首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

2.
Tillage alters corn root distribution in coarse-textured soil   总被引:3,自引:0,他引:3  
Root responses to tillage vary and the driving factors are not well understood. Characterization of root response is requisite to optimize fertilizer placement and to understand limitations to no-till production. Corn (Zea mays L.) root length and weight were measured in the top 0.3 m of coarse-textured soil (Psammentic Hapludalf) in southwestern Ontario, Canada after 5, 6 and 7 yr of conventional and no-till management. Root length density in the top 0.1 m was greater under no-till (17 km m−3) than under conventional till (7 km m−3) 2 yr out of 3. Root length density was 4 km m−3 lower under no-till than under conventional till in the 0.15 to 0.3 m layer 1 yr out of 3, but otherwise root growth below 0.1 m was unaffected by tillage. Each year, root length and weight were distributed more horizontally under no-till than under conventional till. Corn grain yields did not vary with tillage, even though soil water content was often greater under no-till. The increase in soil water (of between 0.01 and 0.03 m3 m−3) was partly due to increased water holding capacity—water held between −8 and −200 kPa matric potential was usually greater under no-till (0.07 m3 m−3) than under conventional till (0.06 m3 m−3) in the top 0.15 m. The shift in root distribution was apparently driven by soil structure because variation in bulk density with tillage and depth followed the same trends as variation in root length. Bulk density was greater under no-till (1.5 Mg m−3) than under conventional till (1.4 Mg m−3) in the top 0.15 m. In the top 0.075 m, the proportion of the total space occupied by capillary pores (<36 μm diameter) was greater under no-till (17%) than under conventional till (15%), there were more dry-stable aggregates under no-till (9% of total soil in the 0.85–5.7 mm size fraction) than under conventional till (7%), and a greater proportion of these aggregates were water-stable under no-till (25%) than under conventional till (16%). Greater bulk density may trigger formation of lateral roots, and greater aggregation contribute to the more superficial development by deflecting roots from their gravitropic pathway. Given the more superficial root distribution under no-till, shallower placement of downwardly mobile nutrients such as nitrogen may be more efficient than knife-injection.  相似文献   

3.
The fertile, but naturally poorly drained soils of the western Fraser Valley in British Columbia, Canada are located in an area subject to about 1200 mm of rainfall annually. These soils were under intensive conventional tillage practices for years, which contributed to their poor infiltrability, low organic matter, and overall poor structure. Development of tillage practices that incorporate winter cover crops and reduce traffic in spring is required to reduce local soil degradation problems. The objective of this study was to determine short-term responses of soil physical properties to fall and spring tillage (ST) and fall and no spring tillage (NST) systems, both using spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) as winter cover crops. Field experiments were conducted for 3 years following seeding of the winter cover crops in fall 1992 on a silty clay loam Humic Gleysol (Mollic Gleysol in FAO soil classification). Average aeration porosity was 0.15 m3 m−3 on NST and 0.22 m3 m−3 on ST, while bulk density was 1.22 Mg m−3 on NST and 1.07 Mg m−3 on ST at the 0–7.5 cm depth. Neither of these two soil properties should limit seedling and root growth. After ST, mechanical resistance was consistently greater for 500–1000 kPa in NST than in ST, but never reached value of 2500 kPa considered limiting for root growth. The NST system did not increase soil water content relative to ST, with soil water contents being similar at 10 and 40 cm depth in all years. In 2 out of 3 years NST soil was drier at the 20 cm depth than was ST soil. Three years of NST did not result in a significant changes of aggregate stability relative to ST. This experiment showed that limiting tillage operations to the fall did not adversely affect soil physical conditions for plant growth in a humid maritime climate.  相似文献   

4.
Soil structure is important to root development and crop yield. The objective of this study was to test the Cropping Profile Method in Brazilian soils, in order to evaluate the soil structure in the field. Grouped different structures determined by the Cropping Profile Method were compared to laboratory determinations for soil bulk density, total porosity and mercury porosity. The study was conducted in clayey Oxisols submitted to different uses and management including annual crops, orchards and natural forests in the State of Paraná, southern Brazil. Homogeneous morphological units (HMUs) were determined in trenches using the Cropping Profile Method, and the different structures were grouped as: (a) non-compacted; (b) compacted; (c) in-process-of-compacting. Results of field evaluation were compatible with those obtained in the laboratory. More compacted and in-process-of-compacting structures corresponded to soil bulk density values of 1.42 and 1.33 Mg m−3, which were significantly higher than the 1.18 Mg m−3 value obtained for soil bulk density in non-compacted HMU. The total porosity of compacted HMU and in-process-of-compacting HMU was 0.49 and 0.52 m3 m−3, respectively. These were significantly lower than the value obtained for the non-compacted HMU (0.60 m3 m−3). The Cropping Profile Method is useful mainly in field research works when it is important to verify the effect of management practices on soil structure.  相似文献   

5.
Soil compaction can affect the turnover of C and N (e.g. by changing soil aeration or by changing microbial community structure). In order to study this in greater detail, a laboratory experiment simulating total soil porosities representative of field conditions in cropped and pasture soils was set up. Soils were silty clay loams (Typic Endoaquepts) from a site that had been cropped with cereals continuously for 28 years, a permanent pasture and a site that had been cropped with maize continuously for 10 years. Soils from the three sites were compacted into cores to different total porosities (corresponding bulk densities ranging from 0.88 to 1.30 Mg m−3). The soil cores were equilibrated to different matric potentials (ranging from −1 to −100 kPa), yielding values for the fraction of air-filled pores of < 0.01 to 0.53 m3 m−3, and then incubated at 25°C for 21 days. C-mineralization was on average 15, 33 and 21 μg C g−1 day−1 for soils from the cropped, pasture and maize sites, respectively, and was positively correlated with soil water contents. Net N-mineralization showed a similar pattern only for well-aerated, high total porosity cores (corresponding bulk density 0.88 Mg m−3) from the pasture soil. Denitrification at < 0.20 m3 m−3 for the fraction of air-filled pores may have caused the low N-mineralization rates observed in treatments with high water content or low porosity. Microbial biomass estimates decreased significantly with increasing water contents if measured by fumigation-extraction, but were not significantly affected by water content if estimated by the substrate-induced respiration method. The degree of soil compaction did not affect the microbial biomass estimates significantly but did affect microbial activity indirectly by altering aeration status.  相似文献   

6.
Although biotic communities have long been recognized as important factors in soil development, especially of A horizons, few studies have addressed their influence on soil physical properties in nonagricultural settings. A biosequence of 50-year-old soils supporting near monocultures of Coulter pine (Pinus coulteri), scrub oak (Quercus dumosa), and chamise (Adenostoma fasciculatum) was used to determine the relative influence of vegetation type and associated soil organisms on the development of soil structural characteristics and water flow. Total porosity ranged from a high of 51% in the heavily worm-worked A horizon under oak to a low of 39% within the 35- to 50-cm depth under pine, where earthworms were absent. Macroporosity (pores with diameters >300 μm) was highest in the A horizon under oak (15.6%) and lowest under pine (9.5%). Saturated hydraulic conductivity of surface soils ranged from 10.8 cm h−1 under oak to 3.2 cm h−1 under pine. Soil under chamise, which had fewer earthworms than that under oak, had Ksat and bulk density values intermediate between oak and pine. Root and macrofauna distributions suggest that roots are the dominant factor in the development of macroporosity under pine, while earthworms have had the greatest effect under oak. Porosity has increased at an average rate of 0.22% per year in the 0- to 7-cm depth under oak (from 41% to 56%), but has not been significantly altered within the same depth under pine. Below the 7-cm depth, porosity values are similar for each vegetation type and the original parent material. Available water capacity (AWC) within the first 0- to 7-cm depth has increased from the original values (about 0.11 m3 m−3) to 0.17 m3 m−3 under oak, 0.16 m3 m−3 under chamise, and 0.13 m3 m−3 under pine. The data show that the presence of burrowing macrofauna, which is determined by litter palatability and therefore indirectly controlled by vegetation, can significantly influence porosity, increasing the water-holding capacity of a soil.  相似文献   

7.
Deep tillage that is used before vine plantation to remove old vine roots and loosen subsoil may induce physical soil degradation that could affect soil structure and vine water supply. The objective of the study was to experimentally evaluate the effect of deep tillage on soil structure. The impacts on soil structure of two deep tillage techniques, i.e. deep ploughing and ripper, and two contrasted soil water conditions were compared in a experimental field by combining morphological observations, bulk density and saturated hydraulic conductivity measurements. These three methods were found very complementary to analyse and discriminate the impact of the different treatments. The proportion of compacted zones and mean bulk density increased from the initial plot (0.15 m2 m−2, 1.45 Mg m−3) to a maximum in the case of the deep ploughing under wet conditions plot (0.60 m2 m−2, 1.60 Mg m−3). The main results showed that (i) a significant soil compaction was observed after wet conditions only, (ii) deep ploughing produced more soil compaction than ripper because of a greater volume of soil affected by wheeling in the former operation and (iii) a specific response of soils is significatively observed in the case of deep ploughing only with an increase of compacted zones fragmentation in relation to a decrease of clay content.  相似文献   

8.
Contrasting soil management techniques were applied to a hardsetting red-brown earth (Alfisol) used for flood-irrigated wheat (Triticum aestivum) production at Trangie, N.S.W., Australia. The individual and combined effects of deep mouldboard ploughing to a depth of 0.45 m, gypsum application (5 t ha−1) and double cropping upon aggregate stability, bulk density, porosity, cone index and the non-limiting water range were evaluated. Dispersion and slaking of the surface soil were unaffected by the treatments when measured at the end of the second year of the experiment. Approximately 60% of the soil mass in the 0–0.15 m layer slaked on wetting, whereas less than 1% of the soil dispersed. Organic carbon (OC) levels of the surface soil were not affected by double cropping or gypsum application, but were reduced by mouldboard ploughing from 0.9% to 0.6% OC. The relationship between OC and macroaggregate (more than 250 μm) stability indicated that large increases in OC beyond 0.7% OC were required for relatively small increases in aggregate stability. Mouldboard ploughing increased clay content of the upper 0.15 m of the soil from 22% to 27%. This was associated with an increase in the frequency and depth of cracking which, however, diminished over time. The non-limiting water range (NLWR) was expanded in the uppermost 0.1 m by gypsum application from 0.15–0.30 to 0.09–0.28 m3 m−3. Mouldboard ploughing expanded the NLWR at a depth of 0.2 m. Penetrometer resistance, on average, exceeded the critical value for wheat root growth at a water content of 0.15 m3 m−3, which is substantially higher than the wilting point (0.09 m3 m−3). Excessive resistance to penetration as opposed to inadequate aeration or water availability is the main agronomic impediment in these soils, at least in the initial stages of crop development. Penetration resistance within the 0.05–0.3 m layer was reduced during a drying cycle in the order: mouldboard ploughing>gypsum>double cropping. The reduced penetration resistance associated with mouldboard ploughing was due to higher water content to a depth of 0.2 m and reduced bulk density below this depth.  相似文献   

9.
The effects of conservation tillage (CT) systems on crop production and erosion control have been well documented, but limited information is available concerning the effects of different CT systems on the hydraulic properties of layered soils. The effects of three CT treatments: chisel (CH), no-tillage (NT) and till-plant (TP) as compared with conventional modlboard plowing (CN) were investigated on a Griswold silt loam soil (Typic Argiudoll), formed in loess overlaying glacial till. Hydraulic properties were determined in situ. In addition, hydraulic conductivity was determined in the laboratory where more detailed hydraulic conductivity changes were monitored for the lower soil moisture tension range near soil saturation.

At or near saturation, there was no difference in hydraulic properties for all four tillage treatments. For example, mean saturated hydraulic conductivities (from laboratory determination) were 25.5, 25.1, 24.2 and 22.8 cm day−1 for CN, CH, TP and NT, respectively. However under unsaturated conditions, tillage treatments and soil layering (discontinuity between surface loess and glacial till beneath) affected hydraulic properties. In situ hydraulic conductivity (K) ranked CH>CN = NT = TP for the 0.32–0.33 m3 m−3 moisture content range. There were no differences in K for all treatments at other moisture ranges considered and at moisture contents 0.31 m3 m−3, in situ specific moisture capacity was, however, significantly lower in NT than in the other three treatments. Throughout the 20-day free drainage period for in situ K determination, the effect of layering is exhibited by the mean K values at the 50-cm depth being higher than those at 25 cm. There were negligible treatment-block interaction effects on the hydraulic properties as the soil became drier. Spatial variability in hydraulic properties was also noted for all treatments and soil depths considered.  相似文献   


10.
Tillage affects the ability of coarse-textured soils of the southeastern USA to sequester C. Our objectives were to compare tillage methods for soil CO2 flux, and determine if chemical or physical properties after 25 years of conventional or conservation tillage correlated with flux rates. Data were collected for several weeks during June and July in 2003, October and November in 2003, and April to July in 2004 from a tillage study established in 1978 on a Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults). Conventional tillage consisted of disking to a depth of approximately 15 cm followed by smoothing with an S-tined harrow equipped with rolling baskets. Conservation tillage consisted of direct seeding into surface residues. Flux rates in conservation tillage averaged 0.84 g CO2 m−2 h−1 in Summer 2003, 0.36 g CO2 m−2 h−1 in Fall 2003, 0.46 g CO2 m−2 h−1 in Spring 2004, and 0.86 g CO2 m−2 h−1 in Summer 2004. Flux rates from conventional tillage were greater for most measurement times. Conversely, water content of the surface soil layer (6.5 cm) was almost always higher with conservation tillage. Soil CO2 flux was highly correlated with soil water content only in conventional tillage. In conservation tillage, no significant correlations occurred between soil CO2 flux and soil N, C, C:N ratio, pH, bulk density, sand fraction, or clay fraction of the surface 7.5 cm. In conventional tillage, sand fraction was positively correlated, while bulk density and clay fraction were negatively correlated with soil CO2 flux rate, but only when the soil was moist. Long-term conservation tillage management resulted in more uniform within- and across-season soil CO2 flux rates that were less affected by precipitation events.  相似文献   

11.
Soil compaction generally reduces crop performance because of degraded soil physical and biological properties, and possibly inappropriate soil nutritional status. The effects of varying compaction, and phosphorus (P) and zinc (Zn) supplies on the growth of Berseem or Egyptian clover (Trifolium alexandrimum), and accumulation of P and Zn in shoots and roots were investigated in a pot experiment using a surface layer of a Typic Torrifluvent (USDA), Calcaric Fluvisols (FAO) soil. Plants were treated with three soil compaction levels, three rates of P and three rates of Zn in a factorial combination. Phosphorus accumulation in shoots did not change up to bulk densities of 1.65 Mg m−3 and declined at bulk density of 1.80 Mg m−3. Increasing the levels of Zn and P resulted in a significant increase in shoot dry mass (from 0.3 to 0.8 g pot−1), and root length (from 11.4 to 32.5 m pot−1). Shoot and root growth were reduced by soil compaction particularly at low P and Zn application rates. Shoot dry mass was reduced from 0.8 to 0.3 g pot−1, and root length from 43 to 5 m pot−1 at bulk densities of 1.4 and 1.8 Mg m−3, respectively. However, the accumulation of P (from 0.06 to 0.15 g kg−1) and Zn per unit length of roots (from 0.8 to 1.8 μg pot−1) increased as soil compaction increased. As the Zn supply increased, Zn accumulation per unit length of roots, and total Zn accumulation increased. Severe compaction reduced P and Zn accumulation in shoots and also decreased shoot dry mass, and root length compared to lower soil compaction levels. The present study suggests that Zn and P supply can moderate the adverse effect of soil compaction on clover performance.  相似文献   

12.
One of the resource conservation technologies for rice (Oryza sativa) is direct seeding technique, which may be more water efficient and labour cost-effective apart from being conducive for mechanization. The crop establishment during the initial stages may depend upon the method of direct seeding, cultivar and seed rate. A study was carried out during 2004–2005 to evaluate the effect of different seeding techniques, cultivars and seed rates on the performance of direct-seeded basmati rice in loamy sand (coarse loamy, calcareous, mixed hyperthermic, Typic Ustipsamments) at Punjab Agricultural University, Ludhiana, India. The treatments in main plots included four seeding techniques (broadcast in puddled plots, direct drilling in puddled plots, direct drilling in compacted plots and direct drilling under unpuddled and uncompacted conditions). The subplots treatments comprised of two cultivars (Pusa Basmati-1 and Basmati-386) and three seed rates (at 30, 40 and 50 kg ha−1).

The moisture retention and bulk density at harvest were sufficiently lower in uncompacted/unpuddled plots than compacted or puddled plots more so in 0–30 cm soil layer. The crop stand establishment was higher in direct-drilled compacted plots with 50 kg seed ha−1. It was higher in Pusa Basmati-1 than Basmati-386. The direct drilling after compaction produced 28% higher biomass than uncompacted/unpuddled plots. Similar trend was observed in leaf area index and effective tillers. Effective tillers were significantly higher with 30 kg seed ha−1and were higher in Pusa Basmati-1 than Basmati-386. The root mass density of basmati rice in 0–15 cm soil layer at 45 days after sowing was 1549 g m−3 in compacted soils, 1258 g m−3 in broadcasting in puddled soil and 994 g m−3 with direct drilling in puddled soil. The grain yield of basmati rice was 44% and 30% higher in direct-drilled compacted and puddled plots, respectively, than uncompacted/unpuddled plots.  相似文献   


13.
The type of conservation-tillage management employed could impact surface-soil properties, which could subsequently affect relationships between soil and water quality, as well as with soil C sequestration and greenhouse gas emissions. We determined soil bulk density, organic C and N fractions, plant-available N, and extractable P on Typic Kanhapludults throughout a 7-year period, in which four long-term (>10 years), no-tillage (NT) water catchments (1.3–2.7 ha each) were divided into two treatments: (1) continuation of NT and (2) paraplowing (PP) in autumn (a form of non-inversion deep ripping) with NT planting. Both summer [cotton (Gossypium hirsutum L.), maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), soybean (Glycine max L. Merr.)] and winter [wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale L.), crimson clover (Trifolium incarnatum L.)] crops were NT planted throughout the study under each management system. Soil bulk density was reduced with PP compared with NT by as much as 0.15 Mg m−3, but the extent of reduction was inversely related to the time lag between PP operation and sampling event. Soil organic C became significantly enriched with time during this study under NT (0.49 Mg C ha−1 year−1), but not under PP, in which poultry litter was applied equivalent to 5.7 Mg ha−1 year−1 to all water catchments. Soil maintained a highly stratified depth distribution of organic C and N fractions and extractable P under both NT and PP. Inability to perform the PP operation in the last year of this study resulted in rapid convergence of soil bulk density between tillage systems, suggesting that PP had <1-year effectiveness on soil loosening. The high energy cost of PP (ca. 30 kW shank−1) and the lack of sustained improvement in surface-soil properties put into question the value of PP for improving upon long-term NT management in sandy loam and sandy clay loam Ultisols of the Southern Piedmont USA, unless large effects on crop yield, water quality, or other ecosystem processes warrant its use.  相似文献   

14.
Soil biological parameters, such as soil respiration or N-mineralization, may be more sensitive to soil compaction than physical parameters. Therefore we studied the effects of soil compaction on net N-mineralization and microbial biomass dynamics in the field. The soils were silty clay loams (Typic Endoaquepts) in either a well-structured permanent pasture with high organic-C content (46 mg g−1) or a site which had been continuously cropped with cereals for 28 years with low organic-C content (21 mg g−1) and a very poor structure. Compaction treatments were applied by five passes of a tractor (total weight 4880 kg, speed 2.2 m s−1). An energy flux of either 2712 J m−2 (assuming deflecting tyres) or 6056 J m−2 (assuming rigid tyres) per pass of the rear tyres was estimated. Soil dry bulk densities were initially 1.00 and 1.30 Mg m−3 in the pasture and cropped sites, respectively, and increased significantly only in the less dense pasture site. However, soil surface CO2-fluxes decreased substantially after compaction on both sites (57–69%) because of the highly reduced air permeability of the topsoil. At the cropped site this was also accompanied by a significant decrease in oxygen-diffusion rate (45%). Using the in situ core technique with covered cores the apparent net N-mineralization rate was less in compacted than in non-compacted areas of the pasture ((0.27 and 0.38 μg N g−1 day−1, respectively), but did not differ at the cropped site (average 0.15 μg N g−1 day−1). However, N-mineralization measurements by the in situ core technique were found to be problematic as denitrification possibly occurred and concealed actual net N-mineralization. Microbial biomass did not change significantly as a result of the compaction treatment, but was shown to either decrease or increase over time depending on the methodology used to estimate microbial biomass.  相似文献   

15.
Soil translocation by tillage may be an important factor in land degradation in the humid tropics. The objective of this study was to evaluate tillage-induced soil translocation on an Oxisol with 25% and 36% slopes in Claveria, Philippines for three tillage systems: contour moldboard plowing (CMP), moldboard plowing up and downslope (UMP), and contour ridge tillage (CRT). Small rocks 3–4 cm in “diameter” were used as soil movement detection units (SMDU). The SMDUs were placed at 10 cm intervals in a narrow 5-cm-deep trench near the upper boundary of each plot, the position of each rock recorded, and the trench backfilled. Five tillage operations used to produce one corn crop were performed during a one month period: two moldboard plowing operations for land preparation (except for CRT), one moldboard plowing for corn planting, and two inter-culture (inter-row cultivation) operations. After these operations, over 95% of the SMDU were recovered manually and their exact locations recorded. Mean annual soil flux for the 25% slope was 365 and 306 kg m−1 y−1 for UMP and CMP, respectively. For the 36% slope, comparable values were 481 and 478 kg m−1 y−1. Estimated tillage erosion rates for the 25% slope were 456 and 382 Mg ha−1 y−1 for UMP and CMP, respectively, and increased to 601 and 598 Mg ha−1 y−1, respectively, for the 36% slope. The mean displacement distance, mean annual soil flux, and mean annual tillage-induced soil loss for both slopes were reduced by approximately 70% using CRT compared to CMP and UMP.  相似文献   

16.
Soil thermal conductivity determines how a soil warms or cools with exchange of energy by conduction, convection, and radiation. The ability to monitor soil thermal conductivity is an important tool in managing the soil temperature regime to affect seed germination and crop growth. In this study, the temperature-by-time data was obtained using a single probe device to determine the soil thermal conductivity. The device was used in the field in some Jordanian clay loam and loam soils to estimate their thermal conductivities under three different tillage treatments to a depth of 20 cm. Tillage treatments were: no-tillage, rotary tillage, and chisel tillage. For the same soil type, the results showed that rotary tillage decreased soil thermal conductivity more than chisel tillage, compared to no-tillage plots. For the clay loam, thermal conductivity ranged from 0.33 to 0.72 W m−1 K−1 in chisel plowed treatments, from 0.30 to 0.48 W m−1 K−1 in rotary plowed treatments, and from 0.45 to 0.78 W m−1 K−1 in no-till treatments. For the loam, thermal conductivity ranged from 0.40 to 0.75 W m−1 K−1 in chisel plowed treatments, from 0.34 to 0.57 W m−1 K−1 in rotary plowed treatments, and from 0.50 to 0.79 W m−1 K−1 in no-till treatments. The clay loam generally had lower thermal conductivity than loam in all similar tillage treatments. The thermal conductivity measured in this study for each tillage system, in each soil type, was compared with independent estimates based on standard procedures where soil properties are used to model thermal conductivity. The results of this study showed that thermal conductivity varied with soil texture and tillage treatment used and that differences between the modeled and measured thermal conductivities were very small.  相似文献   

17.
Field observations have shown that root residues maintain root-adhering soil for several months after harvest. The aim of this work was to compare post-harvest effect of Amaranthus hypochondriacus (amaranth), Phaseolus vulgaris (common bean) and Zea mays (maize) roots on root-adhering soil, aggregation and organic carbon content. The experimental site was located on a volcanic sandy soil (Typic Ustifluvent) in the Valley of Mexico. In 1999 and 2000, maize had the highest root mass (92 and 94 g m−2) and the highest root-adhering soil (9051 and 5876 g m−2) when a root–soil monolith of 0.20 m × 0.20 m × 0.30 m was excavated after harvest. In contrast, bean roots (2 and 5 g m−2) had only 347 and 23 g m−2 of adhering soil per monolith in each year. Amaranth had intermediate values between maize and bean. Dry soil aggregate classes (<0.25, 0.5, 1, 2, 5 and >5 mm) were similarly distributed among the three species. The sum of the three soil macro-aggregates classes >1 mm was 0.1 g g−1 in both years. Neither water stability of the 2–5 mm aggregates (0.05–0.09 g g−1) nor soil organic C (SOC) in three aggregate classes (<0.25, 1–2 and >5 mm; mean 14.6 mg g−1) was affected by species (P < 0.05) in either year. Observations of thin sections (10× and 40×) revealed absence of macro-aggregates under maize. Soil compaction was attributed to high mass of maize roots in the sampled soil volume. Root systems sampled after harvest had the capacity to maintain a well structured soil mass, which was proportional to root mass. Root-adhering soil measured in the field could be used to select species promoting soil adhesion by roots.  相似文献   

18.
Plant growth is directly affected by soil water, soil aeration, and soil resistance to root penetration. The least limiting water range (LLWR) is defined as the range in soil water content within which limitations to plant growth associated with water potential, aeration and soil resistance to root penetration are minimal. The LLWR has not been evaluated in tropical soils. Thus, the objective of the present study was to evaluate the LLWR in a Brazilian clay Oxisol (Typic Hapludox) cropped with maize (Zea mays L. cv. Cargil 701) under no-tillage and conventional tillage. Ninety-six undisturbed soil samples were obtained from maize rows and between rows and used to determine the water retention curve, the soil resistance curve and bulk density. The results demonstrated that LLWR was higher in conventional tillage than in no-tillage and was negatively correlated with bulk density for values above 1.02 g cm−3. The range of LLWR variation was 0–0.1184 cm3 cm−3 in both systems, with mean values of 0.0785 cm3 cm−3 for no-tillage and 0.0964 cm3 cm−3 for conventional tillage. Soil resistance to root penetration determined the lower limit of LLWR in 89% of the samples in no-tillage and in 46% of the samples in conventional tillage. Additional evaluations of LLWR are needed under different texture and management conditions in tropical soils.  相似文献   

19.
Little is known about the long-term effects of tillage and crop residue management on soil quality and organic matter conservation in subarctic regions. Therefore, we quantified wet aggregate stability, bulk density, pH, total organic C and N, inorganic N, microbial biomass C and N, microbial biomass C:N ratio, microbial quotient, and potential C and N mineralization for a tillage/crop residue management study in central Alaska. Soil from no-till (NT), disked once each spring (DO), and disked twice (DT, spring and fall) treatments was sampled to 20 cm depth in spring and fall of the 16th and 17th years of the study. Crop residues were either retained or removed after harvest each year. Reducing tillage intensity had greater impact on most soil properties than removing crop residues with the most notable effects in the top 10 cm. Bulk density was the only indicator that showed significant differences for the 10–20 cm depth, with values of 0.74 Mg m−3 in the surface 10 cm in NT compared to 0.86 in DT and 1.22 Mg m−3 in NT compared to 1.31 in DT for the 10–20 cm depth. Wet aggregate stability ranged from 10% in DT to 20% in NT. Use of NT or DO conserved soil organic matter more than DT. Compared to measurements made in the 3rd and 4th years of the study, the DT treatment lost almost 20% of the soil organic matter. Retaining crop residues on the soil conserved about 650 g m−2 greater C than removing all residues each year. Soil microbial biomass C and mineralizable C were highest in NT, but the microbial C quotient, which averaged only 0.9%, was not affected by tillage or crop residue treatment. Microbial biomass C:N ratio was 11.3 in DT and 14.4 in the NT, indicating an increasing predominance of fungi with decreasing tillage intensity. Barley grain yield, which averaged 1980 kg ha−1 over the entire 17 years of the study, was highest in DO and not significantly different between NT and DT, but weeds were a serious problem in NT. Reduced tillage can improve important soil quality indicators and conserve organic matter, but long-term NT may not be feasible in the subarctic because of weed problems and build up of surface organic matter.  相似文献   

20.
Determining temporal changes in field-saturated hydraulic conductivity (Kfs) is important for understanding and modeling hydrological phenomena at the field scale. Little is known about temporal variability of Kfs values measured at permanent sampling points. In this investigation, the simplified falling head (SFH) technique was used for an approximately 2-year period to determine temporal changes in Kfs at 11 permanent sampling points established at the surface of a sandy loam soil. Additional Kfs measurements were obtained by the single-ring pressure infiltrometer (PI) technique to also compare the SFH and PI techniques. The lowest mean values of Kfs, M(Kfs), were detected in December and January (20.5 ≤ M(Kfs) ≤ 146.2 mm h−1), whereas higher results (190.5 ≤ M(Kfs) ≤ 951.9 mm h−1) were obtained in the other months of the year. The Kfs values were higher and less variable in the dry soil (θi ≤ 0.21 m3 m−3, M(Kfs) = 340.6 mm h−1, CV(Kfs) = 106%) than in the wet one (θi > 0.21 m3 m−3, M(Kfs) = 78.4 mm h−1, CV(Kfs) = 185%). Both wet and dry soil were less conductive at the end of the study period than at the beginning one but a more appreciable change was detected for the dry soil (Kfs decreasing by 83.4%) than for the wet one (Kfs decreasing by 63.0%). The simple SFH technique yielded Kfs results similar to the more laborious and time-consuming PI technique (i.e., mean values differing at the most by a factor of two). It was concluded that (i) the soil water content was an important factor affecting the Kfs results obtained in a relatively coarse-textured soil, (ii) the impact of time from the beginning of the experiment on the saturated hydraulic conductivity was larger for a repeated sampling of dry soil than of wet soil and (iii) the SFH technique yielded reliable Kfs results in a relatively short period of time without the need for extensive instrumentation or analytical methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号