首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Organism succession during ecosystem development has been researched for aboveground plant communities, however, the associated patterns of change in below-ground microbial communities are less described. In 2008, a study was initiated along a developmental sand-dune soil chronosequence bordering northern Lake Michigan near Wilderness Park (WP). It was hypothesized that soil bacterial communities would follow a pattern of change that is associated with soil, plant, and ecosystem development. This study included 5 replicate sites along 9 soils (n = 45) ranging in age from ∼105 to 4010 years since deposition. Soil bacterial community composition and diversity were studied using bacterial tag-encoded FLX amplicon pyrosequencing of the 16S rRNA gene. Bray–Curtis ordination indicated that bacterial community assembly changed along the developmental soil and plant gradient. The changes were not affected by seasonal differences, despite likely differences in plant root C (e.g. exudates), temperature, and water availability in soil. Soil base cations (Ca, Mg) and pH declined, showing log-linear correlations with soil age (r ∼ 0.83, 0.84 and 0.81; P < 0.01). Bacterial diversity (Simpson's 1/D) declined rapidly during the initial stages of soil development (∼105–450 y) and thereafter (>450 y) did not change. Turnover of plant taxa was also more rapid early during ecosystem development and correlated with bacterial community structural change (P < 0.000001; r = 0.56). It is hypothesized that plants help to drive pedogenic change during early (<450 y) soil development (e.g. pH decline, cation leaching) which drive selection of soil bacterial communities. In mature soils (∼450–4000 y), resilient and stable soil bacterial community structures developed, mimicking steady-state climax communities that were observed during latter stages of primary plant succession. These relationships point to possible feedbacks between plant and bacterial communities during ecosystem development.  相似文献   

2.
The synergistic and antagonistic interactions among biotic components in the rhizosphere play a crucial role in plant defence against soil-borne pathogens. We investigated if the rhizosphere helper bacterium Streptomyces sp. AcH 505 (HB) indirectly protects the plant from the parasitic nematode Pratylenchus penetrans by modifying the rhizosphere microbial community structure and whether these interactions are dependent on the growth stage of oaks. Changes in the abundance of Streptomyces sp. AcH 505 and the phospholipid fatty acid (PLFA) composition of the rhizosphere soil as well as oak shoot and root biomass were assessed. Investigated were the bud resting stage A and the bud swelling stage B with maximal root elongation of oak microcuttings at two successive harvest times. The deleterious effect of P. penetrans on oak biomass was dependent on plant development, being limited to oak microcuttings growing at the stage B. In comparison to control and HB inoculated soils, shoot biomass decreased by about 33% and 41%, and root biomass by about 33 and 48%, respectively. The antagonistic effect of Streptomyces against the nematode was linked to shifts in the rhizosphere microbial community. The Streptomyces AcH505 strain promoted growth of oak microcuttings at bud swelling stage B during maximal root elongation and enhanced the abundance of saprophytic and ectomycorrhizal fungi in the rhizosphere by 158% with respect to controls. Our results highlight the importance of Streptomyces for counteracting the damage of nematodes and promoting plant growth in natural ecosystems such as forests.  相似文献   

3.
Many studies have shown effects of plants species on fungal communities, but these are often confounded with soil effects. Thus, the specific role of plant species in structuring rhizospheric and soil fungal communities is poorly described. Our study used microcosms in which plants were grown under artificial conditions to bridge this gap. Two perennial grasses dominating subalpine grasslands, Festuca paniculata and Dactylis glomerata, were grown at two levels of fertilization on standard soil. Fungal communities were determined by 454 pyrosequencing of the internal transcribed spacer 1 region. Among the fungal communities characterized by the primers used, original communities were associated to each plant species and also diverged between rhizosphere and bulk soils within each plant species, though there were no significant fertilization effects. Differences regarded global composition of the fungal communities and abundant molecular operational taxonomic units (MOTUs). Both plant species and location effects were reflected more in the abundance than in the composition of MOTUs. The observed differences in fungal communities coincide with differing strategies of plant root growth, with D. glomerata having greater root mass, length, and area than F. paniculata. Our study, by dissociating soil effects from plant effects, demonstrated that plant species exert a key control on soil fungi. We suggest that such effects may be linked to inter-specific differences in root traits and their consequences on nitrogen uptake.  相似文献   

4.
Impacts of belowground insecticide application on plant performance and changes in plant community structure almost uniformly have been ascribed to reduced belowground herbivory, although recent studies reported distinct side effects on detritivore soil animals, particularly on Collembola. Consequently, it remains controversial if the resulting soil feedbacks on plants are due to alterations in arthropod herbivory or to changes in the activity of detritivores. We investigated the impacts of the application of a commonly used belowground insecticide (chlorpyrifos) on soil animals and soil feedbacks on model plant species representing two main plant functional groups of grassland communities, the grass Lolium perenne and the forb Centaurea jacea.Insecticide application decreased soil insect herbivore densities considerably. However, also Collembola densities and diversity decreased markedly due to insecticide application and this was most pronounced in Entomobryidae, Isotomidae, Hypogastruridae, and Sminthuridae. While densities of other detritivore taxa were not affected or even increased (Oribatida) in insecticide subplots, that of predators mostly decreased.Both model plant species built considerably more biomass in control subplots than in insecticide subplots irrespective of characteristics of the resident plant community. This suggests that soil feedbacks on plants were not due to belowground herbivory and highlights the significance of alternative mechanisms responsible for insecticide-mediated soil feedbacks on plants. The deterioration of model plant species’ performances in insecticide subplots most likely was due to decreased densities of Collembola resulting in the deceleration of nutrient cycling and plant nutrition. The results suggest that it is oversimplistic to only ascribe insecticide-mediated soil feedbacks on plants to belowground herbivores. The results further indicate that in the present study the impact of arthropod detritivores on plant productivity was more important than that of belowground herbivores. This emphasizes that plant-soil arthropod interactions in grassland might be based on both facilitative and antagonistic interrelationships.  相似文献   

5.
Application of earthworm in soil re-cultivation and re-creation in post-industrial ecosystems make a big challenge for temporal applied zoology. The sediments of the Krakow Soda Works “Solvay” have undergone land reclamation in different ways: older sediments traps were left without any re-cultivation practices; meanwhile the newest ones were reclaimed using standard method (new soil cover planted with combination of grass and leguminous plants). The effect of different treatments on community and population structure of earthworm was estimated during consecutive years 1999–2000. Six localities differing in time of establishment, reclamation processes, vegetation type and soil properties were chosen. Nine species were recorded, among which Aporrectodea caliginosa occurred in all localities, being also the most abundant. Two other species, Lumbricus rubellus and Dendrobaena octaedra, which are epigeic species, become most important in forest assemblages and were characteristic for communities of older succession processes. Abundance of adult forms as well as total biomass were significantly affected by soil depth (r = 0.75, P < 0.05, r = 0.917, P < 0.001, respectively). Species richness however was connected with higher amount of macroelements and average plant height. Shannon diversity index and its evenness negatively correlated only with forestation (r = –0.67, P < 0.05, r = –0.68, P < 0.05, respectively). Niche overlap (α Pianka) for all analysed species extracted two groups differing in environmental requirements. First contained epigeic earthworms, closely related to plant succession (PCA results), the other one grouped endogeic and anecique species correlated significantly with soil depth and plant density. Community structure of earthworms do not reflects succession changes in post-industrial habitats, but is strongly affected by microhabitat factors in local scale (mainly soil depth and plant density).  相似文献   

6.
Overwintering cattle outdoors causes soil surface disturbance, substantial increases of soil Ntot, Corg, and P and a shift in pH to alkaline levels. Since fungi predominate in unfertilized soils with acidic pH and have filamentous hyphae, we hypothesized that changes caused by overwintering cattle outdoors (trampling, excreta returns, and changes in soil chemistry) will lead to suppressed species richness, lower biomass, and alter the structure of fungal communities. The research was conducted on an upland pasture used more than 10 years for cattle overwintering. Both culture-dependent and -independent methods were used for the determination of either fungal species composition (cultivation; DGGE) or biomass (numbers of CFU; concentration of fungal PLFA marker 18:2ω6,9). Soils under three different levels of cattle disturbance (S - severe, M - moderate, C - no disturbance/control) were investigated during three subsequent years. In addition, the DGGE analysis of soils was completed by comparison with analysis of fresh cattle excrements (Ex). The composition of fungal communities showed significantly higher richness and a substantial shift in species composition in cattle-disturbed soils (S, M) in comparison to the non-disturbed soil (C). The number of separated DGGE bands was significantly higher in S (30.67 ± 1.63; mean ± SD) and M (25.50 ± 1.64) soils than in the C soil (19.33 ± 1.75). Sequencing of typical bands revealed common fungal genera - Alternaria, Penicillium, Fusarium, Rhizopus, Isaria, and Metarhizium. Profiles of the S soil were enriched by bands of rumen-born anaerobic fungi (Neocallimastix, Cyllamyces) occurring mainly in profiles of excrements, where relatively low band richness (14.33 ± 1.15) was observed. The increasing level of cattle disturbance induced an increase in the biomass of complex fungal community over the three-year experimental period from 3.39 ± 2.11 (mean ± SD) nmol of fungal PLFA per gram of the C soil to 5.87 ± 3.16 in the M soil and 9.21 ± 4.69 in the S soil. Concentrations of soil Ntot and Corg were evaluated as the parameters significantly correlating with biomass as well as composition of the fungal community.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) are important functional components of ecosystems. Although there is accumulating knowledge about AMF diversity in different ecosystems, the effect of forest management on diversity and functional characteristics of AMF communities has not been addressed. Here, we used soil inoculum representing three different AM fungal communities (from a young forest stand, an old forest stand and an arable field) in a greenhouse experiment to investigate their effect on the growth of three plant species with contrasting local distributions - Geum rivale, Trifolium pratense and Hypericum maculatum. AM fungal communities in plant roots were analysed using the terminal restriction fragment length polymorphism (T-RFLP) method. The effect of natural AMF communities from the old and young forest on the growth of studied plant species was similar. However, the AMF community from the contrasting arable ecosystems increased H. maculatum root and shoot biomass compared with forest inocula and T. pratense root biomass compared to sterile control. According to ordination analysis AMF inocula from old and young forest resulted in similar root AMF communities whilst plants grown with AM fungi from arable field hosted a different AMF community from those grown with old forest inocula. AMF richness in plant roots was not related to the origin of AMF inoculum. G. rivale hosted a significantly different AM fungal community to that of T. pratense and H. maculatum. We conclude that although the composition of AM fungal communities in intensively managed stands differed from that of old stands, the ecosystem can still offer the ‘symbiotic service’ necessary for the restoration of a characteristic old growth understorey plant community.  相似文献   

8.
Plant-soil feedbacks are gaining attention for their ability to determine plant community development. Plant-soil feedback models and research assume that plant-soil interactions occur within days to weeks, yet, little is known about how quickly and to what extent plants change soil community composition. We grew a dominant native plant (Pseudoroegneria spicata) and a dominant non-native plant (Centaurea diffusa) separately in both native- and non-native-cultivated field soils to test if these species could overcome soil legacies and create new soil communities in the short-term. Soil community composition before and after plant growth was assessed in bulk and rhizosphere soils using phospholipid fatty acid analyses. Nematode abundance and mycorrhizal colonization were also measured following plant growth. Field-collected, native-cultivated soils showed greater bacterial, Gram (−), fungal, and arbuscular mycorrhizal PLFA abundance and greater PLFA diversity than field-collected, non-native-cultivated soils. Both plant species grew larger in native- than non-native-cultivated soils, but neither plant affected microbial composition in the bulk or rhizosphere soils after two months. Plants also failed to change nematode abundance or mycorrhizal colonization. Plants, therefore, appear able to create microbial legacies that affect subsequent plant growth, but contrary to common assumptions, the species in this study are likely to require years to create these legacies. Our results are consistent with other studies that demonstrate long-term legacies in soil microbial communities and suggest that the development of plant-soil feedbacks should be viewed in this longer-term context.  相似文献   

9.
The development of communities of arbuscular mycorrhizal fungi (AMF) was investigated in the subalpine foreland of the glacier Morteratsch located at approx. 1900–2100 m a.s.l. near Pontresina (Engiadin’ Ota, Switzerland). In particular, we asked if the succession of AMF communities follows or precedes the primary plant succession, and we checked the mycorrhizal status of the pioneer plant Epilobium fleischeri. Soil samples were taken at pioneer and dense grassland sites established during the last hundred years representing different periods of glacier retreat: 1875–1900, 1940–1950, 1970–1980 and 1990–2000. Extraradical hyphal length densities and AMF spore populations were analyzed in soil samples. Spore formation and mycorrhizal root colonization were monitored in trap cultures grown on Trifolium pratense, Lolium perenne, Plantago lanceolata and Hieracium pilosella or on E. fleischeri over 14 months. We found that E. fleischeri is strongly arbuscular mycorrhizal, but plants in closest distance to the glacier (glacier retreat in the last 4–6 years before sampling) were non-mycorrhizal. Spore densities and root colonization in trap cultures were generally low in samples from glacier stage 1990–2000. Highest spore density and colonization were found for the sites ice-free since 1970–1980, whilst highest AMF species richness and hyphal length densities were found at the sites ice-free since 1875–1900. Our findings show an establishment of a few AMF pioneer species (e.g. Diversispora versiformis and Acaulospora punctata) within 5–10 years and species rich AMF communities at sites ice-free for 100 years (28 species). Their succession generally follows the succession of the plant communities. We conclude that AMF pioneer species might be mainly distributed by wind transport while other AMF fungi (e.g. Glomus rubiforme and Glomus aureum) rather need a below-ground hyphal network to invade new areas.  相似文献   

10.
In North America, many species of European earthworms have been introduced to northern forests. Facilitative or competitive interactions between these earthworm species may result in non-additive effects on native plant and animal species. We investigated the combined versus individual effects of the litter-dwelling earthworm Dendrobaena octaedra Savigny, 1826 and the deep-burrowing species Lumbricus terrestris L., 1758 on microarthropod assemblages from boreal forest soil by conducting a mesocosm experiment. Soil cores from earthworm-free areas of northern Alberta, Canada, were inoculated with D. octaedra alone, L. terrestris alone, both worm species together, or no earthworms. After 4.5 months, microarthropods were extracted from the soil, counted, and identified to higher taxa. Oribatid mites were further identified to family and genus. Abundance of microarthropods was significantly lower in the treatment containing both species than in the no earthworm treatment and the L. terrestris treatment. Oribatida and Prostigmata/Astigmata differed significantly among treatments and were lowest in the treatment containing both earthworm species, followed by the D. octaedra treatment, although post-hoc pairwise comparisons were not significant. Within the Oribatida, composition differed between the control and L. terrestris treatments as compared to the D. octaedra and both-species treatments, with Suctobelbella and Tectocepheus in particular having higher abundances in the control treatment. Effects of the two earthworm species on microarthropods were neither synergistic nor antagonistic. Our results indicate that earthworms can have strong effects on microarthropod assemblages in boreal forest soils. Future research should examine whether these changes have cascading effects on nutrient cycling, microbial communities, or plant growth.  相似文献   

11.
《Applied soil ecology》2007,35(3):622-634
Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = −0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner.  相似文献   

12.
Non-legume crops grown in rotation with legumes usually have reduced N-fertilizer requirement, which has both economic and environmental benefits. In this study, we aimed to assess the indirect effect of Phaseolus vulgaris inoculation with two indigenous rhizobia strains on potato growth promotion and disease control in relation to inoculation effects on soil bacterial communities. T-RFLP profiling demonstrated that inoculation significantly increased the phylotype richness of the bacterial communities at the end of P. vulgaris life cycle. A significant difference in richness between simple and dual inoculation was found. Effects on bacterial structure are clearly sensed with both inoculants. Various bacteria like Halomonas, Arthrobacter, Rahnella, Actinobacterium and Frankia were enhanced by inoculation irrespective of the inoculant type. However, other bacteria like Clostridium, Bacillus, Stenotrophomonas and Xanthomonas were enhanced by rhizobial mono-inoculation only and not by co-inoculation with both strains. Some bacteria may potentially behave like plant growth promoting rhizobacteria (PGPR) towards potatoes grown in rotation with common bean, as indicated by the 32% increase observed in potato yield, and also by the 56% decrease in potato wireworm infection. Therefore, rhizobia inoculation may contribute to the rotational benefits of legumes in potato cropping systems not only by providing fixed nitrogen, but also by increasing microbial diversity and structure, potentially stimulating plant growth promoting rhizobacteria and enhancing disease control. However, these effects depend largely on inoculant formulation.  相似文献   

13.
In order to understand the impact of human activities on soil microbial diversity, we investigated bacterial communities in samples recovered from four New Caledonia environments that have been disturbed by varying degrees of nickel mining associated activities: an undisturbed area with natural soil (characterized by pristine vegetation), a mine spoil (devoid of vegetation), two revegetated mine spoils by endemic plants. For each sample, total DNA was extracted and 16S rDNA clone library were constructed. 442 clones were sequenced and analyzed. Using these clones, diversity was estimated not only in terms of species richness (non-parametric estimators) and evenness (Reciprocal of Simpson's index), but also in terms of phylogenetic diversity (LIBSHUFF program). Statistically significant differences were detected in phylogenetic composition between mine spoils and natural soil (p = 0.001), between revegetated soils and natural soil (p = 0.001), and between revegetated soils and mine spoils (p = 0.001). On the other hand, no significant differences in species richness were observed between the different environmental samples.These findings provide insights into the response of bacterial community following environmental perturbations caused by nickel-mining activities and revegetation efforts.  相似文献   

14.
《Applied soil ecology》2003,22(1):67-77
The Grand Staircase—Escalante National Monument (GSENM) contains a rich diversity of native plant communities. However, many exotic plant species have become established, potentially threatening native plant diversity. We sought to quantify patterns of native and exotic plant species and cryptobiotic crusts (mats of lichens, algae, and mosses on the soil surface), and to examine soil characteristics that may indicate or predict exotic species establishment and success. We established 97 modified-Whittaker vegetation plots in 11 vegetation types over a 29,000 ha area in the Monument. Canonical correspondence analysis (CCA) and multiple linear regressions were used to quantify relationships between soil characteristics and associated native and exotic plant species richness and cover. CCA showed that exotic species richness was significantly (P<0.05) associated with soil P (r=0.84), percentage bare ground (r=0.71), and elevation (r=0.67). Soil characteristics alone were able to predict 41 and 46% of the variation in exotic species richness and cover, respectively. In general, exotic species invasions tend to occur in fertile soils relatively high in C, N and P. These areas are represented by rare mesic high-elevation habitats that are rich in native plant diversity. This suggests that management should focus on the protection of the rare but important vegetation types with fertile soils.  相似文献   

15.
In coastal foredunes, the grass Ammophila arenaria develops a soil community that contributes to die-back and replacement by later successional plant species. Root-feeding nematodes and pathogenic soil microorganisms are involved in this negative feedback. Regular burial by wind-blown beach sand results in vigorous growth of A. arenaria, probably because of enabling a temporary escape from negative soil feedback. Here, we examine the role of root-feeding nematodes as compared to the whole soil community in causing negative feedback to A. arenaria. We performed a 3-year sand burial experiment in the field and every year we determined the feedback of different soil communities to plant growth in growth chamber bioassays.In the field, we established A. arenaria in tubes with beach sand, added three endoparasitic root-feeding nematode species (Meloidogyne maritima, Heterodera arenaria and Pratylenchus penetrans) or root zone soil to the plants, and created series of ceased and continued sand burial. During three subsequent years, plant biomass was measured and numbers of nematodes were counted. Every year, bioassays were performed with the field soils and biomass of seed-grown A. arenaria plants was measured to determine the strength of feedback of the established soil communities to the plant.In the field, addition of root zone soil had a negative effect on biomass of buried plants. In the bioassays, addition of root zone soil also reduced the biomass of newly planted seedlings, however, only in the case when the field plants had not been buried with beach sand. Addition of the three endoparasitic root-feeding nematodes did not influence plant biomass in the field and in the bioassays. Our results strongly suggest that the negative feedback to A. arenaria is not due to the combination of the three endoparasitic nematodes, but to other components in the soil community, or their interactions with the nematodes.  相似文献   

16.
Ammonia-oxidizing bacteria (AOB) are key organisms in the N cycle, as they control the first, rate-limiting step of the nitrification process. The question whether current environmental disturbances, such as climate warming and plant diversity losses, select for a particular community structure of AOB and/or influence their activity remains open. The purpose of this research was to study the impact of a 3 °C warming and of plant species richness (S) on microbial activity and diversity in synthesized grasslands, with emphasis on the nitrification process and on the diversity (community structure and richness) of ammonia-oxidizing bacteria (AOB). We measured soil chemical characteristics, basal respiration, potential nitrification and AOB diversity in soils under increasing plant species richness (S = 1, S = 3, S = 9) at ambient and (ambient +3 °C) temperature. Species were drawn from a 9-species pool, belonging to three functional groups: forbs, legumes and grasses. Mixtures comprised species from each of the three functional groups. Warming did not affect AOB diversity and increased potential nitrification at S = 3 only. Under warmed conditions, higher plant species richness resulted in increased potential nitrification rates. AOB richness increased with plant species richness. AOB community structure of monocultures under legumes differed from those under forbs and grasses. Clustering analysis revealed that AOB community structure under legume monocultures and mixtures of three and nine species grouped together. These results indicate that functional group identity rather than plant species richness influenced AOB community structure, especially through the presence of legumes. No clear relationship emerged between AOB richness and potential nitrification whatever plant species richness and temperature treatment. Our findings show a link between aboveground and belowground diversity, namely plant species richness, AOB richness and community structure. AOB richness was not related to soil processes, supporting the idea that increased diversity does not necessarily lead to increased rates of ecosystem processes.  相似文献   

17.
Lumbricus terrestris is a deep-burrowing anecic earthworm that builds permanent, vertical burrows with linings (e.g., drilosphere) that are stable and long-lived microhabitats for bacteria, fungi, micro- and mesofauna. We conducted the first non-culture based field study to assess simultaneously the drilosphere (here sampled as 0–2 mm burrow lining) composition of microbial and micro/mesofaunal communities relative to bulk soil. Our study also included a treatment of surface-applied 13C- and 15N-labeled plant residue to trace the short-term (40 d) translocation of residue C and N into the drilosphere, and potentially the assimilation of residue C into drilosphere microbial phospholipid fatty acids (PLFAs). Total C concentration was 23%, microbial PLFA biomass was 58%, and PLFAs associated with protozoa, nematodes, Collembola and other fauna were 200-to-300% greater in the drilosphere than in nearby bulk soil. Principal components analysis of community PLFAs revealed that distributions of Gram-negative bacteria and actinomycetes and other Gram-positive bacteria were highly variable among drilosphere samples, and that drilosphere communities were distinct from bulk soil communities due to the atypical distribution of PLFA biomarkers for micro- and mesofauna. The degree of microbial PLFA 13C enrichment in drilosphere soils receiving 13C-labeled residue was highly variable, and only one PLFA, 18:1ω9c, was significantly enriched. In contrast, 11 PLFAs from diverse microbial groups where enriched in response to residue amendment in bulk soil 0–5 cm deep. Among control soils, however, a significant δ13C shift between drilosphere and bulk soil at the same depth (5–15 cm) revealed the importance of L. terrestris for translocating perennial ryegrass-derived C into the soil at depth, where we estimated the contribution of the recent grass C (8 years) to be at least 26% of the drilosphere soil C. We conclude that L. terrestris facilitates the translocation of plant C into soil at depth and promotes the maintenance of distinct soil microbial and faunal communities that are unlike those found in the bulk soil.  相似文献   

18.
《Applied soil ecology》2000,14(1):27-36
The nematode communities of 36 grassland ecosystems in Romania, belonging to different plant associations and soil types, were studied. The abundance of nematodes, the species and trophic types present, as well as their distribution in relation to plant community and soil characteristics are analyzed and discussed.The abundance of nematodes from the 36 grasslands studied ranged between 0.41 × 106 and 8.57 × 106 individuals/m2, and a total of 121 genera and 145 species of nematodes were found. The highest diversity was found in grasslands developed on brown earth soil (65–67 genera and 74–76 species), with least diversity in those evolving on podzol and lithosol (33–36 genera with 25–28 identified species). Most of the dominant taxa were found in specific soil layers; some obligate plant parasitic genera (e.g., Paratylenchus, Rotylenchus, Criconema) showed preference for deeper soil layers. The nematode diversity index (H′), with values ranging between 2.38 and 3.47, did not differ significantly between the different types of grasslands. Plant feeding, bacterial feeding, hyphal feeding and omnivorous nematodes were the main groups in mountainous grasslands developed on different soil types. Plant feeding and bacterial feeding nematodes dominated the trophic structure and more plant feeders (62–69%) were found in communities of subalpine and alpine grasslands developed on podzol and alpine meadow soil, than in those developed on rendzina and lithosol (27–33%). The ratio of hyphal feeding to bacterial feeding nematodes (Hf/Bf) is constantly in favour of the bacterial feeding group, the values being an indicator of good soil fertility for most studied grasslands. The nematode communities of grasslands are grouped into six main clusters according to their genera affinity and distinguished by different grassland and soil types. Communities from subalpine grasslands developed on rendzina, acid brown and lithosol have the greatest similarities. An ordination of nematode communities in relation to important environmental variables is presented. Environmental variables relevant in explaining the patterns of nematode composition in grasslands, using canonical correspondence analysis (CCA), are: humus, pH, total nitrogen, exchangeable bases and soil type. No single factor could be selected.  相似文献   

19.
《Applied soil ecology》2007,35(1):10-20
Colonization by and diversity of arbuscular mycorrhizal (AM) fungi associated with five common ephemerals, Eremopyrum orientale (L.) Jaub. et Spach., Gagea sacculifera Regel., Plantago minuta Pall., Tragopogon kasahstanicus S. Nikit., and Trigonella arcuata C. A. Mey. were investigated in four typical desert plant communities in Junggar Basin, northwest China. All five ephemerals examined were found to be colonized and formed typical arbuscules or vesicles. The proportion of root length colonized ranged from 2 to 85% with an average of 19%. Spore density in soil near the roots of different ephemerals varied from 1 to 120 spores per 20 ml soil, with an average value of 33 spores. Species richness averaged 8.8 AM fungal species in soil near the roots and ranged from 2 to 21. Fifty-four AM fungal taxa belonging to the genera Acaulospora, Archaeospora, Entrophospora, Glomus and Paraglomus were isolated and identified from soil around the roots. Glomus was the dominant AM fungal genus with a frequency of 100% and relative abundance of 82.6%. The AM fungal species with the highest frequency of occurrence was Glomus aggregatum with a frequency of 75%. G. microaggregatum was present in the highest relative abundance (16%). G. sacculifera, P. minuta and T. arcuata formed Arum-type mycorrhizas. Arbuscular mycorrhizal fungi are ubiquitous and Arum-type mycorrhizas are especially prevalent in these important desert communities used for grazing and traditional medicine.  相似文献   

20.
The relationship of structural diversity and differences in the functional potentials of rhizosphere communities of alfalfa, common bean and clover was investigated in microcosms. PCR-SSCP (single strand conformation polymorphism) analysis of 16S rRNA genes revealed significant differences in the composition of the leguminous rhizosphere communities at the shoot stage of plants grown in the same soil. Sequencing of dominant SSCP-bands indicated the presence of plant specific organisms. The partial rRNA gene sequences were related to members of the α- and γ-Proteobacteria, Bacteroidetes and Actinobacteria. Besides the plant species, the soil also affected the structural diversity in rhizospheres. The dominant bacterial populations of alfalfa grown in soils with different agricultural histories were assigned to different taxonomic groups. Addressing the functional potentials, community-level physiological profiles (CLPP) were generated using BIOLOG GN®. The three leguminous rhizosphere communities could be differentiated by principle component analysis, though the overall analysis indicated that the metabolic potential of all rhizosphere samples was similar. The functional variation examined in rhizospheres of alfalfa was minor in response to the soil origin and was found not to be significant different at different growth stages. The results indicate that similar functional potentials may be provided by structurally different bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号