 60% at pH 5.3. Addition of CaCl2.2H2O also had no effect on the concentration of reactive Al within pH 4.1 ‐ 4.8. Nearly 73 ‐ 94% of total Al was present in Al3+form. An increase in pH to 5.3, decreased the concentration of reactive Al by 27%. The results suggest that ion‐pairing of Al with Fwould appear to be a possible mechanism for alleviation of Al toxicity by PG at pH range 4.1 ‐ 5.3. With regard to CaSO4.2H2O, at pH 4.1 ‐ 4.8 ion‐pairing with SO.4 2‐appears to be possible mechanism for the alleviation of Al toxicity. In addition, at pH 5.3 a considerable decrease in reactive Al was evident which would further alleviate Al toxicity.  相似文献   

15.
Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.  相似文献   

16.
《Journal of plant nutrition》2013,36(7):1281-1293
Abstract

In order to investigate the combined effect of drought stress and aluminum (Al) toxicity on citrate exudation in soybean, hydroponic cultivation with addition of Al and PEG-6000 was conducted to simulate Al-toxic dry soil. Results showed that 2-day exposure of soybeans to 5.5% (w/v) PEG-6000 or 100 µM AlCl3 mainly hindered root growth, while combined exposure to PEG and Al (PEG/Al) reduced both root and shoot growth. Photosynthetic rate of first trifoliolate for the Al-tolerant genotype PI 416937 (PI) was not affected by imposition of 5.5% PEG/100 µM AlCl3 (38–40 h), whereas photosynthetic rate for the Al-sensitive genotype YC was significantly reduced. Based on root fresh weight, Al-induced citrate exudation in the roots of soybean genotypes recovered from pre-treatment with 5.5 or 9% PEG was not altered, but was increased in the plants pretreated with 7% PEG without recovery. After 2 days of recovery from 2-day combined exposure to 5.5% PEG/100 µM AlCl3, the Al-tolerant PI exuded more citrate than its control, but the Al-sensitive YC exuded significantly less citrate than its corresponding control. Split root experiment revealed that Al-induced citrate exudation in one half of the root system was significantly reduced by exposing the other half of the root system to 0.5 mM CaCl2 solution containing 9% PEG or 9% PEG/50 µM AlCl3. However, organic acid secretion was not observed in the half of the root system in the Ca solution when the other part of the root system was exposed to the Ca solution containing 50 µM AlCl3, 9% PEG or 9% PEG/50 µM AlCl3. This suggests that no Al- or drought-induced signals such as ABA are involved in the citrate secretion in soybean.  相似文献   

17.
Abstract

Effects of varying additions of phosphorus (0, 0.8, 8 and 80 μM P) on the concentrations of total and monomeric aluminum (Al) and on calculated sum of activities of monomeric Al species (SaAl mono) were investigated during 21 d of aging in deionised water containing 40 μM Al with either 0 or 1500 μM calcium (Ca). These P and Ca treatments were also maintained in deionised water without the addition of Al. The concentrations of total and monomeric Al decreased with an increase in P additions at the 8 and 80 μM P although the effect was negligible at the 0.8 μM P. The effects of increase in P additions on the monomeric Al were almost instant as evident from 12 to 49 percent decrease in its concentration after only an hour of aging. However, marked effects of P on the total Al were observed after 3 d of aging. On 21 d of aging in solutions with 8 and 80 pH P, the concentrations of total and monomeric Al decreased by 17 to 34 percent and 20 to 60 percent, respectively. The presence of Ca had negligible effects on the concentrations of either total or monomeric Al at the varying P additions. However, the calculated SaAl mono for a given P concentration treatment over Al mono 21 d of aging were considerably lower in solutions with 1500 μM Ca than with 0 Ca. At each P concentration treatment, SaAl mono were considerably lower than the concentration of monomeric Al in solutions with 1500 μM Ca, while in solutions with 0 Ca the above difference was negligible. During the 21 d of aging, in solutions containing 40 μM Al, the measured P concentrations in the 0.8, 8 and 80 μM nominal P concentration treatments decreased by 44, 37, and 19 percent respectively, at the 0 Ca treatments and 50, 56 and 24 percent respectively, at the 1500 μM Ca treatments.  相似文献   

18.
At the pH levels found in acid soils (4.5 to 5.5), theoretical equilibrium models predict that Al will be complexed on a nearly one to one molar basis by NTA, EGTA. oxalate (OX) and citrate (CIT). Growth chamber experiments were initiated using solutions containing Al (0, 2, or 10 μM), Ca (400 μ.M). and a chelate (0 or 10 μM) growing sorghum [Sorghum bicolor (L.) Moench cv. AT×399 × RT×430] for four days following germination to test the equilibrium models. The pH and concentration of Al in the solutions were measured before and after each experiment. Plant root length and weight, and shoot weights were used as a bioassay for the uncomplexed, toxic Al. Root length showed the greatest response to aluminum and chelate treatments, although root weight and shoot weight gave the same general results. Chelate effectiveness in reducing Al toxicity was NTA > OX = CIT > EGTA. The pH values were altered very little by NTA or EGTA and averaged 5.2 to 5.3; however, the pH was raised 0.2 to 0.9 units by OX and CIT. Thus, some detoxifying effect from the latter two could be a pH effect. No chelate effect was evident at pH values near 6 for CIT, but the chelate was effective in reducing Al toxicity at pH 5.6, indicating the importance of pH in Al toxicity. NTA alone did not affect root length, but the other chelates all decreased root length to a small degree at 0 μM Al indicating that the chelate itself was detrimental to growth. It was concluded that NTA was an effective chelate to detoxify Al and EGTA was not. Also it was found that OX and CIT behave quite differently from NTA and EGTA in that they affect pH and lower solution Al concentration. The method did not confirm the equilibrium models for EGTA, OX, or CIT because of complicating factors such as pH variation and damage to the roots by the chelates. The equilibrium model for NTA, though, was confirmed.  相似文献   

19.
The effect of local nutrient supply to maize roots (Zea mays L. cv. Blizzard) on net proton release was studied using the split root technique (SRNS, SRCa) to compare plants that were cultivated with their roots completely in either nutrient solution (NS) or 0.1 mM CaSO4 (Ca). Roots in NS released more protons than roots in Ca. This higher net proton release was associated with significantly higher ATP concentrations in the root tissue. Higher net proton release and ATP concentrations were also observed after a 4 h lag phase when 20 μM abscisic acid were exogenously applied to roots in 0.1 mM CaSO4. It is suggested that higher metabolic activity in roots supplied with nutrients increased ATP concentrations and thus the substrate supply of the plasma membrane H+ ATPase. When only half of the root system was supplied with nutrient solution with the other half bathed in 0.1 mM CaSO4, the roots in the SRNS compartment released significantly higher amounts of protons relative to the NS control plants. Conversely, roots in the SRCa compartment showed net proton uptake in contrast to the roots of control plants in 0.1 mM CaSO4 which significantly acidified the root medium. These differences in proton release by roots in the split root system and control roots could not be explained in terms of differences in ATP concentrations. It is therefore suggested that an internal signal may lead to a modification of the plasma membrane H+ ATPase as shown earlier during plant adaptation to low pH in the root medium.  相似文献   

20.
Aluminum (Al) is one of the major factors limiting plant production in acid soils. Calcium (Ca) plays a very important role in the response of plants to salt stress. Little information is available about ratios of Al/Ca on the growth of mungbean seedlings under Al stress. Mungbean seedlings were grown in solution with combined concentrations of Al (0, 2, and 5 mM) and Ca (0–10 mM) in a randomized complete block design experiment for 16 days, to evaluate effects of the ratios on alleviation of Al toxicity for the morphological growth under Al stress. The results showed that Al0 + CaO significantly decreased the epicotyl length, seedling height, root length, fresh weight, and dry weight by 25%, 15%, 16%, 16%, and 16%, respectively, compared with a control (Al0 + Ca0.5). At 2mM Al without Ca in the solution (Al2 + Ca0), the epicotyl length, seedling height, root length, fresh weight, and dry weight were decreased by 26%, 12%, 12%, 14%, and 12%, respectively, compared with a control (Al2 + Ca0.5). At 5mM Al without Ca in the solution (Al5 + Ca0), the epicotyl length, seedling height, root length, fresh weight, and dry weight were also decreased by 16%, 8%, 4%, 9%, and 7%, respectively, compared with a control (Al5 + Ca0.5). At 2mM Al stress, with the ratio of Al/Ca = 1:2 (Al2 + Ca4), the epicotyl length, seedling height, and fresh weight increased 13%, 5%, and 15%, respectively, compared with the control (Al2 + Ca0.5). While at 2mM Al stress, the root length at Al/Ca = 2:1 (Al2 + CA1) and dry weight at Al/Ca = 1:1 (Al2 + Ca2) were shown to be increased by 4% and 5%, respectively. At 5mM Al stress, with the ratio of Al/Ca = 2:1 (Al5 + Ca2.5), the epicotyl length, seedling height, and fresh weight increased 12%, 4%, and 7%, respectively, compared with the control (Al5 + Ca0.5). However, the root length and dry weight with the ratio either of Al/Ca = 2:1, 1:1 or 1:2, had no ameliorating effect, but was shown to have a negative effect, compared with the control (Al5 + Ca0.5). This suggests that the alleviation effect and its extent of Ca on Al toxicity for the seedling morphological growth are dependent on characters, the degree of Al stress, and the ratio of Al to Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号