首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
不同水分胁迫条件下温室番茄茎流和叶片水势的反应   总被引:3,自引:0,他引:3  
以番茄"金粉2号"(Jingfen 2)品种为试材,设正常灌溉(T1)、轻度胁迫(T2)和重度胁迫(T3)3个土壤水分处理,观测不同土壤水分条件下番茄植株的茎流速率和叶片水势。结果表明,番茄植株茎流速率日变化呈现明显的规律性,晴天,T1和T2的番茄茎流速率呈明显的双峰曲线,中午12:00左右气孔关闭,茎流速率出现低谷。阴天,T1和T2处理番茄茎流日变化趋势总体较为平缓。不同水分处理下番茄的蒸腾量差异明显,水分胁迫处理的番茄蒸腾量均小于正常灌溉,土壤水分胁迫程度越严重,日蒸腾量越低。随着水分处理天数的增加,不同灌溉处理番茄的蒸腾量差异逐渐缩小。叶片水势随灌溉后天数增加而逐渐减少,叶片水势T1>T2>T3。相关分析表明,影响番茄茎流的主要气象因子为太阳辐射、空气温度和空气湿度。研究认为,番茄茎流与太阳辐射、空气温度和土壤水分呈正相关,叶片水势与空气相对湿度呈负相关。研究结果可为设施番茄水分管理提供科学依据。  相似文献   

2.
为解决涵盖土壤蒸发和作物冠层蒸腾的土培作物蒸散模型不能直接应用于稻壳炭基质栽培番茄灌溉的问题,该研究首先通过修改Penman-Monteith模型的原始表达式来去除土壤蒸发部分,并引入TOMGRO模型来模拟番茄冠层生长,给出了阻抗参数的修正计算,得到了新的番茄基质栽培蒸腾模型。考虑到蒸腾模型中净辐射项削弱了室外太阳辐射对冠层及以下部整株植株的耗水影响,进而将新的蒸腾模型与太阳辐射线性比例供水模型结合建立蒸腾-辐射综合灌溉模型。结果表明,蒸腾-辐射综合灌溉模型对上海崇明A8温室番茄灌溉量的模拟结果与实际结果之间的相关系数高于0.95,平均相对误差小于20%。这说明蒸腾-辐射综合灌溉模型能够较好地估算温室稻壳炭基质栽培番茄的灌溉需水量,对深入研究温室灌溉实施具有参考价值。  相似文献   

3.
基于模糊算法的温室番茄调亏滴灌制度综合评判   总被引:3,自引:3,他引:0  
该文研究利用改进的模糊综合评判模型在温室滴灌番茄生长、产量、品质和耗水进行综合评判的可行性。于2015和2016年在中国农业科学院新乡综合试验基地的日光温室内,以滴灌番茄为研究对象,参考20 cm标准蒸发皿的累积蒸发量,分别在开花坐果期和成熟采摘期进行充分灌溉、轻度亏缺和中度亏缺,采用改进的模糊综合评判模型,对调亏灌溉制度温室番茄的生长指标、产量指标、耗水指标和品质指标进行综合评价。结果表明:不考虑阶段水分亏缺条件下,番茄的生长指标、产量指标和蒸发蒸腾量指标均随灌水量的增大而增大,品质指标则相反。轻度亏缺对番茄品质指标的影响较小(两者的品质综合评判指数为0.135和0.138,0.125和0.124),采摘期轻度亏缺的生长指标和产量指标的综合评判指数高于花果期轻度亏缺处理,且全生育期蒸发蒸腾量较低;花果期中度亏缺的产量指标和品质指标的综合评判指数与采摘期中度亏缺相近,但前者的总蒸发蒸腾量低于后者。因此,推荐水资源充足地区可采用在成熟采摘期轻度亏缺的灌溉模式,而水资源短缺地区采用在开花坐果期中度亏缺的灌溉模式。研究可为温室调亏滴灌制度的优化提供参考。  相似文献   

4.
作物水分利用效率研究方法及尺度传递研究进展   总被引:1,自引:0,他引:1  
提高作物水分利用效率(WUE)是缓解农业生产水资源匮乏压力的有效途径,而水分利用效率尺度传递是各尺度WUE相互表征、验证并应用于实际生产的基础。本文概述了作物叶片、植株、群体尺度WUE的主要观测技术,包括叶片气体交换测定、碳同位素判别、桶栽称重、涡度相关观测等,其中碳同位素判别法为研究作物水分利用的长期累积效应提供了新的思路,且适用于多个尺度;总结了各尺度WUE的影响因子及作物耗水的生理机制,阐明各尺度WUE均受气孔导度调控。讨论了叶片到植株、叶片/植株到群体的尺度传递的可行性,集中分析了尺度传递的主要限制因素,指出叶片到植株的传递研究难点集中于叶片分布和光分布的不确定性、植物夜间呼吸和蒸腾以及植物适应环境的生理调节机制等过程;而叶片/植株到群体的传递研究主要受冠层形态学差异、冠层阻力、土壤蒸发及植物同化物分配机制等限制。最后总结了尺度传递方法的现有研究成果。目前作物WUE尺度传递主要依靠模型的完善和观测手段的提高,叶片到单株的尺度传递需关注日间与夜间耗水的分离及作物各部分的光合特性;叶片/单株到群体的传递可先明确蒸散结构,了解耗水特征,再以气孔导度和冠层导度的关系为切入点,利用模型探究传递机制。  相似文献   

5.
探究不同时间尺度下植物蒸腾变化与环境因子的关系,对理解植物生长的驱动机制及估算林分耗水具有重要的理论意义。以晋西黄土区蔡家川人工刺槐纯林为研究对象,于2021年5—12月采用热扩散探针(TDP)测定8株样树树干液流,并同步监测太阳辐射、空气温度、降雨量、土壤温度、土壤含水量等环境因子,分析不同时间尺度(小时、日、月)下刺槐蒸腾特征及其对环境因子的响应。结果表明:(1)环境因子对刺槐蒸腾耗水的影响在不同时间尺度下存在差异,整体上随着时间尺度的变大,土壤含水量成为影响刺槐蒸腾的主要因子,并且短时间尺度是主要取决于表层土壤水分,长时间尺度不仅为表层同时也取决于较深层土壤含水量。小时尺度下,刺槐蒸腾随太阳辐射、空气温度、水汽压亏缺、土壤温度变化而变化,但蒸腾峰值与环境因子的峰值均存在时间差异性,并无完全同步,差异时长可达-180~30 min,在各环境因子中太阳辐射与空气温度对刺槐蒸腾的影响较大;日尺度下,刺槐蒸腾速率主要取决于浅层土壤含水量,并随浅层含水量的增加而增大;月尺度下刺槐蒸腾耗水则取决于浅层与深层土壤含水量的共同作用;(2)构建了不同时间尺度下环境因子与刺槐蒸腾耗水的模型,各时间尺度下模型拟合度均较高。(3)在短历时尺度下可使用测定植物蒸腾的仪器直接测定与计算蒸腾耗水,而较大时间尺度下可以通过监测较少的环境因子应用建立模型进行蒸腾耗水的计算,可大大提高效率且可减少蒸腾耗水监测的成本。  相似文献   

6.
灌溉对冬小麦水分利用效率的影响研究   总被引:26,自引:5,他引:26  
通过设计不同的灌溉处理,从叶片水平、群体水平和产量水平3个层次系统分析了冬小麦水分利用效率(Water Use Efficiency, WUE)的变化特点及其内在联系。结果表明:叶片水平WUE或蒸腾效率(Transpiration Efficiency, TE)是群体蒸散效率基础;气孔运动机制及光合作用和蒸腾作用对环境变化响应的差异是叶片水平WUE的生理基础;而产量水平WUE是群体蒸散效率与收获指数共同决定的。随耗水量的增加,叶片光合速率、群体干物质积累及籽粒产量都呈二次曲线增长趋势,结果使叶片水平WUE  相似文献   

7.
华北平原典型井灌区农田水循环过程研究回顾   总被引:1,自引:0,他引:1  
本文回顾了中国科学院栾城农业生态系统试验站在农田水分循环和水量转化方面的研究工作和进展。目前, 对于冬小麦-夏玉米农田的蒸散耗水量及其结构(植物蒸腾和土壤蒸发)有较详细的研究结果。全年总蒸散量多年平均870 mm, 每年亏缺的350 mm 左右需要靠提取地下水保证; 同位素分析结果显示土壤蒸发的深度在地表下20 cm 处, 而植物蒸腾耗水也主要是利用0~40 cm 土层的土壤水分。对于土壤深层渗漏量和地下水接受垂直补给的问题, 不同研究结果间仍然存在较大差异, 尚需更精细的试验来确定。对于区域水量平衡和地下水资源可持续性的评价和管理, 目前急需重点开展区域蒸散量的精确估算和模拟研究, 以及不同土地利用和不同农业种植方式的水量平衡与水分转化过程研究。  相似文献   

8.
长江中下游Venlo型温室番茄蒸腾模拟研究   总被引:3,自引:3,他引:3  
该文针对目前国际上计算作物蒸腾速率的通用Penman-Monteith方程(P-M方程)存在的所需参数即作物叶片气孔阻抗不易获取的问题,首先通过春季和冬季Venlo型温室小气候和番茄(Lycopersicon esculentum Mill.)叶片气孔阻抗以及植株蒸腾量的实验观测,分析并量化番茄叶片气孔阻抗与温室小气候因子之间的关系。然后将其与P-M方程结合,模拟计算了春冬两季温室内番茄作物的累积蒸腾量,并用实测植株蒸腾量检验了模拟的效果。结果表明,在长江中下游地区的春季,两个供试番茄品种叶片气孔阻抗rs与光合有效辐射PAR的关系为11205/(5.28+PAR)。将该函数关系与P-M方程相结合模拟计算的春冬两季温室内番茄的蒸腾量与实测值的吻合度较高。春季番茄蒸腾量模拟值与实测值之间的决定系数为0.97,标准误为5.50 mm,冬季番茄蒸腾量的模拟值与实测值之间的决定系数为0.99,标准误为1.21 mm。本研究建立的番茄叶片气孔阻抗与太阳辐射的定量关系,解决了在长江中下游地区用P-M方程计算番茄蒸腾速率时所需模型参数(叶片气孔阻抗值)难以获取的困难,为P-M方程在温室番茄水分管理中的实际应用奠定了基础。  相似文献   

9.
基于Penman-Monteith方程的日光温室番茄蒸腾量估算模   总被引:8,自引:6,他引:2  
为寻求适合于温室栽培条件下番茄植株蒸腾量的计算模型,该文以Penman-Monteith方程为基础,针对日光温室特定的小气候环境,对番茄冠层整体气孔阻力、空气动力学阻力等参数进行了修正,建立了包含气象数据、番茄叶面积指数和冠层高度为主要参数的日光温室番茄蒸腾量估算模型。分别采用2009-05-02-2009-05-13(开花坐果期)和2009-06-09-2009-06-20(成熟采摘期)2个时段内的实测蒸腾量对模型模拟结果进行验证,2个时段内模型模拟结果的平均相对误差分别为8.48%和9.20%,表明所建模型可以较好地计算日光温室番茄的蒸腾量。该研究提出的蒸腾量估算模型对日光温室番茄需水规律的深入研究具有参考价值。  相似文献   

10.
以北京山区广泛分布的侧柏林为研究对象,分别采用水文学实测法(树干液流计结合大型蒸渗仪)和稳定同位素法对林分蒸散量进行定量拆分研究。结果表明:(1)在日尺度上,该林分的蒸散量和蒸腾量均显现为"单峰"型的变化曲线。林分总的蒸散量和蒸腾量均在正午前后达到最大值,分别为1.27,1.13 mm/h;(2)实测法和稳定同位素法对侧柏林蒸腾量占总蒸散量的计算结果分别为80.21%~89.63%和79.10%~98.71%。相比水文学实测法,稳定同位素法在小时尺度上误差为(3.97±3.53)%,而在日尺度上误差为(1.89±0.67)%。该林分蒸散主要来自于植被蒸腾,林木蒸腾耗水远大于土壤蒸发耗水。  相似文献   

11.
基于蒸发皿蒸发量的椰糠盆栽番茄适宜灌溉量估算与试验   总被引:1,自引:1,他引:1  
目前以实测蒸腾量、田间持水量或累计太阳辐射作为灌水依据建立的温室作物蒸腾模型中,其灌水依据的确定所需监测参数项多,且对监测仪器精度要求较高。基于此,该研究以20 cm蒸发皿蒸发量为灌水依据,设置日光温室椰糠盆栽番茄3个生育时期的不同蒸发皿系数灌水量水平(苗期:0.2(ET1)、0.4(ET2)、0.6(ET3);开花坐果期:0.3(ET1)、0.5(ET2)、0.7(ET3);成熟采摘期:0.7(ET1)、0.9(ET2)、1.1(ET3)),对番茄株产量、水分利用效率(Water Use Efficiency,WUE)及品质进行综合评价,筛选出较优灌水量水平;基于较优灌水量水平建立蒸腾模型,并以其余两个处理实测值对模型进行验证。结果表明:ET2处理株高、可溶性糖和可溶性蛋白质含量分别显著高于其他处理8.54%~14.27%、28.61%~32.99%和38.70%~70.83%;相较于ET3处理,ET2处理可在仅降低株产量2.50%情况下提高WUE10.05%和节约灌水量22.23%。对株产量、WUE及品质进行主成分分析,综合得分最高处理为ET2;各因子对日蒸腾量的影响程度大小依次为日累积净辐射(M)、日平均温度(T)、叶面积指数(Leaf Area Index,LAI),日蒸腾量与M、T和LAI均呈极显著正相关;该研究基于ET2处理所建立的椰糠栽培番茄蒸腾模型拟合较好,均方根误差为49.88 g,相对误差为11.88%。研究结果可为日光温室椰糠栽培番茄高效生产和智能化灌溉提供科学依据和决策参考。  相似文献   

12.
温室滴灌条件下番茄植株茎流变化规律试验   总被引:14,自引:7,他引:7  
为探明滴灌条件下温室番茄植株茎流速率变化规律及其影响因素,本文采用Dynamax公司开发的包裹式茎流计观测日光温室番茄植株的茎流变化,研究茎流速率的变化规律及茎流速率监测结果的标准化处理技术,探索植株茎流与气象因子的相互关系,分析水分胁迫对番茄植株茎流速率的影响。研究表明,采用单位叶面积上的茎流速率表征茎流变化规律可在一定程度上降低因探头安装位置不同对监测结果的影响;在充分供水条件下,影响番茄植株茎流速率的主要因子是太阳辐射和饱和水气压差,番茄植株的日茎流速率与太阳辐射呈线性关系,与饱和差呈对数关系(R2>0.90,P<0.01);土壤水分状况会明显影响番茄植株茎流状况,茎流速率随水分胁迫加剧而骤减。研究结果证明番茄植株茎流速率经标准化处理后可以真实的反映植株蒸腾规律。  相似文献   

13.
为了改进和提高温室封闭式栽培精细灌溉控制方法,针对利用Penman-Monteith(P-M)公式和传感器数据信息相结合进行灌溉控制中因为涉及参数较多而使用不便、需要近似计算导致建立的作物蒸腾模型精度不够等问题,该文根据封闭式栽培可以回收并循环利用多余灌溉水的特点,利用灌溉量与排出量的差值和温室小气候环境数据建立相对精确的作物蒸腾量计算模型,并在此基础上利用人工神经网络算法实现了温室封闭式栽培自适应灌溉控制,结果表明,在10 d内灌溉用水量为实际蒸腾量的97.8%,基本实现了按照作物需水量进行灌溉。研究对于实现按照作物蒸腾量进行准确的水分供给、节约灌溉用水量、提高水分利用效率具有一定的现实意义。  相似文献   

14.
为了探讨SIMDual Kc模型在西北地区温室环境不同水分处理的适用性,以番茄为材料,于2013-2015年在陕西省杨凌区温室内进行亏水处理试验,设置全生育期充分灌水处理、仅发育期亏水50%处理、发育期中期连续亏水50%和全部亏水50%共4种水分处理,通过2013-2014年试验数据对SIMDual Kc模型进行率定,采用2014-2015年试验数据对模型进行验证,并通过模型将土壤蒸发量和番茄蒸腾量分开,利用模拟结果分析不同水分处理对土壤蒸发量和番茄蒸腾量的影响。结果表明:模型模拟不同水分处理蒸发蒸腾量与实测值有较好的一致性,其绝对误差为0.22~0.33 mm/d,均方根误差为0.26~0.48 mm/d、决定系数为0.51~0.81。该模型可以准确的将不同水分处理土壤蒸发量和作物蒸腾量分开,且土壤蒸发量模拟值与实测值有较好的一致性,其绝对误差为0.016~0.024 mm/d,均方根误差为0.013~0.034 mm/d和决定系数为0.63~0.84;通过模拟得到的番茄蒸腾量计算不同水分处理的水分亏缺系数,研究表明水分亏缺系数随亏水时间的增加而降低,复水后水分亏缺系数有不同程度的增加,且发育期、中期和后期连续亏水50%时,后期时水分亏缺系数降到最低,为0.63。因此该模型在西北地区温室环境下非充分灌溉条件下有一定的适用性。除此之外,研究通过模拟结果分析非充分灌水下番茄的响应及复水后的补偿机制,为非充分灌水条件下番茄栽培提供理论依据。  相似文献   

15.
夏玉米茎流速率和茎直径变化规律及其影响因素   总被引:13,自引:5,他引:8  
为了揭示夏玉米茎流速率和茎直径的变化规律及其影响因素,该研究对夏玉米生育中期的茎流变化和茎直径微变化过程进行监测,分析了二者的日变化过程及相关关系、茎流速率与环境因子之间关系、茎直径随土壤含水率的变化规律。结果表明:茎流速率日变化过程呈单峰曲线型,其变化受太阳辐射、饱和水气压差、风速等气象因子的影响显著,通过对实测数据的分析得到了茎流速率与上述气象因子的线性回归方程,为今后利用气象因子预测夏玉米的叶面蒸腾量提供了基础;茎直径微变化的日变化过程也呈现明显的昼夜变化规律,白天收缩,夜晚复原,每日茎直径最大值随土壤含水率的降低而减小,二者之间呈线性相关关系,依据这一关系可利用茎直径微变化诊断作物缺水状况。  相似文献   

16.
新乡地区冬小麦缺水量适宜估算模式研究   总被引:2,自引:2,他引:0  
作物缺水量是确定灌溉需水量和制定灌溉制度的基础依据。利用新乡地区连续两个冬小麦生长季(2005~2006年、2006~2007年)田间试验资料建立了冬小麦生育期叶面积指数增长模型、需水量估算模型和土壤入渗模型。在此基础上, 根据新乡地区51年(1951~2001年)的逐日气象资料, 采用土壤水分平衡法, 综合考虑作物蒸散、降水和灌溉等因素, 模拟冬小麦各生长季降水有效利用状况, 分析研究该地区连续50个冬小麦生长季降水量与相应时间段有效降水量间的相互关系, 确定不同时间尺度下有效降水量估算模式。最后, 以确定的作物需水量和有效降水量估算模式为基础, 提出河南新乡地区不同时间尺度下的冬小麦缺水量适宜估算模式。  相似文献   

17.
GREENSPAN茎流法对玉米蒸腾规律的研究   总被引:7,自引:0,他引:7  
以盆栽玉米为试材、称重法为基准,验证了GREEN SPAN茎流法测量作物蒸腾量的可行性。茎流法与称重法两者测值的绝对误差为0.20~4.56 g/(株.h),相对误差为2.03%~10.42%,表明茎流计所测得的玉米茎流速率可准确的表示作物蒸腾速率。以此为基础,探讨了不同天气下GREEN SAPPAN茎流法实测玉米茎流的日变化规律:白天玉米茎流随太阳辐射及天气变化呈规律性变化,晚间有较细微而稳定的茎流。晴好天气,玉米茎流的日变化呈单峰曲线,多云或阴天天气,为不对称的“M”型,且茎流的启动时间存在一个受天气和太阳辐射变化共同影响的临界值。灰色关联度分析表明,晴好天气下,太阳辐射是影响蒸腾速率的主要因素;多云或多云转晴天气下,气温和相对湿度成为影响蒸腾速率的主要因素,太阳辐射的作用相对降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号