首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil In pot experiments with a sewage sludge treated soil, the influence of two arbuscular mycorrhizal fungi (AMF) isolates of Glomus sp. (T6 and D13) on plant growth and on the uptake of heavy metals by alfalfa (Medicago sativa L.) and oat (Avena sativa L.) was investigated. Alfalfa showed an increase of biomass with mycorrhizal infection only to a small extent. In oat AMF inoculation increased the growth of both root and shoot by up to 70% and 55% respectively. Mycorrhization raised the P-content and -uptake in alfalfa, but not in oat, in both roots and shoots. Mycorrhizal alfalfa showed lower Zn-, Cd- and Ni-contents and uptake in roots and shoots. The root length was significantly decreased in mycorrhizal alfalfa plants (up to 38%). The translocation of heavy metals into the shoot of mycorrhizal alfalfa was slightly increased. Mycorrhizal infection of oat led to higher concentrations of Zn, Cd and Ni in the root but to less Zn in the shoot. The translocation of heavy metals to the oat shoot was clearely decreased by mycorrhizal colonisation. This may be based on the ability of fungal tissues to complex heavy metals at the cell walls, thus excluding metals from the shoot. This conclusion is supported by the enhanced root length (up to 78%) of mycorrhizal oat plants in this experiment. The mycorrhizal infection seemed to protect plants against heavy metal pollution in soils. It was obvious that different host plants reacted in different ways.  相似文献   

2.
Mycorrhizal fungi affect growth and nutrition of host plants positively. In this research, influence of vesicular-arbuscular mycorrhiza (VAM) ongrowth, chlorophyll content, and potassium (K) and magnesium (Mg) uptake in maize seedlings in pot culture was studied. This experiment was performed using natural soil containing a mixture of spores of Glomus spp. Mycorrhizal spores were exposed to four concentrations of K solution, i.e. 0.61 (soil K content), 0.92, and 1.23 meq/L and three concentrations of Mg, i.e. 4.8 (soil Mg content), 7.2, and 9.6 meq/L concurrently. Plants were watered every 4 days for 16 days with 50 mL distilled water. A pot with sterilized soil was used as negative control. For study of mycorrhizal colonization, very thin manually prepared longitudinal sections of plant roots (>1 mm in diameter) were stained with lactophenol-cottonblue and examined microscopically. Percentage of mycorrhizal colonization was determined using the grid-line intersect method. Samples from root and shoot of maize were collected for further analysis. Results showed mycorrhizal plants had significantly higher dry and fresh weight and chlorophyll content than plants grown in sterilized soil (p ≤ 0.05). Treatments with concentrations of 7.2 meq/L of magnesium alone and in combination with 0.92 meq/L of potassium with7.2 meq/L of Mg had better effect on morphological characters (dry and fresh weight of root and shoot). Mycorrhizal colonization increased Mg uptake but decreased K uptake.  相似文献   

3.
Pot and field experiments were conducted to (1) evaluate bioavailability of copper (Cu), lead (Pb), and zinc (Zn) in contaminated soil and phytoremediation potential by in situ plants, B. pilosa var. radiate and Passiflora foetida var. hispida, as inoculated with arbuscular mycorrhizal (AM) fungi, and (2) compare the results of pot and field experiments. The B. pilosa var. radiate plant inoculated with AM fungi had significantly greater Cu concentrations in the shoots and roots than noninoculated plants. Passiflora foetida var. hispida plant inoculated with AM fungi also had significantly greater Cu and Pb concentrations in the roots than noninoculated plants. As the root dry weight of Passiflora foetida var. hispida inoculated with AM fungi dramatically increased, the root Cu, Pb, and Zn content of Passiflora foetida var. hispida inoculated with AM fungi increased by 9–14 times, as compared with the noninoculated plants. The AM fungi have potential to either promote plant growth or increase heavy‐metal accumulation. The values of element translocation proportion from root to shoot were Zn > Cu > Pb for both plant species in pot and field experiments. For both plant species, the results of the pot and field experiments were significantly different. The concentration values of the pot experiment were greater in comparison to the field experiment, and some values were significantly greater than those in the field experiment.  相似文献   

4.
Mycorrhizae are ubiquitous symbiosis which can mediate uptake of some plant nutrients. In polluted soils they could be of great importance in heavy metal availability and toxicity to plants. Mycorrhizae have also been reported to protect plants against toxic metals. We investigated the occurrence and infectivity of arbuscular mycorrhizal (AM) spores as affected by heavy metal levels and other soil properties in Norwegian soils collected from heavy metal polluted, high natural background and non-polluted areas. Spore numbers, mycorrhizal infectivity and spore germination of indigenous mycorrhizal fungi and of a reference strain (Glomus mosseae) in soils showed lower values in two soils with high metal concentrations and in one soil with a low pH. Mycorrhizal infectivity was negatively correlated with extractable metals. Spore number and mycorrhizal infectivity in a soil with naturally high heavy metal content were not different to in non-polluted soils, and indigenous AM fungi appeared more tolerant to metals than those in non-polluted soils. Mycorrhizal infectivity, expressed as MSI50 values, was significantly correlated (r′=0.89, P< 0.05) with the percentage of germinating G. mosseae spores in the soils. However, the number of spores per volume of soil was not significantly correlated with infectivity or spore germination of the reference strain. The spore germination method is discussed as a bioassay of heavy metal toxicity in soil.  相似文献   

5.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。单独对土壤微生物或土壤动物的研究较多,但对土壤微生物与土壤动物之间相互作用的研究很少。因此研究它们对土壤和植物生长的作用可为挖掘土壤生物的潜力和提高土壤生物肥力提供依据。【方法】采用盆栽试验,研究了蚯蚓(Eisenia fetida)与丛枝菌根真菌(Rhizophagus irregularis)互作对甘薯生长和养分吸收的影响。试验采用两因素完全随机试验设计,分为接种和不接种菌根真菌及添加和不添加蚯蚓。试验共4个处理: 不加菌根和蚯蚓(CK); 接种菌根真菌(AM); 添加蚯蚓(E); 添加蚯蚓和菌根真菌(E+AM),每个处理4次重复。调查了甘薯养分吸收、 根系形态及土壤养分变化,采用Canoco4.5软件对土壤生物与植物对应关系进行RDA (redundancy analysis)分析。【结果】接种菌根真菌显著提高了甘薯地上和地下部生物量(P0.05),而添加蚯蚓的处理仅提高了甘薯地上部生物量。同时添加蚯蚓和菌根的处理显著提高了甘薯地上地下部生物量,并且高于其他三个处理(P0.05)。与对照相比,接种菌根真菌显著提高了土壤磷酸酶活性(P0.01),增幅近一倍; 同时提高了土壤磷的植物有效性,土壤有效磷含量下降了30%左右。添加蚯蚓后土壤脲酶活性从5.45 mg NH+4-N/g显著增加到8.71 mg NH+4-N/g,土壤碱解氮的含量从5.82 mg/kg显著增加到6.89 mg/kg (P0.05)。RDA分析表明蚯蚓菌根互作对甘薯地上和地下部氮磷含量、 根表面积、 根体积、 根平均直径和根尖数均存在显著的正交互效应。蚯蚓菌根互作通过调控土壤酶和改变土壤养分有效性促进甘薯对土壤氮磷养分的吸收。【结论】蚯蚓(Eisenia fetida)通过调控土壤脲酶和碱性磷酸酶增加了土壤中氮磷的有效性从而促进甘薯地上部生长。丛枝菌根真菌(Rhizophagus irregularis)通过调控土壤磷酸酶和增加植株地上地下部吸磷量从而促进甘薯生长。添加蚯蚓或接种菌根真菌均能增加根系吸收面积和根体积从而促进甘薯对养分的吸收。蚯蚓和菌根真菌相互作用通过调控土壤酶和改变土壤养分有效性以及促进根系发育从而互补的促进甘薯养分吸收和生长。  相似文献   

6.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

7.
《Applied soil ecology》2003,22(2):139-148
A glasshouse pot experiment investigated the uptake by arbuscular mycorrhizal (AM) fungi associated with red clover of three organic sources of P added to a sterilized calcareous soil of low P availability. Each pot was separated into a central compartment for plant growth and two outer compartments for external mycelium using 30-μm nylon mesh to restrict the roots but allow hyphal penetration. Plants in the central compartments were inoculated with the AM fungus Glomus versiforme and uninoculated controls were included. Plants were harvested on three occasions: 5, 7 and 10 weeks after sowing. Application of each of the three organic P sources (lecithin, RNA and sodium phytate) or inorganic P (KH2PO4) at 50 mg P kg−1 to the outer compartments of mycorrhizal and uninoculated pots increased the yield, P concentration and total P uptake of red clover compared with pots to which no P was applied, with no differences among P sources in non-mycorrhizal plants but differences observed in mycorrhizal plants both 7 and 10 weeks after sowing suggesting differences in availability of the four P sources to AM mycelium. The contribution of external mycelium to plant uptake of applied P increased with time. The three organic P sources made smaller contributions to plant P nutrition than KH2PO4 at the first and second harvests. At the third harvest, the contribution from KH2PO4 was 23%, while those from lecithin, RNA and sodium phytate were 23, 17 and 31%, respectively. This suggests that with the mediation of AM fungi, soil organic P sources can make a contribution to host plant P nutrition comparable to that of soluble orthophosphate.  相似文献   

8.
Influence of VA-mycorrhiza on heavy metal uptake of oat (Avena sativa L.) from soils differing in heavy metal contamination The heavy metal uptake of mycorrhizal oat-plants (Avena sativa L.) was evaluated in pot experiments with two soils differing in heavy metal accumulation. The effect of the fungal isolates on the uptake of the immobile metals Zn and Cu differed between the two soils: In the soil “Kleinlinden” mycorrhizal colonization increased heavy metal uptake by up to 37%. In the highly contaminated soil “München”, mycorrhizal infection lead to a higher uptake (max. 59 %) in roots but to a reduced translocation to the aerial plant fractions. The higher uptake of Zn and Cu into the roots was related to the higher heavy metal concentrations in this soil. The Cd uptake showed no difference between the two soils, but was increased in the roots by VAM together with a lower translocation into the shoots. VAM-formation changed the root architecture by increasing the specific root length (m g?1 root dry matter) and the total root length (km per pot). This increased absorbing surface of the roots was a major, but not the only cause for the differences in heavy metal uptake.  相似文献   

9.
【目的】 探究酸性土壤玉米丛枝菌根侵染对植物磷素吸收的促进作用,以加深理解根外菌丝对局部磷养分的获取如何受丛枝真菌侵染和环境磷养分的影响。 【方法】 以玉米为宿主植物,进行盆栽试验。在低磷酸性土壤上设置供P 0、50、500 mg/kg 3个水平 (P0、P50、P500),供试磷肥为磷酸二氢钾。每个处理再设置局部养分处理,即在每个重复中埋置两个各装有120 g灭菌土 (提前加 P 50 mg/kg) 的塑料小管,分别用孔径为0.45 μm(根系、菌丝均不能进入,以“–H”表示处理) 和50 μm(根系不能进入,菌丝可以进入,以“+H”表示处理) 的尼龙膜封住管口。测定了玉米的生长与磷吸收、土著丛枝菌根真菌的侵染和根外菌丝密度以及菌丝对局部磷养分的获取。 【结果】 1) 玉米株高、叶片SPAD值、全株干重、磷浓度及吸收量都随供磷水平升高而增加,以P50处理的根系干重最高,根冠比随供磷水平上升而降低。3个供磷水平下玉米根系均有不同程度的丛枝菌根真菌侵染。以P50处理的丛枝菌根侵染率、丛枝和孢囊结构发育最好;P0处理的丛枝菌根侵染率、丛枝丰度与P50处理没有显著差异,但孢囊丰度明显下降;P500处理虽然87.2%的根系具有侵染点,但整个根系形成的真菌结构、丛枝和孢囊比例远低于P0和P50处理,丛枝菌根的发育受到严重抑制。2) 土体土 (除塑料管之外的土) 菌丝密度随供磷水平升高而降低,但P0和P50处理差异不显著。–H处理塑料管中的菌丝密度在3个供磷水平下基本不变,保持在极低水平,而+H处理塑料管中的菌丝密度随供磷水平升高而下降。在相同供磷水平下,土体土的菌丝密度最高,其次是+H处理,–H处理的菌丝密度最低。根外菌丝从+H处理塑料管中获取的磷随环境供磷水平的升高而减少。 【结论】 酸性土壤条件下,适当地供磷可以促进玉米根系生长和丛枝菌根真菌的侵染。根外菌丝对局部磷养分的获取受环境磷养分的调控,在环境磷养分较低而局部磷养分高于环境磷养分时,较多的菌丝会进入局部区域获取磷。   相似文献   

10.
This study examines the influence of different amounts of potassium chloride (KCl) fertilization on plant growth, nutrient accumulation and content, nutrient ratios, and root colonization by indigenous arbuscular mycorrhizal (AM) fungi in maize (Zea mays L.). KCl was applied at the rate of 0, 0.25, 0.50, 1.00, 1.50, and 1.75 mg/kg of soil. Effect of KCl on indigenous AM formation and function was evaluated in terms of the extent of root length colonization, plant growth, and nutrient uptake. Increasing concentration of KCl fertilization proportionately limited the total root length colonized by AM fungi as well as the root length with different AM fungal structures. Maize plants raised on soils amended with different concentrations of KCl were significantly taller than those raised on unamended soils. KCl application also significantly increased the total root length and root dry weight. Nevertheless, KCl fertilization did not significantly alter the root/shoot ratios. Higher concentrations of nitrogen (N), phosphorus (P), and potassium (K) were evident in shoot and root tissues of maize (except shoot N) raised on KCl-amended soils. Phosphorus concentrations in shoots and roots significantly influenced mycorrhization and root length colonized by different AM fungal structures, and such an effect was evident for root N. KCl fertilization increased the efficiency of N and P accumulation. No significant change was evident in the K:N ratios of shoots or roots, whereas the K:P ratios were significantly altered in shoots or roots in response to KCl application.  相似文献   

11.
In this paper, the effects of arbuscular mycorrhizal (AM) fungi and phosphate amendments on protection of the tropical grass Brachiaria decumbens Stapf. against metal toxicity caused by Zn, Cd, Cu, and Pb were studied in a sterilized soil. Plants inoculated with a mixture of AM fungi (Acaulospora morrowiae, Gigaspora albida, and Glomus clarum) isolated from a heavy-metal-contaminated site or amended with P (added as triple superphosphate) exhibited marked positive growth responses, indicating the ameliorating effects of these two factors. Soil metal concentrations needed to inhibit plant growth by 50% were around twofold higher for AM plants as compared to those for non-inoculated ones. Similarly, phosphate showed ameliorating effects for B. decumbens, but its effects were not related to mycorrhizal conditions. Although mycorrhiza and phosphate act independently, their protecting effects were additive. Metal bioaccumulation factor of B. decumbens is high, especially for Cd; but AM inoculation prevents metal transference from roots to shoots, retaining these metals in the roots. AM fungus and phosphate represent a promising tool for enhancing ground vegetation in heavy-metal-contaminated sites.  相似文献   

12.
M. SHARIF  N. CLAASSEN 《土壤圈》2011,21(4):502-511
A pot experiment was conducted to investigate the action mechanisms of arbuscular mycorrhizal (AM) fungi in phosphorus (P) uptake of Capsicum annuum L.in a sterilized fossil Oxisol.Three P levels of 0,10 and 200 mg kg-1 soil (P0,P10 and P200,respectively) without and with AM fungal inoculation were applied as Ca(H2PO4)2·H2O.Shoot dry matter yields and shoot P uptake increased significantly (P > 0.05) by the inoculation of AM fungi at P0 and P10.Root length and P concentration in soil solution increased with the inoculation of AM fungi but the root:shoot ratio decreased or remained constant.Around 50% roots of inoculated plants were infected by AM and the external hyphae amounted to 20 m g-1 soil at P10 and P200.The hyphae surface area of the infected root cylinder amounted to 11 and 2 cm-2 cm-2 root at P0 and P10,respectively.The increased P uptake of inoculated plants was mainly because of an up to 5 times higher P influx of the infected root.Model calculations showed that the root alone could not have achieved the measured P influx in both infected and non-infected roots.But the P influx for hyphae calculated by the model was even much higher than the measured one.The P uptake capacity of hyphae introduced in the model was too high.Model calculations further showed that the depletion zone around roots or hyphae was very narrow.In the case of the root only 7% of the soil volume would contribute P to the plant,while in the case of hyphae it would be 100%.The results together with the model calculations showed that the increased P uptake of AM inoculated plants could be explained partly by the increased P concentration in the soil solution and by the increased P absorbing surface area coming from the external hyphae.  相似文献   

13.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

14.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

15.
The potential of interactions between saprophytic and arbuscular mycorrhizal (AM) fungi to improve Eucalyptus globulus grown in soil contaminated with Zn were investigated. The presence of 100 mg kg −1 Zn decreased the shoot and root dry weight of E. globulus colonized with Glomus deserticola less than in plants not colonized with AM. Zn also decreased the extent of root length colonization by AM and the AM fungus metabolic activity, measured as succinate dehydrogenase (SDH) activity of the fungal mycelium inside the E. globulus root. The saprophytic fungi Trametes versicolor and Coriolopsis rigida increased the shoot dry weight and the tolerance of E. globulus to Zn when these plants were AM-colonized. Both saprophytic fungi increased the percentage of AM root length colonization and elevated G. deserticola SDH activity in the presence of all Zn concentrations applied to the soil. In the presence of 500 and 1000 mg kg−1 Zn, there were higher metal concentrations in roots and shoots of AM than in non-AM plants; furthermore, both saprophytic fungi increased Zn uptake by E. globulus colonized by G. deserticola. The higher root to shoot metal ratio observed in mycorrhizal E. globulus plants indicates that G. deserticola enhanced Zn uptake and accumulation in the root system, playing a filtering/sequestering role in the presence of Zn. However, saprophytic fungi did not increase the root to shoot Zn ratio in mycorrhizal E. globulus plants. The effect of the saprophytic fungi on the tolerance and the accumulation of Zn in E. globulus was mediated by its effect on the colonization and metabolic activity of the AM fungi.  相似文献   

16.
红三叶草丛枝菌根对有机磷的吸收   总被引:3,自引:1,他引:3  
The capacities of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae and Glomus versderme, tomineralize added organic P were studied in a sterilized calcareous soil. Mycorrhizal (inoculated with either of the AM fungi) and non-mycorrhizal red clover (Trghlium pmtense L.) plants were grown for eight weeksin pots with upper root, central hyphal and lower soil compartments. The hyphal and soil compartmentsreceived either organic P (as Na-phytate) or inorganic P (as KH2PO4) at tbe rate of 50 mg P kg-1. No P wasadded to the root compartments. Control pots received no added P. Yields were higher in mycorrhizal than innon-mycorrhizal clover. Mycorrhizal inoculation doubled shoot P concentration and more than doubled total P uptake of plaflts in P-amended soil, irrespective of the form of applied P. The mycorrhizal contributionto inorganic P uptake was 80% or 76% in plants inoculated with G. mosseae or G. verefforme, respectively. Corresponding values were 74% and 82% when Na-phytate was applied. In the root compartments of the mycorrhizal treatments, the proportion of root length infected, hyphal length density and phosphatase activity were all higher when organic P was applied than when inorganic P was added.  相似文献   

17.
丛枝菌根真菌在植物修复砷污染土壤中的作用   总被引:2,自引:0,他引:2  
肖艳平  尹睿  沈生元  陈玉成  邢赜  陈雪民 《土壤》2010,42(2):171-177
丛枝菌根真菌能增强植物对矿质元素的吸收、提高植物的抗逆性、增强抗病性、改善植物根际微环境,减轻重金属对植物的毒害,影响植物对重金属的吸收和转运,在重金属污染土壤的植物修复中显示出极大的应用潜力。近年来,As污染已成为全球非常突出且急需解决的环境问题之一,对As污染土壤的生物修复也因而成为研究热点。本文主要从丛枝菌根真菌改变土壤pH和酶活性、增强植物对As的耐性和影响植物对As的吸收方面综述了丛枝菌根在As污染土壤修复中应用的研究进展,揭示出菌根应用在As污染土壤中的作用潜力和研究方向。  相似文献   

18.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

19.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

20.
红壤中丛枝菌根真菌对污泥态铜生物有效性的影响   总被引:9,自引:0,他引:9  
以玉米为宿主植物 ,研究了不同污泥量 (0、1 %、4% )施入红壤后接种丛枝菌根真菌Acaulosporalaevis、Glomuscaledonium和Glomusmanihotis对菌根侵染率、孢子密度、玉米生长和铜生物有效性的影响。结果表明 ,施用 1 %的污泥可增加接种A laevis的菌根侵染率和孢子密度 ,其玉米地上部和地下部生物量也有显著增加 ,而不接种 (含土著菌根真菌 )、接种G caledonium和G manihotis的菌根侵染率、孢子密度、玉米地上部和地下部生物量却有显著下降 (p<0 0 5 )。施用 1 %的污泥时接种A laevis降低了玉米地上部铜浓度 ,而接种G caledonium和G manihotis却增加了玉米地上部铜浓度 ,另外 ,接种处理增加玉米根部对铜的吸收总量。不同的菌根真菌对重金属的耐受力是不同的 ,只有施入一定的污泥量即在一定污染程度下才能发挥菌根真菌A laevis对污染土壤的修复作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号